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Abstract—Compressive Sensing theory details how a sparsely

represented signal in a known basis can be reconstructed with
an underdetermined linear measurement model. However, in re-

ality there is a mismatch between the assumed and the actual

bases due to factors such as discretization of the parameter
space defining basis components, sampling jitter in A/D con-

version, and model errors. Due to this mismatch, a signal may

not be sparse in the assumed basis, which causes significant per-
formance degradation in sparse reconstruction algorithms. To

eliminate the mismatch problem, this paper presents a novel

perturbed orthogonal matching pursuit (POMP) algorithm that
performs controlled perturbation of selected support vectors to

decrease the orthogonal residual at each iteration. Based on de-

tailed mathematical analysis, conditions for successful reconstruc-
tion are derived. Simulations show that robust results with much

smaller reconstruction errors in the case of perturbed bases can

be obtained as compared to standard sparse reconstruction tech-
niques.

Index Terms—Compressive sensing, basis perturbation, basis

mismatch, perturbed OMP.

I. INTRODUCTION

S PARSE signal representations and the compressive sensing

(CS) theory [1], [2] has received considerable attention in

recent years in many research communities. In particular, CS

changed the way data is acquired by significantly reducing the

data acquisition number or cost, which has been applied to a

wide range of important applications, such as computational

photography [3], medical imaging [4], radar [5], [6] and sensor

networks [7].

Compressive sensing states that a sparse signal in some

known basis can be efficiently acquired using a small set of

nonadaptive and linear measurements. Suppose dimensional

signal has a -sparse representation in a transform domain

, as and . Given linear measurements in

the form , by using compressive sensing techniques,

the sparse signal , hence , can be recovered exactly with very
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high probability from measurements by solving a

convex optimization problem of the following form:

(1)

which can be solved efficiently using linear programming.

Stable reconstruction methods for noisy measurements or

compressible signals based on minimization have been de-

veloped [8]–[10] for the known basis case. Suboptimal greedy

algorithms have also been used in many applications. Matching

pursuit (MP) [11], orthogonal matching pursuit (OMP) [12],

compressive sampling matching pursuit (CoSaMP) [13], iter-

ative hard/soft thresholding (IHT) [14] are among the most

commonly used greedy algorithms. Apart from greedy algo-

rithms, approximate message passing (AMP) uses the idea of

belief propagation to achieve high reconstruction performance

with low complexity [15]. If the sparse signal has a structure,

such as a wavelet tree, techniques proposed in [16] can exploit

those models for better reconstruction. The study in [17] as-

sumes a Markov-tree structure in the sparse coefficients and

adapts the AMP algorithm in a Bayesian framework.

Commonly used sparse reconstruction techniques assume

that the basis is exactly known and the signal is sparse in

that basis. However, in some applications there is a mismatch

between the assumed basis and the actual but unknown one.

For example in applications like target localization [18], radar

[19], [20], time delay and doppler estimation, beamforming

[21], [22] or shape detection [23], the sparsity of the signal is

in a continuous parameter space and the sparsity basis is

constructed through discritization or gridding of these param-

eter spaces. In general, a signal will not be sparse in such a

dictionary created through discritization, since no matter how

fine the grid dimensions are, the signal parameters may not,

and generally do not, lie in the center of the grid cells. As

a simple example; consider a general signal which is sparse

in the continuous frequency domain. This signal may not be

sparse in the DFT basis defined by the frequency grid. A

continuous frequency parameter lying between two successive

DFT grid cells will affect not the only the closest two cells,

but the whole grid with amplitude decaying with , where

T is the sampling time interval. This off-grid phenomena

violates the sparsity assumption, resulting in a decrease in

reconstruction performance. In addition to these structured

perturbations, random time jitter in A/D conversion, modeling

errors in construction of the dictionary create perturbations

on the dictionary columns. Hence, in general, the signal will

be sparse in an unknown basis where is the

adopted basis and is the unknown perturbation matrix.

In the literature, the effect of this basis mismatch has been

observed and analyzed in some applications such as radar [19],

[24] and beamforming [25]. In problems due to parameter space

discritization, a simplistic approach is to usemulti-resolution re-

finement and decrease the grid size. Decreasing the grid size is
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not a direct solution to the basis mismatch problem, because it

increases the coherence between dictionary columns, violating

the restricted isometry property (RIP) [26] and increasing the

computational complexity of the reconstruction. In [27]–[29]

the effect of the basis mismatch problem on the reconstruction

performance of CS has been analyzed and the resultant perfor-

mance degradation levels and analytical norm error bounds

due to the basis mismatch have been investigated. However,

these works do not offer a systematic approach for sparse recon-

struction under random perturbation models. In [30], the dictio-

nary is extended to several dictionaries and solution is pursued

not in a single orthogonal basis, but in a set of bases using a tree

structure, assuming that the given signal is sparse in at least one

of the basis. However, this strategy does not provide solutions if

the signal is not-sparse in the extended dictionary. In the Con-

tinuous Basis Pursuit approach [31], perturbations are assumed

to be continuously shifted features of the functions on which

the sparse solution is searched for, and based minimization

is proposed. Also in this method, perturbations are assumed to

have structure, and are modeled with a first order Taylor approx-

imation or polar interpolators. In [32], minimization based

algorithms are proposed for linear structured perturbations on

the sensing matrix. In [33] a total least square (TLS) solution

is proposed for the problem, in which an optimization over all

signals , perturbation matrix and error vector spaces should

be solved. To reduce complexity, suboptimal optimization tech-

niques have been pursued in [33].

In this paper, a novel perturbed orthogonal matching pursuit

(POMP) algorithm is presented. In the standard OMP algorithm

[12] the column vector that has the largest correlation with the

current residual is selected and the new residual is calculated

by projecting the measurements onto the subspace defined by

the span of all selected columns. This procedure is repeated

until the termination criteria is met. In the proposed POMP al-

gorithm, controlled perturbation mechanism is applied on the

selected columns. The selected column vectors are perturbed in

directions that decrease the orthogonal residual at each itera-

tion. Proven limits on perturbations are obtained. The proposed

method is fast, simple to implement and successful in recovering

sparse signals under random basis perturbations. A preliminary

form of this approach has been presented in [34].

The organization of the paper is as follows. Section II out-

lines the formulation of the problem and details the development

of the proposed POMP algorithm with a pseudo code and sup-

porting theorems. Results covering performance comparisons of

the proposed method and applications on a set of examples are

given in Section III. In Section IV, concluding remarks are pre-

sented and detailed proof of a theorem is given in the Appendix.

II. PERTURBED ORTHOGONALMATCHING PURSUIT

In compressive sensing, a sparse signal is reconstructed

from its given underdetermined linear measurements:

(2)

where with and is addi-

tive noise, typically assumed to be independent and identically

distributed (i.i.d.) Gaussian noise with known variance . The

matrix may be known, as in the case of row decimated ver-

sions of Fourier or wavelet transformation matrices, or it might

be a randomly selected one. The ideal reconstruction problem

can be formulated as an minimization problem,

(3)

where is the cardinality of , and the fit error constraint

has a bound that is related to the measurement noise statistics.

However, solution of the minimization problem requires

a combinatorial search, thus it is not feasible for practical

applications.

Another challenge is reconstruction in the presence of errors

in . When is not known precisely, may not be sparse in

the assumed . However, sparsity of the signal can be revealed

under a certain perturbation, , on the given . In this case,

the problem can be recast as,

(4)

where is some bounded perturbation space. This problem can

be viewed as a generalized version of the problem given in [31],

in which is considered as a Taylor series or polar approxi-

mation of and is the sufficient limits, also relaxing with

. The solution to this general problem is also combinatoric

in nature, and infeasible in practice.

To reduce the complexity of the problem of (4), sub-op-

timal greedy techniques can be developed as well. In these

greedy approaches, the support set of the reconstruction is iter-

atively increased until the constraints are satisfied. Assuming

that at iteration , the support set contains columns of ,

which we will call as for simplicity. At

the th iteration, new vector is obtained from the

solution of the following optimization problem:

(5)

where matrix is the projection operator to the column space

of perturbed and is the set of all

basis vectors that are not contained in . For each , this

perturbation problem can be solved by using the technique given

in [35]. However, due to its associated gradient descent based

iterations, the complexity of solution is still a practical limitation

for large . In this work, we propose a simpler non-iterative

perturbation for each , to maximize the projection under

bounded perturbations. At any iteration , the measurement

can be decomposed as:

(6)

where is the projection of onto the span of vectors in

and is the orthogonal residual. Since vectors in are lin-

early independent, this projection can be uniquely expressed as:

(7)

where is the weight of the corresponding th column vector.

In the proposed approach, as shown in Fig. 1, the ’s will be
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Fig. 1. One dimensional example for perturbed and unperturbed column vec-

tors. As the basis vector rotates, residual decreases.

perturbed by rotating them towards to by an angle , where

is the normalized residual:

(8)

Since both and have unit norms and they are orthog-

onal to each other, , which is the perturbed version of , has

also unit norm. If the angle of rotation, or equivalently, the al-

lowed amount of perturbation on is large enough, then

can be aligned with and there will be no residual left in the

perturbed basis. If the ’s are rotated more than adequate, ’s

can overlap with each other. When more than one vector span

the overlapping region, uniqueness of the projection is lost. In

order to avoid such overlaps, rotation of should be limited

to the half of the minimum angle between and other for

. More precisely, the maximum perturbation angle, ,

for a vector should satisfy:

(9)

where is the mutual coherence of and

. This case is illustrated in Fig. 2, where the

maximum allowed perturbation of a vector is such that the

cones around the columns of do not overlap with each other.

Perturbations beyond this limit generate switch-over between

the chosen set of vectors and cause non-unique projection.

Therefore, at each step of the proposed approach, only pertur-

bations satisfying this limit will be considered.

The approach of perturbations embedded in the iterations of

Orthogonal Matching Pursuit(OMP) provides a practical tech-

nique for sparse reconstruction when basis mismatch is present.

In the following discussion, we will provide a detailed theoret-

ical investigation of this approach that will be referred to as Per-

turbed-OMP, or POMP in short.

Theorem 1: For the largest perturbation angle satisfying

and , the perturbed sup-

port vectors defined in (8), has an orthogonal residual

whose norm is upper bounded as:

Proof: From (8), can be written as:

(10)

Fig. 2. Each unit column of has a maximum perturbation angle so that the

perturbed vectors do not overlap with each other.

Replacing this decomposition of in terms of and in

(7), measurements can be written as:

(11)

which can be regrouped to obtain:

(12)

In this decomposition of , the second term is in the span of

the perturbed vectors . Therefore, the orthogonal decompo-

sition of in the perturbed basis is:

(13)

where is the projection of onto the span of the perturbed

basis vectors, and is the corresponding residual. Thus,

(14)

Since, the norm of the projection operation is less than one,

we have:

(15)
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From the hypothesis, , thus we obtain

the desired upper bound:

(16)

The proof of Theorem 1 also reveals the following fact:

Corollary 1: The upper bound derived in Theorem 1 is mono-

tonically decreasing as a function of as long as the condition

is satisfied.

Proof: In Theorem 1, it is shown that:

As long as , the right hand side is a

valid non-negative upper bound for , and is a continuous

function of all , with partial derivatives:

(17)

which are all strictly negative for . Thus, the upper

bound decreases monotonically as a function of ,

q.e.d.

The first implication of Corollary 1 is that once a candidate

support set is available and , rather

than searching for a perturbation that minimizes , one

can minimize its upper bound simply by perturbing each vector

in the support up to its allowed limit.

The second implication of Corollary 1 is that if the perturba-

tion angles are increased, i.e., more freedom for the adjustment

of the basis exists, the derived upper bound decreases. There-

fore, for a certain amount of perturbation, this raises the possi-

bility of driving the upper bound to zero.

Corollary 2: Let . Then if

, perturbation of the support vectors up to ,

results in , yielding a -sparse reconstruction with

no residual error.

Proof: Simply replace

in the upper bound given in the (16) to get:

(18)

It is important to note that Theorem 1 and Corollaries 1 and 2

are valid for any set of linearly independent vectors from the

columns of . Even though chosen subset does not include

any component from the correct support, this theorem guaran-

tees that by using perturbation, the residual can be decreased. If

is the correct support, or some subset of the correct support,

then becomes a good approximation of . In this

case, becomes smaller and hence , the angle of per-

turbation at which the upper bound becomes zero, is a smaller

angle.

Proposition 1: A perturbed set of support vectors

will have if and only

if the upper bound in (16) is zero.

Proof: Using perturbations up to , the residual will be

zero; hence we can expand as:

(19)

Assume there is another angle resulting also a zero

residual. Hence, we can expand as:

(20)

If we subtract (19) from (20) term by term, we get the fol-

lowing:

(21)

Since and are orthogonal to each other,

and . If we divide both equa-

tions term by term, we get . Since we only

consider acute angles, , which contradicts the assump-

tion. Hence, the perturbation angle which results upper bound

in (16) to be zero is unique, q.e.d.

Although in the proposed perturbation approach norm of the

residual can be made zero for large enough perturbation angles,

a relaxed constrained optimization problem, where

, is more appropriate when there is noise in . Under this re-

laxation, more sparse reconstructions can also be obtained. In

Fig. 3 as an illustrative case, the error residual is shown as a

function of perturbation angle. It is seen that the constraint line

intersects with the error norm curve at , which is

the first intersecting angle smaller than . The following the-

orem provides an estimate for by using the intersection of

with the upper bound in (16).

Theorem 2: If the perturbation angles of support vectors in

are all chosen as , where

, then .
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Fig. 3. Upper bound and as a function of .

Proof: If in (16) is replaced with , then the upper

bound becomes:

(22)

Note that for small enough , the residual error of projec-

tion onto the perturbed support vectors, i.e., , the above

bound will also be tight and will be close to . Therefore,

for the th iteration of the proposed POMP approach, there are

three limits on the perturbation angles: first, , which is the

limit predefined by the coherence of as defined in (9); second

, beyond which the residual error norm is lower than ; and

third , the user-defined limit. A user may want a solution with

larger or smaller perturbations and, therefore maywant .

Hence, the allowable perturbation angle for the th support

vector should be

(23)

In general, is a larger angle compared to other two. In

the early phases of POMP, where the number of chosen support

vectors are lower than actual sparsity level, is expected to be

larger than the allowed perturbation, . Therefore, in the early

phases of the iterations, the residual error norm of the perturbed

support vectors is typically larger than the termination criterion

. Yet, it is expected that as new columns are added to the cur-

rent support during the iterations, will decrease and will be

less than eventually. Once ,

iterations will stop, since after the perturbation the residual will

have a norm less than . The following theorem, whose proof is

provided in the Appendix, states this expectation formally.

Theorem 3: Let be the support estimation in the th it-

eration and be the required perturbation angle as derived

in Corollary 2 and let be the basis vector chosen in the

TABLE I

PERTURBED-OMP (POMP) ALGORITHM

th iteration. If , then, ,

where .

Since is full rank, iterations stop when reaches

without any perturbation in the worst case. Therefore,

is zero. According to Theorem 3, when the required condition

is satisfied, produces a monotonically decreasing sequence

throughout the iterations. Since we know that , there

exists a such that due to monotonicity of the

angles. Therefore, Theorem 3 indirectly guarantees the termi-

nation of iterations.

It is important to note that Tropp’s Exact Recovery Condi-

tion for OMP [36], which simply states that if for

all un-selected basis vectors, OMP will select one of the cor-

rect support vectors in the next iteration, is a stricter version

of Theorem 3. Hence, we can safely guarantee that maximum

required angle, , will always decrease throughout the itera-

tions as long as OMP is guaranteed to provide exact reconstruc-

tion. This point will be revisited with numerical simulations in

Section III.

The steps of the proposed Perturbed Orthogonal Matching

Pursuit (POMP) algorithm is detailed in Table I. Starting with

a set of unit norm vectors, in the th iteration, POMP searches

over the dictionary to find the vector providing the largest ab-

solute inner product with the residual. After the selection of the

new vector, POMP computes the projection of themeasurement,

, onto the new larger support and finds the residual. OMP con-

tinues with the next iteration here. However, POMP proceeds

with the perturbation. Given and is computed according

to (23). It is assumed that user provides an angle, , less than

the mutual coherence of the basis, , oth-

erwise perturbations are limited by the basis itself. After that

POMP starts to perturb each vector in the current support as

given in (8). Then, the measurement vector, , is projected onto

the perturbed support and the new residual is found. If the norm



TEKE et al.: PERTURBED ORTHOGONAL MATCHING PURSUIT 6225

of the residual is less than , iterations are terminated, otherwise

POMP continues with the next iteration.

One important characteristic of POMP is the promise of the

sparser solutions. This property can be revealed as follows. As-

sume that POMP has produced a -sparse solution. Iterations

can be terminated due to two reasons. If the observation is al-

ready sparse in , then at the th iteration we get .

Since OMP and POMP have the same selection criteria, OMP

also chooses the very same and obtains the same sparse

solution. However, if is not sparse in , POMP obtains the

sparse solution using the perturbation. Since

but , OMP iterates at least one more time resulting

a denser solution. Therefore, for any observation , OMP pro-

duces denser, or equally sparse at best, solutions than POMP.

OMP is preferred in many applications due to its computa-

tional efficiency. In the perturbation stage of the proposed algo-

rithm, the inverse tangent operation can be well approximated

by using tables and low order power series expansion, therefore

the computational order is determined by the least-squares solu-

tion on the perturbed basis, which has a complexity of

in the th iteration, which is the same as the standard OMP algo-

rithm. If the algorithm terminates in the th iteration, overall

complexity becomes for both POMP and OMP. In

the worst case, algorithm will terminate eventually in the th

iteration, which results in complexity of .

III. SIMULATION RESULTS

In this section, performance of POMP algorithm will be

investigated and compared with alternative techniques under

random basis mismatch. For this purpose, sparse reconstruction

of sinusoids from their time samples will be considered. In this

example, following dictionary vectors are used:

(24)

where is the frequency of the th dictionary vector and is the

vector of time samples at which the signal is sampled. However,

in practice, due to time jitter in the sampling, the observed signal

is not sampled at the nominal sampling times, resulting in a

dictionary mismatch:

(25)

where can be modeled as a vector of independent and

uniformly distributed random variables in the range of

where represents the level of jitter. The

overall effect of time-jitter can be considered as a random

perturbation on the dictionary . In this more

realistic scenario, is typically non-sparse in the assumed

dictionary .

In the first simulation, the dictionary is constructed by using

frequencies Hz for and frequency

separation of Hz. The sampling time vector is created

over the second interval with randomly chosen

time samples. A 25-sparse signal is randomly generated with

non-zero coefficients selected uniformly random from the range

. Observations, , are generated with time

jitter of sec. The same termination criteria of

is used for all compared techniques.

To select a proper maximum perturbation angle for POMP,

the expected value of the perturbation angles are calculated.

Based on the following, the normalized inner products of

and :

Since the sampling jitter is modeled as an i.i.d. se-

quence, and

for large . Therefore, the

expected value of the cosine of the perturbation angles can be

approximated as:

(26)

Using the small angle approximation of cosines, (26) can be

further simplified as:

where is the jitter variance. Since jitter is assumed to be

uniform in the interval . Finally,

using a small angle approximation for , we obtain,

(27)

Therefore, in the implementation of POMP, the allowed pertur-

bation angles are selected according to (27) for each column,

respectively. For the th column of that corresponds to

Hz, the maximum perturbation angle is

.

Fig. 4 shows actual and reconstructed signal coefficients for

OMP and POMP techniques for a random realization of jitter. In

this specific case, while POMP correctly reconstructs the sparse

signal coefficients, OMP generates a highly non-sparse signal.

For this realization, Fig. 5 shows , the Tropp’s Exact

Recovery Condition (ERC) [36] and the proposed bound of The-

orem 3. Even though ERC is not satisfied for , the pro-

posed conditions of Theorem 3 are satisfied for this case. There-

fore, this example shows that, the guarantees given by Theorem

3 provide a larger regime in which POMP is successful.

In this section of the simulations, we will investigate perfor-

mance of POMPwhen the condition of the Theorem 3 is not sat-

isfied. For this purpose, we conduct a large set of Monte-Carlo

simulations in excess of trials in which the sparsity level

and number of measurement are swept from 2 to 85 and

to 200, respectively. For each pair, 100 cases are

simulated. In each of these simulations, cases where the pertur-

bation angle decrease, i.e., , are identified as event

, and the sufficiency condition of Theorem 3 is satisfied, i.e.,

, are identified as . Out of all the runs

at each sparsity level, the cases where only is valid and both
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Fig. 4. A realization of the reconstruction problem under time-jitter where

OMP drastically fails and produces 167-sparse solution.

Fig. 5. and its bound as a function of iterations. Even

though ERC is not satisfied for , condition in Theorem 3 is satisfied

due to large value of , ensuring the decrease of maximum perturbation angle

during the iterations.

and are valid are counted separately. In Fig. 6, the statis-

tics of the cases are shown for all the experiments conducted.

It can be observed that for , the case is satisfied

with empirical probability of 1, and as sparsity level increases,

the probability of the case being satisfied decreases. Themax-

imum perturbation angle decreases consistently when the case

is satisfied. Note that, Theorem 3 is only a sufficiency condi-

tion and in the simulated scenario for its requirements

are not guaranteed to met. Nevertheless, in all the simulations

conducted, it is observed that the perturbation angle decreases.

To compare the overall performance in the above described

set of simulations, the following metrics are used: the nor-

malized signal reconstruction error, ; the

level of sparsity, ; the distance between signal sup-

ports, ; and the normalized residual norm,

, where is the correct signal and its

support, and is the obtained solution and its corre-

sponding support [37].

Fig. 6. Empirical probabilities of is valid and is jointly valid.

In Figs. 7 and 8, the average performance results obtained for

OMP and POMP are shown. Fig. 7 shows the normalized re-

construction error for both OMP and POMP in dB, while the

corresponding support distances can be seen in Fig. 8. For the

same number of measurements and range of sparsity levels, it

can be observed from Fig. 7 that both OMP and POMP have

similar phase transition curves; however POMP produces sig-

nificantly lower reconstruction errors. In Fig. 8, it can be seen

that POMP provides more reliable supports as well.

Instead of using perturbation procedure, one can try to use

OMP in a finely discretized frequency domain. This way, the

required perturbations on the dictionary vectors can be reduced.

However, increasing the density of the basis also increases

the coherence of the dictionary which adversely affects per-

formance of the CS techniques. In the simulated scenario, the

effect of increasing frequency density in the dictionary is shown

in Fig. 9. In this case number of measurements is kept constant

at , however the size of the dictionary is increased

as . The frequency range of Hz

is considered in the simulations. Random time samples are

chosen in time interval with a jitter of sec

time jitter. Compared to , when is

used, this corresponds to approximately 1000 times denser

sampled frequency dictionary with . Sparsity of

the signal is kept constant at , and the SNR of the

observed signal is kept at 60 dB to better observe the effect of

using a denser dictionary in the reconstructions. As seen in the

Fig. 9(a), using a denser basis can decrease the reconstruction

error up to approximately dB for OMP. However, beyond

this point, OMP reaches an error floor. Also, as seen from

Fig. 9(b), obtained sparsity is reduced significantly. On the

other hand, reconstruction performance of POMP is almost

independent from the density of the dictionary. For all tested

cases of , POMP has a reconstruction error below dB

and yields a 10 sparse solution, that matches the actual sparsity.

Note that using a denser basis significantly increases the mutual

correlation of the dictionary vectors as well as the required

number of inner-products. Therefore, rather than using OMP
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Fig. 7. Sparse signal reconstruction average error is in dB,

as a function of measurement number and

sparsity. (a) POMP. (b) OMP.

over a larger and denser dictionary, it is advisable to use POMP

over a moderate size dictionary. Note that if the frequencies of

the signal components were known precisely, the linearization

based techniques proposed in [32], [33], [38] could have been

used for the estimation of the jitter in the sampling times.

In this part of the simulations, we compare POMP with OMP,

CoSaMP, Basis Pursuit, and Sparse Total Least Squares (S-TLS)

[33] algorithms. Since POMP is based on OMP iterations, they

have similar phase transition characteristics as given in Fig. 7.

Hence, in the following simulations, we will stay in the

regime in which OMP works successfully.

Unlike OMP and POMP, CoSaMP requires the correct spar-

sity level of the signal. Since, such information is not avail-

able in general, CoSaMP reconstructions obtained at all sparsity

levels starting from until the residual error is below the

specified level.

Basis Pursuit (BP) which is also known as reconstruction

is implemented using the convex optimization toolbox CVX. To

Fig. 8. Average distances between actual and obtained supports,

as a function of measurement number and sparsity. (a)

POMP. (b) OMP.

induce sparsity, hard thresholding is applied to BP reconstruc-

tion results. Let be the BP reconstruction sorted

in the absolute sense and be the vector containing largest

coefficients. Then, in the reported results here, the threshold, ,

is selected as such that .

In [33], two algorithms have been proposed for S-TLS; one

finds the global optimum with highly demanding computational

cost, and the other one is computationally more efficient but

only guaranteed to converge to a local minima. Here, this more

efficient technique which is called as coordinate descend (CD)

based S-TLS is used for comparison. Since S-TLS has an it-

erative structure, the stopping criteria is important. To obtain a

consistent comparison of algorithms, S-TLS is terminated when

the residual error is below the specified at the end of an iter-

ation. Rather than an all-zero vector, iterations are started with

the solution of the obtained BP reconstruction to achieve faster

convergence for S-TLS. In the following results, STLS-1 cor-

responds to and STLS-2 corresponds to ,
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Fig. 9. Reconstruction performance with respect to density of the complex ex-

ponentials. (a) Sparse signal reconstruction error in dB, (b) Obtained sparsity

level for POMP and OMP algorithms.

where is the sparsity-tuning parameter of the CD based S-TLS

algorithm.

For all the techniques compared, Figs. 10 and 11 shows the

obtained sparsity levels and support distances as a function of

sparsity, respectively. POMP and S-TLS, being perturbation

based techniques, can achieve the correct sparsity level for

smaller . As the actual sparsity increases, S-TLS fails to ob-

tain the correct sparsity, whereas POMP successfully finds the

support up to . Techniques that do not employ dictio-

nary perturbation provided results that are significantly inferior

than POMP and S-TLS at all sparsity levels. The performance

of these techniques saturates and produce solutions at about the

same sparsity, irrespective of the actual sparsity level. Since the

observed signal is not sparse in the assumed dictionary with

, OMP goes up to two-third of the rank

whereas CoSaMP uses approximately 90% of the rank. On the

other hand, POMP obtains the correct sparsity level and the

support as shown in Fig. 11. S-TLS gradually produces higher

support distances due to denser solutions obtained in less sparse

Fig. 10. Obtained sparsity of the reconstructed signal as a function of actual

sparsity.

Fig. 11. Distances between actual and obtained supports as a function of actual

sparsity.

signals. Since techniques that do not employ perturbation has

a saturated sparsity estimate, , and

increases gradually as increases. Therefore, their

distance metric produces smaller values. However, this situa-

tion should not be considered as performance improvement for

less sparse signals. It is because they simply fail to recover the

correct support at all tested sparsity levels.

Fig. 12 shows the average normalized reconstruction error in

dB as a function of true sparsity for each of the compared re-

construction techniques. As expected, BP performs better than

OMP. However, even though S-TLS employs perturbation, it

has very similar performance to BP. POMP, on the other hand,

has a significantly lower, dB, signal reconstruction error

as compared to S-TLS and BP. CoSaMP has the worst perfor-

mance among all the compared techniques with significantly

higher reconstruction errors.

In the above simulations, termination criteria of all algorithms

are determined by the residual norm level . We assume that
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Fig. 12. Signal reconstruction error in dB as a function of actual sparsity.

observation has the form of . If we write

the residual as,

(28)

hence if noise variance is small.

Therefore, can be chosen. More specifically, if the

noise has a variance , then . Since the sig-

nals are error free in previous simulations, is chosen.

However, if the signal comes from a perturbed dictionary, then

, hence,

(29)

where noise and perturbations are assumed to be independent.

It is appropriate to define

(30)

as the Signal-to-Perturbation Ratio (SPR). Therefore according

to (29), . In our frame-

work, , since .

Using simple geometry, the perturbation amount can

be written as . Hence, the

perturbation amount is ,

where . Therefore,

. If

the perturbations are small, it can be approximated as:

(31)

In the following simulations, we aim to analyze the SNR and

SPR regions in which POMP and compared techniques can suc-

cessfully work. For this purpose sparsity is fixed at and

average reconstruction performance is found for varying SNR

and SPR levels.

In Fig. 13, the perturbation level is kept constant at

dB, which corresponds to sec according to (31),

and the SNR is varied from 20 dB to 60 dB. In Fig. 14, we keep

the noise level constant at dB and the is

varied from 30 dB to 70 dB. In both figures, the reconstruction

Fig. 13. Signal reconstruction error in dB for fixed dB and

varying SNR from 20 dB to 60 dB.

Fig. 14. Signal reconstruction error in dB for fixed dB and

varying SPR from 30 dB to 70 dB.

performances are shown as a function of the Noise-to-Perturba-

tion Ratio (NPR) defined as . It

is clear that two distinct performance regions are determined by

the sign of .

As shown in Fig. 13, although POMP has the lowest re-

construction error, all compared techniques have acceptable

performances for positive . In that regime, noise power

dominates the perturbation on the dictionary. Since the perturba-

tions are relatively insignificant, OMP and CoSaMP can achieve

similar results to POMP.However,when is negative, the

perturbation on the dictionary is more dominant than the noise

level.OMP,BP andCoSaMPhave nomechanism to handle these

perturbations, hence they treat the perturbations as additional

noise. However, in this case it is highly improbable to decrease

the residual error to the actual noise level. Thus, they saturate and

produce reconstructions with larger errors. On the other hand,

even if perturbations dominate the noise, POMP can handle

perturbations and produces reconstruction with significantly

lower errors. Fig. 14 displays similar results, where SNR is fixed
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and SPR is varied. For high NPR regime, all algorithms result

in similar errors, whereas for low NPR, only POMP produces

acceptable reconstructions. Higher perturbation causes larger

reconstruction errors in POMP.However, it is muchmore robust

to dictionary mismatch than the compared techniques.

IV. CONCLUSION

Compressive sensing reconstruction techniques suffer from

significant performance degradation when there is a mismatch

between the actual and the chosen signal dictionaries. Such mis-

match generally occurs in practice due to modeling errors, pa-

rameter space discritization or simply by sampling jitter. In gen-

eral, this mismatch problem cannot be solved using denser basis.

Also, density of the basis adversely affects the algorithms due to

high correlation. In this paper, a novel perturbed greedy recon-

struction technique is proposed for the case of signal reconstruc-

tion in the presence of perturbations in the signal dictionary.

The proposed Perturbed OMP (POMP) technique performs con-

trolled perturbations of selected support vectors. Limits on the

required perturbation for exact fit to observation signal at any

sparsity is found. Also, for a given acceptable residual level,

limits on the required perturbation are also provided. A suf-

ficiency condition that assures monotonic decrease on the re-

quired perturbations as a function of sparsity is given. The per-

formance of the proposed algorithm is investigated on a time

jitter example that causes a random dictionary mismatch. As an

extension to SNR, Signal-to-Perturbation (SPR) and Noise-to-

Perturbation (NPR) are used for better characterization of the

performance limits of POMP. Results show that, in comparison

with well known CS reconstruction techniques, POMP provides

efficient reconstructions with significantly lower reconstruction

error in a wide range of sparsity levels.

APPENDIX

PROOF OF THEOREM 3

Let be the matrix whose columns cor-

respond to the current estimate for the support of . Since is

full rank, we can define and .

The following equations provide recursive relations for

and :

(32)

(33)

where and . Since

the norm of a partitioned vector is the sum of the norms of

each partition:

(34)

which can be written as:

(35)

where and .

To have , we need the following inequality to hold

true:

(36)

Using the triangle inequality on (35), the following bound can

be obtained,

(37)

Since , (37) be-

comes:

(38)

By adding to both sides of (38), we obtain:

(39)

The desired condition on angle decrease requires

, which is always achieved if:

(40)

or equivalently:

(41)

Therefore, by using (36), (41) and definition of , the non-

negative constant in the statement of Theorem 3 can be ob-

tained as:

(42)
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