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ABSTRACT 

In this paper, we use the recently proposed wet paper codes and 
introduce a new approach to passive-warden steganography called 
Perturbed Quantization. In Perturbed Quantization, the sender 
hides data while processing the cover object with an information-
reducing operation that involves quantization, such as lossy 
compression, downsampling, or A/D conversion. The unquantized 
values of the processed cover object are considered as side 
information to confine the embedding changes to those 
unquantized elements whose values are close to the middle of 
quantization intervals. This choice of the selection channel calls 
for wet paper codes as they enable communication with non-
shared selection channel. Heuristic is presented that indicates that 
the proposed method provides better steganographic security than 
current JPEG steganographic methods. This claim is further 
supported by blind steganalysis of a specific case of Perturbed 
Quantization for recompressed JPEG images.  
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1. MOTIVATION 
The primary goal of steganography is to build a statistically 
undetectable communication channel (the famous Prisoner 
Problem [1]). In order to embed a secret message, the sender 
slightly modifies the cover object to obtain the embedded stego 
object. In steganography under the passive warden scenario [2,3], 
the goal is to communicate as many bits as possible without 
introducing any detectable artifacts into the cover object. 
Attempts to give a formal definition of the concept of 
steganographic security can be found in [4–6]. In practice, a 
steganographic scheme is considered secure if no existing attack 
can be modified to build a detector that would be able to 
distinguish between cover and stego images with a success better 
than random guessing [7]. 
One possible measure to improve the security of steganographic 
schemes for digital media is to embed the message in adaptively 
selected components of the cover object [8–10], such as noisy 
areas or segments with a complex texture. However, if the 
adaptive selection rule is public or only “weakly dependent on a 
key”, the attacker can apply the same rule and start building an 
attack. It is then a valid question whether the adaptive selection 
improves steganographic security at all. An interesting example of 

a scheme where adaptive pixel selection in fact decreased its 
security is the recent surprising result of Westfeld [11]. 
This problem with adaptive steganography could be remedied if 
the selection rule was determined from some side information 
available only to the sender but in principle unavailable to the 
attacker. For example, imagine the situation when the sender has 
a raw, uncompressed image and wants to embed data into its 
JPEG compressed form. Can the sender use his side information – 
the uncompressed image – to construct a better JPEG 
steganography? We can attempt to select for embedding those 
DCT coefficients whose unquantized values lie “close to the 
middle” of quantization intervals. Intuitively, perturbing the 
rounding process at such coefficients will be harder to detect than 
modifying the coefficients that experienced a small rounding error 
during quantization. The obvious problem of this proposition, 
however, is that the recipient will not know from which 
coefficients to read the message. 
There are other situations in steganography that call for a general 
solution to the problem of communication with non-shared or 
partially shared selection channels. The so called “wet paper 
codes” were recently proposed as a general method that enables 
steganography with a non-shared selection rule (a.k.a. writing on 
wet paper) [12,13]. Because wet paper codes enable the sender to 
communicate to the recipient on average the same number of bits 
as if the receiver knew the set of dry pixels, the above mentioned 
problem of adaptive steganography is removed. 
In Section 2, we describe a new general approach to 
steganography called Perturbed Quantization and propose several 
practical embedding scenarios. To make this paper self-contained, 
in Section 3 we briefly describe wet paper codes based on random 
linear codes and their practical implementation. In Section 4, we 
introduce Perturbed Quantization steganographic method for 
JPEG images that embeds message bits while recompressing a 
JPEG image with a lower quality factor. Security of this new 
technique is analyzed in Section 5, where we report the results of 
blind steganalyzers and compare the results with current state of 
the art JPEG steganographic algorithms. Summary and future 
directions are given in Section 6. 

2. PERTURBED QUANTIZATION 
We explain the basic idea on the example mentioned in the 
introduction. Let us assume that the sender has a raw grayscale 
image X that has never been compressed before. During JPEG 
compression, the Discrete Cosine Transform (DCT) is performed, 
the DCT coefficients are divided by quantization steps from the 



quantization table, then rounded to integers, and finally encoded 
according to the JPEG standard to a JPEG file, G. Let us denote 
the DCT coefficients (divided by quantization steps) before and 
after rounding with di and Di, respectively, i = 1, …, n, where n is 
the total number of DCT coefficients in G. Identify those 
coefficients di whose fractional part is in a narrow interval around 
0.5, di – di∈[0.5–ε, 0.5+ε], where ε is called tolerance and 
should be set to a small number (e.g., ε = 0.1 or smaller). Such 
coefficients will be called changeable coefficients. The symbol 
x denotes the largest integer smaller than or equal to x. 
Let S = {i1, …, ik} be the set of indices of all changeable 
coefficients. During compression, we will round changeable 
coefficients dj, j∈S, up or down at our will and thus encode up to 
k = |S| bits (obtaining a compressed and embedded image G′). 
However, we cannot simply code the message bits as parities (for 
example LSBs) of the rounded DCT coefficients Dj because the 
recipient would not know which coefficients carry message bits. 
Instead, we use the wet paper codes that give us the opportunity to 
communicate via non-shared selection channels (see Section 3). 
We call this method Perturbed Quantization (PQ) because during 
compression we slightly perturb the quantizer (the process of 
rounding to integers) for a certain subset of changeable 
coefficients in order to embed message bits. It is easy to show that 
the difference between the average rounding distortion of the 
regular quantizer and its perturbed form is ε 2, which is at least by 
an order of magnitude smaller than the average rounding error 
(1/4). An attacker would have to be able to find statistical 
evidence that some of the values Di were quantized “incorrectly”. 
This is likely going to be a formidable task for the following 
heuristic reasons: 
(1) The sender is using side information that is largely removed 

during quantization and is thus unavailable to the attacker. It 
is in general impossible to reverse JPEG compression and 
obtain the uncompressed image or a good approximation to 
the uncompressed image. On the other hand, in some areas of 
the image (e.g., with a smooth gradient), one might be able 
to obtain a better approximation and attempt to attack PQ.  

(2) Thus, the sender can (and should) accept additional selection 
rules to exclude from the set S those coefficients whose 
unquantized values can be predicted with better accuracy.  

(3) The actual rounding of values di is more influenced by the 
image noise for changeable coefficients than for the 
remaining coefficients because the changeable coefficients 
are close to the middle of the rounding intervals. As a result, 
the rounding process di→Di has a large stochastic 
component. 

 

2.1 Information-reducing processes 
The idea outlined above can be formulated in a more general 
setting. Whenever the sender downgrades a digital image using 
lossy compression, downsizing, quantization, format conversion, 
recompression, etc., he will have access to all numerical values 
before quantization/rounding occurs. Thus, the sender gains the 
same ability to slightly modify the rounding process whenever he 
subjects the cover image to an information-reducing process that 
involves a real transform followed by a quantizer/rounding. The 
heuristic is that because the process is information-reducing, an 
attacker cannot easily recover from the stego image those fine 

details of the original image that would enable him to mount a 
reliable attack. 
In the rest of this paper, boldface symbols will be used to denote 
matrices and vectors. Let us assume that the cover image x is 
represented with a vector x∈I m, where I is the range of its m 
elements (pixels, coefficients, colors, indices) depending on the 
format of x. For example, for an 8-bit grayscale image, I = {0, …, 
255}. The information-reducing process F is modeled as a 
transformation 

F = Q T: I m → J n,   (1) 
 
where J is the integer dynamic range of the downgraded image y 
= F(x) represented with an n-dimensional integer vector y∈J n, 
m ≥ n. The transform T: I m → Rn is a real-valued transformation 
and Q: Rn → J n is a quantizer. The intermediate “image” T(x) 
will be represented using an n-dimensional vector u∈Rn. We give 
several examples of image downgrading operations F that could 
be used for PQ steganography. 

Example 1 (Resizing). For grayscale images, the transformation 
T maps a square m1×m2 matrix of integers (xij), i=0, …, m1–1, j=0, 
…, m2–1 into an n1×n2 matrix of real numbers (urs), r=0, …, n1–1, 
s=0, …, n2–1, m1 > n1, m2 > n2, using a resampling algorithm. The 
quantizer Q is a uniform integer quantizer (rounding to integers) 
applied to the vector (matrix) u by coordinates 
 

Q(urs) = round(urs).   (2) 

 
Example 2 (Decreasing the color depth by d bits). The 
transformation T maps a square m1×m2 matrix of integers (xij) in 
the range I={0, …, 2b–1}, i=0, …, m1–1, j=0, …, m2–1 into an 
m1×m2 matrix of real numbers (uij), uij=xij/2d. The quantizer Q is 
the same uniform scalar quantizer as in Example 1. 

Example 3 (JPEG compression). For grayscale images, the 
transformation T maps a square m1×m2 matrix of integers (xij), 
into a 8m1/8×8m2/8 matrix of real numbers (uij) in a block-by-
block manner (x denotes the smallest integer larger than or equal 
to x). In each 8×8 pixel block B, the corresponding block in uij is 
DCT(B)./q, where DCT is the 2D DCT transform, q is the 
quantization matrix, and the operation “./” is an element-wise 
division. The quantizer Q is, again, given by (2). 
Continuing the description of Perturbed Quantization, the sender 
identifies the set of indices S ⊂ {1, …, n} of object elements 
whose values uj, j∈S, may be perturbed during quantization. The 
set S will be determined using some Selection Rule (SR). There 
are no restrictions on the form of the rule. The sender can use his 
knowledge of x and u, which are unavailable to the receiver or 
any attacker. As already mentioned above, the sender can, for 
example, select ui whose values are close to the middle of the 
quantization intervals of Q 
 

S={i | i∈{1,…, n}, ui∈[L+0.5–ε,L+0.5+ε] for some integer L}. (3) 
 

The tolerance ε could in principle be adaptive and depend on the 
neighborhood of the element xi. It can also be made key 



dependent if desired. In this paper, we assume for simplicity that ε 
is a publicly known small constant. The sender will communicate 
a message to the receiver by rounding changeable elements uj, 
j∈S, to either L or L+1 and rounding all other elements ui, i∉S, 
using the quantizer (2), yi = Q(ui). 
We note that the selection rule does not have to necessarily be of 
the type (3) and can be defined differently based on other 
heuristic depending on the format of x and properties of its 
elements. In Section 4, we give an example of a slightly different 
SR for the situation when the information-reducing 
transformation is recompression of the cover JPEG image using a 
lower quality factor. 
Once the changeable elements have been identified, the sender 
needs to encode the message bits. Let p, pi = P(yi), be the vector 
of element parities1 for the processed cover object y = F(x). By 
perturbing the rounding process as described above, the sender 
can modify k bits pj, j∈S, but cannot modify the remaining n – k 
bits. The recipient does not know the set S. This is an example of 
a channel known as an n-bit memory with up to n – k defective 
cells introduced in 1974 by Kuznetsov et al. [14]. It is known that 
the Shannon capacity of this channel is k/n [15–17] and can be 
achieved for non-binary alphabets using an algebraic coding 
scheme with the cosets of an MDS code as bins [16]. The same 
paper contains a noisy generalization of this channel and shows 
that nested linear codes (or “partitioned” codes) are capable of 
achieving the theoretical maximum capacity.  
In steganographic applications, the number of defective cells may 
be quite large. For example, in the double compression 
embedding described in Section 4, for a typical JPEG image, 
n ~ 106 and k ~ 104. Furthermore, the number of stuck cells can 
vary greatly among different covers and across embedding 
schemes, which makes application of fixed rate codes more 
complicated. Reflecting on these specifics of steganographic 
applications, so called wet paper codes were proposed in the past 
as an efficient coding approach to this channel [12,13]. For 
completeness, we briefly describe the basic ideas behind wet 
paper codes and their implementation in the next section. 

3. Wet paper code 
To explain this metaphor, imagine a situation when the cover 
object (a digital image, for example) has been exposed to “rain” 
and the sender can only slightly modify the dry spots of the cover 
image but not the wet spots. During transmission, the stego image 
dries out and thus the recipient does not know which pixels the 
sender used. We note that in this scenario we allow the rain to be 
truly random, pseudo-random, completely determined by the 
sender or the image, or an arbitrary mixture of all of the above. 
This channel is obviously equivalent to writing in memory with 
defective cells by identifying wet pixels with defective cells. 

                                                                 
1 The parity could be any function defined on J with range {0,1} 

such that P(k) = 1–P(k+1) for all k∈J. Thus, for J consisting of 
consecutive integers, only two parity functions are possible, 
P1(k) = LSB(k) or P2(k) = 1–LSB(k) (the shifted LSB). The 
Parity function could be the same for all elements or chosen 
randomly between P1 or P2 for each element based on a secret 
stego key. 

3.1 Encoder and decoder 
The wet paper code can be viewed as a generalization of the 
selection channel [3] where one message bit is embedded as the 
parity of a group of cover object elements. In the selection 
channel, at most one element value must be changed in order to 
match the parity of a group of elements to the message bit. The 
parity of the group is a sum modulo 2 of the individual element 
parities. If there are m elements that can be changed in the group, 
one can attempt to embed m message bits by forming m linearly 
independent linear combinations of element parities instead of 
just one sum.  
Let us assume that the sender wants to communicate M bits 
b = {b1, …, bM}T. At this point, we assume that the recipient 
knows M. Later, we show how to modify the communication 
scenario to the case when the recipient does not know M. The 
sender and recipient agree on a secret stego key that is used to 
generate a pseudo-random binary matrix H of dimensions M×n. 
The sender will round uj, j∈S, obtaining the column vector y', so 
that the modified parity column vector p' = P(y') satisfies 
 

Hp'= b .   (4) 
 
Thus, the sender needs to solve a system of linear equations in 
Galois Field GF(2). This setup is an example of coset coding. The 
message is communicated as a syndrome with parity check matrix 
H. As opposed to the approach by Heegard [15] who proposed a 
fixed rate code for memory with defective cells, we use a variable 
rate random linear code with a pseudo-random matrix. This 
randomization offers flexibility for our steganographic application 
in which k varies greatly depending on the cover object and a 
steganographic method. Finally, we note that the selection 
channel [3] is a special case of (4) when H = [1 1 … 1] is a 
single-row 1×n matrix. 
The sender sends the modified stego object y' to the recipient. The 
decoding is very simple because the recipient first forms the 
vector p'i = P(yi') and then evaluates Hp' using the shared matrix 
H. The extracted message is simply b = Hp'. 

3.2 Average capacity 
It will be advantageous to rewrite (4) to 
 

Hv = b – Hp   (5) 
 
using the variable v = p' – p. In the system (5), there are k 
unknowns vj, j∈S, while the remaining n – k values vi, i∉S, are 
zeros. Thus, on the left hand side, we can remove from H all n – k 
columns i, i∉S, and also remove from v all n – k elements vi with 
i∉S. Keeping the same symbol for v, (5) now becomes 
 

= −Hv b Hp ,   (6) 

 

where H  is a binary M×k submatrix of H and v is an unknown 
k×1 binary vector. This system has a solution for an arbitrary 



message b as long as rank( H )=M. The probability that a random2 
M×k binary matrix has rank M is 1–O(2M–k) [18, follows from 
Lemma 4], which quickly approaches 1 for fixed k as M decreases 
to zero. This suggests that the expected maximal number of bits 
Mmax that can be communicated is likely close to k. In fact, 
assuming that the sender keeps adding rows to H while (6) still 
has a solution, the maximal number of bits that the sender can 
communicate is [12] (assuming n ≥ k, k → ∞) 
 

Mmax(k) = k + O(2–k/4).   (7)  
 
This means that on average, the sender will be able to 
communicate k bits to the recipient using the wet paper code. 
We now explain how to relax the assumption that the recipient 
knows k or M. The sender and recipient can generate the matrix H 
in a row-by-row manner rather than generating it as a two-
dimensional array of M×n bits. In this way, the sender can reserve 
the first few bits of the message b for a header of length log2(n) 
bits to inform the recipient of the number of rows in H. The 
recipient first generates the first log2(n) rows of H, multiplies 
them by the received vector p', and reads the header (the message 
length M). Then, he generates the rest of H, and reads the 
message b = Hp'. Thus, under the assumption that the recipient 
has no information about either k or M, the sender can on average 
communicate k – log2n bits. 

3.3 Practical implementation 
As the focus of this paper is a specific application of wet paper 
codes – Perturbed Quantization steganography – we only briefly 
summarize approaches published elsewhere [12,13]. 
The main complexity of the wet paper code is on the sender’s 
side, who needs to solve M linear equations (6) for k unknowns in 
GF(2). Assuming that the maximal length message M = k is sent, 
the complexity of Gaussian elimination is O(k 3), which would 
lead to impractical performance for large payloads, such as k 
> 105. To overcome this cubic complexity, we can divide the 
cover object into n/nB disjoint random subsets (determined from 
the shared stego key) of a fixed, predetermined size nB and then 
perform the embedding for each subset separately. The 
complexity of embedding is now proportional to n/nB(knB/n)3 = 
nr3nB

2, where r = k/n is the rate, and is thus linear in the number 
of cover object elements, albeit with a large constant. 
A different possibility to realize the wet paper code is to impose a 
special stochastic structure on the columns of H and use the LT 
process [19] to solve (6) in a much more efficient manner. In 
particular, if the Hamming weights of columns of H follow so 
called Robust Soliton Distribution (RSD), it can be shown that 
H  can be brought into an upper diagonal form [U, H′] by 

permuting its columns and rows (the matrix LT process). Here, U 
is a square M×M upper triangular matrix with ones on its main 
diagonal and H′ is a binary M×(k–M) matrix. The details of this 
approach are given in [13], where it is shown that the process of 
permuting the rows and columns of H  is equivalent to the LT 
process on a bipartite graph with bi-adjacency matrix H . Once 

                                                                 
2 The probability of 0 and 1 in H is the same and equal to 1/2. 

H  is in this form, solving the system [U, H′]v = b is quite easy as 
the solution is simply obtained using regular back substitution as 
in Gaussian elimination. 
The RSD is defined below. The probability that the Hamming 
weight of a column in H is i, 1 ≤ i ≤ M, is (ρi +τi)/β, where 

1 1         

1 2,...,
( 1)
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i
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i M
i i
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= +∑ , and ln( / )R c M Mδ=   

for some suitably chosen constants δ and c. The RSD was 
designed [19] so that the probability that H  can be brought into 
the upper diagonal form by permuting its rows and columns is 
better than 1–δ  as long as the number of changeable elements k 
satisfies 

2( ln ( / )).k M M O M Mβ δ> = +   (9) 

 
This means that there is a small capacity loss of 

2( ln ( / ))O M M δ  in exchange for solving (6) quickly using the 
matrix LT process. The capacity loss, together with probability of 
successful pass through the matrix LT process for different values 
of k are shown in Table 1. We see that the probability of 
successful pass increases while the capacity loss decreases with 
increasing k (the larger the problem, the better this method 
works).  

k Gauss    LT     β    P 

1000 0.023 0.008 1.098 43% 

10000 17.4 0.177 1.062 75% 

30000 302 0.705 1.047 82% 

100000 9320 3.10 1.033 90% 

Table 1 Running time (in seconds) for solving k×k and k×βk 
linear systems using Gaussian elimination and matrix LT 
process (c = 0.1, δ = 5); P is the probability of a successful 
pass. 
Table 1 also shows the performance comparison between solving 
(6) using Gaussian elimination and the matrix LT process. The LT 
process enables solving the system as a whole at once, which 
greatly simplifies implementation and decreases computational 
complexity at the same time. 
Before changing the subject to PQ, we briefly address two more 
issues. First, the RSD depends on the message length M and thus 
it needs to be somehow communicated to the recipient. This can 
be arranged, for example, by dividing the cover object into two 



disjoint parts. The first one is large enough3 just to communicate 
the message length (e.g., up to 20 bits) using a pseudo-random 
matrix H0 (generated from the stego key) whose elements are iid 
realizations of a uniform binary variable. This system is solved 
using Gaussian elimination, which is fast as H0 only has few 
rows. The message embedding in the second subset is done using 
the matrix LT process with now known value of M. The 
parameters c and δ are either publicly known fixed constants or 
may depend on M. 
The second issue is what to do when the matrix LT process fails 
to bring H  into an upper diagonal form. This can be solved by 
generating the matrix H from a seed that is the stego key 
concatenated with a few bits (e.g., say w bits) that are 
communicated together with the message length M. The sender 
simply tries to solve the system with those additional w bits all set 
to 0 and if the LT process does not pass, the sender changes the 
bits (there are 2w possibilities) till a successful pass is obtained. 
Given that the probability of a successful pass is, say, 0.8, one can 
see that in practice, w ~ 5 bits should suffice).  

4. EMBEDDING WHILE DOUBLE 
COMPRESSING 
In this section, we apply Perturbed Quantization to the 
information-reducing process of repeated JPEG compression. 
First, we introduce the necessary basics of JPEG compression, 
then explain the embedding method and calculate its capacity. In 
Section 5, we subject this method to blind steganalysis and 
compare its performance to existing methods. We further note that 
due to simplicity we work with grayscale images. The 
considerations hold for color images as well. 

4.1 JPEG compression preliminaries 
In JPEG compression, the image is first divided into disjoint 
blocks of 8×8 pixels. For each block B x (with integer pixel values 
in the range 0−255), the discrete cosine transform, c = DCT(B x), 
produces 64 DCT coefficients (cij), 0 ≤ i, j ≤ 7, which are then 
divided using the quantization matrix q=(qij) and rounded to 
integers using the quantizer (2) 
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3 Its size is determined by the smallest rate k/n one can encounter 

for a given stego scheme. 

The quantized coefficients Dij are arranged in a zigzag manner 
and compressed using the Huffman encoder. The resulting 
compressed stream together with a header forms the final JPEG 
file. 
The JPEG decompression works in the opposite order. The JPEG 
bit-stream is decompressed using the Huffman decoder and, for 
each block, each quantized DCT coefficient Dij is multiplied by 
qij, the whole block is then inverse DCT transformed, and the 
result is rounded and clipped to a finite dynamic range obtaining 
the 8×8 pixel block B in the decompressed image 
      

1( )

[ ] ,

ij ij ij
raw
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=
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B B
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where [x] = Q(x) for 0 ≤ x ≤ 255, [x] = 0 for x < 0, and [x] = 255 
for x > 255. 
Let us assume that the cover JPEG file has been decompressed to 
the spatial domain to image x. Let B be an 8×8 block in x. 
Assuming that B has no pixels saturated at 0 or 255, from (12) we 
see that the quantization error ξij = Bij

raw
 – Bij, 0 ≤ i, j ≤ 7, satisfies 

–0.5 ≤ ξij ≤ 0.5. Consequently, 
 

DCT(B) = DCT(Braw) – DCT(ξ) = C – η,  (13) 
 

where ∑ =
=

7
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Modeling the quantization error ξij as an i.i.d. noise uniform on  
(–1/2, 1/2], we obtain 
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because E(ξij
2) = 1/12 and ∑ =

=
7

0,
2 1),(

lk kl jia  for all i, j due to 

the fact that the DCT is an orthonormal transformation. Finally, 
because ηij is an average of bounded independent variables, by 
the Liapunov extension of the Central Limit Theorem (see, for 
example [20]), the distribution of ηij is approximately Gaussian 
N(0,1/12). 



4.2 Effects of repeated JPEG compression 
and the embedding algorithm 
In this section, we investigate the impact of double compression 
on distribution of DCT coefficients and explain how double 
compression can be used in the context of Perturbed Quantization. 
Let us assume that we have an image that is a decompressed 
JPEG with quality factor Q1 (with quantization matrix qij

(1)) and 
we resave it as JPEG again but with a different quality factor Q2 
(with quantization matrix qij

(2)). For simplicity, we take a look at a 
specific DCT coefficient with (i, j) = (1, 2) (the first AC 
coefficient in the zigzag scan) and Q1 = 88, Q2 = 76. In the 
original JPEG image, the DCT values C12 are multiples of 
q12

(1) = 3 (see the top part of Figure 1. As explained above, after 
decompression (12) and the second DCT transform (10), the 
values of c12 will no longer be exact multiples of 3 but will be 
spread around them as in the bottom part of Figure 1. Next, we 
look at what happens when the coefficients c12 are quantized with 
a quantization step q12

(2) = 6 corresponding to the second quality 
factor Q2 = 76. 
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Figure 1 Top: histogram of values of the DCT coefficient C12 
in the original 88% quality JPEG file (note that the values are 
multiples of the quantization step q12

(1) = 3). Bottom: 
histogram of the same DCT coefficient c12 after 
decompressing the JPEG file to the spatial domain and DCT 
transforming. 
From Figure 1, one can see that the peaks around the even 
multiples 2k×3, k=…, –1, 0, 1, …, are quantized to 6k, while the 
peaks around the odd multiples (2k+1)×3, k=0, 1, …, are split in 
half, the “left” half being quantized to 6k+2 and the right half to 
6k+4. Based on the arguments presented in the previous section, 
this quantization during a normal double compression is 
essentially a random process because η12 is Gaussian N(0,1/12). 
This gives us the possibility to build a Perturbed Quantization 
embedding method by including all odd multiples (2k+1)×3 to the 
set of changeable coefficients. In the next section, we formulate 
the Selection Rule for an arbitrary combination of quantization 
matrices q(1) and q(2). 

4.3 Coefficient selection rule 
We can use other DCT coefficients cij for embedding as long as 
the first and the second quantization steps qij

(1) and qij
(2) satisfy 

certain numerical properties. The pair (qij
(1), qij

(2)) will be called 
contributing if there exist integers k and l such that 
  

kqij
(1) = lqij

(2)+qij
(2)/2 .  (14) 

 
All integers k and l, l+1 that satisfy (14) will be called 
contributing multiples of qij

(1) and qij
(2), respectively. The 

condition says that the pair (qij
(1), qij

(2)) is contributing if there 
exists a multiple of qij

(1) (a contributing multiple) that is exactly in 
the middle of the second quantization interval of length qij

(2). The 
following theorem gives a sufficient and necessary condition for 
the pair (qij

(1), qij
(2)) to be contributing and also gives a formula for 

all contributing multiples of qij
(1). 

 
Theorem 1. The pair (qij

(1), qij
(2)) is contributing if and only if 

qij
(2)/g is even, where g = GCD(qij

(1), qij
(2)) is the greatest 

common divisor of qij
(1) and qij

(2). Furthermore, all 
contributing multiples k of qij

(1) are expressed by the formula 
 

k =
g

q
m ij

2
)12(

)2(

+ , m = …, –2, –1, 0, 1, 2, …. (15) 

 
Proof. The implication from left to right is trivial. Dividing (14) 
by g gives qij

(2)/2g = kqij
(1)/g – lqij

(2)/g. Because there is an integer 
on the right hand side, qij

(2)/(2g) is an integer, too. To prove the 
other implication, from the Euclid theorem [21], there are two 
integers a and b such that aqij

(1) + bqij
(2) = g. After multiplying this 

equation by qij
(2)/(2g), which is an integer, we obtain (14) with k = 

aqij
(2)/(2g) and l = –bqij

(2)/(2g). To derive the formula (15), from 
(14) we have 

k = )1(

)2(

2

)12(

ij

ij

q

ql +
 = 

g
q

g
q

l

ij

ij

)1(

)2(

2
)12( +

.   (16) 

Because GCD(qij
(1)/g, qij

(2)/g) = 1, it must be the case that 2l+1 is 
an odd multiple of qij

(1)/g (note that qij
(1)/g must be odd). Thus, the 

contributing multiples of qij
(1) are odd multiples of qij

(2)/(2g). This 
ends the proof. � 
All contributing coefficients in the single compressed JPEG cover 
image form the set of changeable coefficients S. Theorem 1 can 
be used to calculate the cardinality of S. Let hij(k) be the 
histogram of the DCT coefficient Cij of the cover JPEG file (the 
one compressed with qij

(1)). The number of changeable 
coefficients |S| is given by the following formula 
 

7 (2)

, 0

| | (2 1)
2
ij

ij ij
i j k

q
S z h k

g
=

 
 = +
 
 

∑∑ ,   (17) 

 
where zij = 1 if (qij

(1), qij
(2)) is a contributing pair and zij = 0 

otherwise. 
To show how |S| depends on the quality factors Q1 and Q2, we 
evaluated (17) for all combinations of quality factors ranging 
from 50 to 95. The result was averaged over 20 test grayscale 
images and is displayed in Figure 3. The plot shows that one can 
choose from a variety of combinations of both quality factors to 



achieve a relatively large capacity up to 0.5 bits per non-zero 
DCT coefficient of the stego image (bpc). Note the ridge of high 
capacities corresponding to Q2 = 2(Q1 – 50). This combination of 
quality factors translates to qij

(2) = 2qij
(1) (as in Figure 2). 

 
 
 
 
 

 
 
 

 
 

 
Figure 3 Embedding capacity expressed in bpc (bits per non-
zero DCT coefficient of the double-compressed image) 
averaged over 20 test images. Note the prominent ridge with 
peaks at bpc≈0.4 for quality factors satisfying Q2 = 2(Q1 – 50). 
 

4.4 Encoder summary 
We summarize the PQ embedding method based on double 
compression. The method takes a (single compressed) JPEG file 
as the cover image and produces a double compressed and 
embedded JPEG file as the stego image. The sender and recipient 
can use the LSB of DCT coefficients as the parity function. The 
sender chooses the second quality factor Q2 < Q1 (to make the 
recompression information-reducing) so that the number of secret 
message bits is within the capacity (17) with some reserve for the 
headers and identifies the set S of changeable coefficients cij from 
the quantization matrices q(1) and q(2) using Theorem 1. From 
(14), the sender enforces that after the second JPEG compression, 
the quantized value Dij (10) of the ij-th changeable DCT 
coefficient in the stego file is either l or l+1, where kqij

(1) = 
lqij

(2)+qij
(2)/2 and k is the value of the quantized ij-th DCT 

coefficient in the cover image. The sender remembers the values l 
and l+1 for each changeable coefficient cij and uses them as two 
possible values for Dij in the stego JPEG file. The embedding 
process continues with decompression of the cover JPEG file to 

the spatial domain and recompression with the second 
quantization table. This determines the values of all coefficients 
that are not changeable. The value Dij of each changeable 
coefficient is determined during the embedding process using wet 
paper codes. 
To cast the embedding in the setup of Section 2.1, the transform 
F = Q T is composed of the decompression (12), the DCT 
transform (10), division by the second quantization matrix q(2), 
and the quantizer Q (2). Symbolically, for each 8×8 block D of 
quantized DCT coefficients from the cover image, 
 

T(D) = DCT([DCT–1(q(1). D)])./q(2),  (18) 

 

where q(1). D is the element-wise product of both matrices, “./” is 
the element-wise division, and DCT–1(B) is the inverse DCT of 
the coefficient block B. 

5. STEGANALYSIS 
In this section, we investigate the character of the embedding 
distortion and evaluate the security of the proposed algorithm 
using blind steganalyzers. 
 
First of all, we would like to point out that double compressed 
images are not that unusual, as it might seem at the first sight. 
Vast majority of owners of digital cameras use the JPEG format 
for storing images inside the camera. Then, as the images are 
downloaded to the computer, they may be processed and resaved 
as JPEGs in some image processing software with a default or a 
user-specified quality factor. Because most digital cameras adjust 
the quantization table to the image (to guarantee that all images 
have approximately the same size), digital camera images have a 
wide range of quality factors and quantization tables. There are 
several cases when the user will frequently (unconsciously) create 
a double-compressed image that will be double-compressed in a 
manner compatible with our steganographic scheme: The user 
 

1. rotates it by 90 degrees and resaves (it is easy to see that 
for images whose dimensions are multiples of 8, during 
rotation by multiples of 90 degrees, each DCT 
coefficient Dij may either not change or change to Dji 
and/or change its sign), or 

2. recompresses the image with a lower quality factor to 
decrease its size (e.g., for sending by e-mail) or 

3. removes the red eye glare (a few dozen pixels) and 
resaves the image as JPEG, or 

4. adjusts the brightness and resaves. 
 
Thus, we believe that double-compressed images are, in fact, 
quite ubiquitous and should not be suspicious by themselves. We 
stress that if the image is resized or cropped by non-multiples of 8 
before resaving, or modified in any way that removes the 
quantized structure of DCT coefficients, we do not call the image 
a double compressed image because it will not exhibit traces of 
repetitive compression in the sense of this paper. In this case, one 
may use the approach from Example 3 from Section 2 for 
embedding. 

kqij
(2)(k–1)qij

(2) (k+1)qij
(2)

lqij
(1)

(l+1)qij
(1)

kqij
(2)(k–1)qij

(2) (k+1)qij
(2)

lqij
(1)

(l+1)qij
(1)

Figure 2 Example of a contributing multiple.  
 



We point out that it is necessary that the second quality factor be 
smaller than the first one, Q1 > Q2. If the second quality factor 
was larger than the first one, one could first estimate the first 
quantization table using methods in [22] and then exactly recover 
the single compressed cover image (compressed with Q1). In fact, 
this property of double JPEG compression is used in some semi-
fragile watermarking systems for content authentication [23]. 
Once this single compressed image is obtained, the attacker will 
simply recompress it with Q2 and compare to the stego image. 
Any discrepancies will be indicative of steganography. This 
attack can be mounted because the double compression is not 
information-reducing when Q1 < Q2. 
We have subjected the PQ method based on double-compression 
to the blind steganalysis of [24]. This blind steganalysis uses 23 
features derived from first-order (global histogram, individual 
histograms, and dual histograms) and higher-order statistics 
(spatial blockiness, co-occurrence matrices of coefficients from 
neighboring blocks, etc.) of DCT coefficients. The features are 
calibrated using the shifted/cropped/recompressed image first 
used in [25] for accurate estimation of secret message length. By 
using the calibrated features in this manner, one can significantly 
decrease image to image variations among features and vastly 
improve the detection sensitivity. Also, because the features are 
calculated directly from the DCT it is possible to directly draw 
conclusions about the impact of the embedding changes on 
detectability. As shown in [24], this detection scheme was able to 
reliably detect OutGuess [26] at embedding rates as low as 0.05 
bpc and F5 [27] at 0.1 bpc. The Model based Steganography of 
[28] was also detected at full capacity of 0.4 bpc. Because, to the 
best knowledge of the authors, this detection is the only one that 
reliably detects all current state of the art steganographic 
techniques for JPEGs, we selected it as a benchmark for our tests 
as well. 
  

bpc F5 F5_111 OG MB1 MB2 PQ 

0.05 0.241 0.645 0.879 0.220 0.163 ~ 0 

0.1 0.539 0.922 0.993 0.415 0.310 0.048 

0.2 0.956 0.996 0.991 0.704 0.570  0.098 

0.4 1.000 1.000 U 0.938 0.824  0.174 

0.6 1.000 1.000 U 0.983 U U 

0.8 1.000 1.000 U 0.992 U U 
Table 2 Detection reliability ρ for F5, F5 without matrix 
embedding (1,1,1), OutGuess 0.2 (OG), Model based 
Steganography without and with deblocking (MB1 and MB2, 
respectively), and the proposed Perturbed Quantization 
during double compression for different embedding rates (U = 
unachievable rate). All but the PQ algorithm, were tested with 
Q = 80. The PQ algorithm was tested with Q1 = 85 and Q2 = 70. 
 
The Greenspun database of 1812 grayscale images 
(www.greenspun.com) was used for testing. The Fisher Linear 
Discriminant was trained on the set of 23 features for the first 
1412 cover and fully embedded images. By cover images, we 
understand images that were subjected to a regular double 
compression with Q1 = 85 and Q2 = 70, while the stego images 

were obtained by embedding a random message of length 0.4, 0.2, 
0.1, and 0.05 bpc (bits per non-zero DCT coefficient of the stego 
image). The testing was done on the remaining set of 400 images 
in the database. On average, fully embedded images were able to 
accept approximately 0.48 bpc of the double-compressed image. 
As in [24], the detection was evaluated using the detection 
reliability ρ, which is the area between the ROC curve and the 
diagonal line in the ROC diagram (normalized so that ρ = 1 
perfect detection, ρ = 0 no detection). 
As can be seen from Table 2, the new algorithm significantly 
outperforms existing steganographic algorithms for JPEG images. 
Figure 4 shows ROC curves when testing for images fully 
embedded with PQ (on average 0.48 bpc). 

 
Figure 4 ROC for 1812 images embedded using PQ with 
Q1 = 85 and Q2 = 70 for the embedding rate 0.4, 0.2, and 0.1 
bpc. 
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Figure 5 ROC for images embedded using PQ with Q1 ∈ 
[70, 85] and Q2 = 70 for the embedding rate 0.2 bpc for three 
different steganalysis methods. 
The security of perturbed quantization has recently been analyzed 
by other researchers. With kind permission of the authors in this 
paper we summarize the results that will appear in [29]. The PQ 



was subjected to steganalysis on 207774 grayscale images with 3–
7.5×105 pixels with the quality factor in the range 70–85. The 
tests were done with three blind steganalyzers that use features 
constructed in the wavelet domain (WBS) [30], features obtained 
from Binary Similarity Measures (BSM) calculated in the spatial 
domain [31], and the above 23 mentioned features calculated in 
the DCT domain (FBS). The second quality factor was set so that 
the quantization steps in the second quantization matrix were 
twice as big as in the first table (see the expression in the caption 
of Figure 3). This lead to an average embedding capacity of 0.2 
bpc. The results are shown in Figure 5. As can be seen, the PQ 
cannot be reliably detected at this embedding rate by any of the 
three classifiers. 

6. CONCLUSIONS 
In this paper, we use the wet paper code to develop new 
steganographic methodology for digital media called Perturbed 
Quantization. In Perturbed Quantization, the sender embeds a 
secret message while downgrading the cover object using some 
information-reducing operation that involves quantization, such as 
lossy compression, A/D conversion, downsampling, etc. The 
sender uses his knowledge of the unprocessed object and embeds 
data into those elements whose values are the most “uncertain” 
after the processing – they lie in the middle of quantization 
intervals. As this selection channel is based on information that is 
largely unavailable to the recipient, wet paper codes are applied to 
solve the problem of a non-shared selection channel. 
We illustrate Perturbed Quantization on the example of 
recompressing a JPEG image with a lower quality factor. Blind 
steganalysis shows that Perturbed Quantization is significantly 
less detectable than existing steganographic methods for JPEG 
images while providing a relatively large capacity. 
It might be perhaps feasible to develop attacks on PQ for some 
cover images by analyzing those areas in the image where more 
accurate prediction of the unquantized values is possible. For 
example, images containing large portions of blue sky or other 
uniform areas could be interpolated, recompressed on the same 
8×8 grid, and the DCT quantized coefficients compared to the 
corresponding coefficients in the JPEG file. If this attack is, 
indeed, possible, the PQ would have to adopt more complex 
coefficient selection criteria that would be aware of the 
“predictability” of unquantized DCT coefficients from the stego 
image. 
This predictability is directly related to the loss of information 
due to the information-reducing character of pre-processing. By 
quantifying this loss in information-theoretical terms and by 
assuming an appropriate model of the cover object, we might 
obtain bounds on the steganographic capacity of PQ.  

7. ACKNOWLEDGMENTS 
The work on this paper was supported by Air Force Research 
Laboratory, Air Force Material Command, USAF, under the 
research grant number F30602-02-2-0093. The U.S. Government 
is authorized to reproduce and distribute reprints for 
Governmental purposes notwithstanding any copyright notation 
there on. The views and conclusions contained herein are those of 
the authors and should not be interpreted as necessarily 
representing the official policies, either expressed or implied, of 
Air Force Research Laboratory, or the U. S. Government. Special 

thanks belong to Roman Tzschoppe and Dorin Hogea for many 
useful discussions, and to Nasir Memon and Mehdi Kharrazi for 
providing their results on blind steganalysis of PQ. 

8. REFERENCES 
[1] G.J. Simmons, “The Prisoners' Problem and the Subliminal 

Channel”, CRYPTO83 – Advances in Cryptology, August 
22–24, pp. 51–67, 1984. 

[2] F.A.P. Petitcolas and S. Katzenbeisser, editors, Information 
Hiding Techniques for Steganography and Digital 
Watermarking, Artech House Books, January 2000. 

[3] R.J. Anderson and F.A.P. Petitcolas, “On the Limits of 
Steganography”, IEEE Journal of Selected Areas in 
Communications, Special Issue on Copyright and Privacy 
Protection, vol. 16(4), pp. 474−481, 1998. 

[4] C. Cachin, “An Information-Theoretic Model for 
Steganography”, in: D. Aucsmith (ed.): Information Hiding. 
2nd International Workshop. Lecture Notes in Computer 
Science, vol. 1525, Springer-Verlag, New York, pp. 306–
318, 1998. 

[5] J. Zöllner, H. Federrath, H. Klimant, A. Pfitzmann, R. 
Piotraschke, A. Westfeld, G. Wicke, G. Wolf, “Modeling the 
Security of Steganographic Systems”, in: D. Aucsmith (ed.): 
Information Hiding. 2nd International Workshop, Lecture 
Notes in Computer Science, vol. 1525, Springer-Verlag, 
New York, pp. 344–354, 1998. 

[6] S. Katzenbeisser and F.A.P. Petitcolas, “Defining Security in 
Steganographic Systems”, Proc. Electronic Imaging, SPIE, 
Security and Watermarking of Multimedia Contents IV, vol. 
4675, pp. 50–56, 2002. 

[7] R. Chandramouli, M. Kharrazi, and N. Memon, “Image 
Steganography and Steganalysis: Concepts and Practice”, in 
T. Kalker et al. (eds.): Digital Watermarking. 2nd 
International Workshop, Lecture Notes in Computer Science, 
vol. 2939, Springer-Verlag, New York Heidelberg, pp. 35–
49, 2003. 

[8] E. Franz, “Steganography Preserving Statistical Properties”, 
in: F.A.P. Petitcolas (ed.): Information Hiding. 5th 
International Workshop. Lecture Notes in Computer Science, 
vol. 2578, Springer-Verlag, Berlin Heidelberg New York, 
pp. 278–294, 2002. 

[9] J. Fridrich and R. Du, “Secure Steganographic Methods for 
Palette Images”, in: A. Pfitzmann (ed.): Information Hiding. 
2nd International Workshop. Lecture Notes in Computer 
Science, vol. 1768, Springer-Verlag, New York, pp. 47–60. 
2000. 

[10] M. Karahan, U. Topkara, M. Atallah, C. Taskiran, E. Lin, E. 
Delp, “A Hierarchical Protocol for Increasing the 
Stealthiness of Steganographic Methods”, Proc. ACM 
Multimedia Workshop, Magdeburg, Germany, September 
20–21, pp. 16–24, 2004. 

[11] A. Westfeld and R. Böhme, “Exploiting Preserved Statistics 
for Steganalysis”, in: J. Fridrich (ed.): Information Hiding, 
6th International Workshop, Lecture Notes in Computer 
Science vol. 3200, Springer-Verlag, New York Heidelberg, 
pp. 82–96, 2005. 



[12] J. Fridrich, M. Goljan, D. Soukal, and P. Lisoněk, “Writing 
on Wet Paper”, Proc. Electronic Imaging, SPIE, Security, 
Steganography, and Watermarking of Multimedia Contents 
VII, vol. 5681, pp. 328–340, 2005. 

[13] J. Fridrich, M. Goljan, D. Soukal, and P. Lisoněk, “Writing 
on Wet Paper” (journal version), to appear in IEEE Trans. 
Sig. Proc., Supplement on Secure Media II, 2005. 

[14] A.V. Kuznetsov and B.S. Tsybakov, “Coding in a Memory 
with Defective Cells”, Probl. Inform. Transmission, vol. 10, 
pp. 132–138, 1974. 

[15] C. Heegard and A. El-Gamal, “On the Capacity of Computer 
Memory with Defects,” IEEE Trans. Inform. Theory, vol. IT-
29, pp. 731–739, 1983. 

[16] R. Zamir, S. Shamai, U. Erez, “Nested Linear/Lattice Codes 
for Structured Multiterminal Binning”, IEEE Trans. Inf. Th., 
vol. 48(6), pp. 1250–1276, 2002. 

[17] G. Cohen, “Applications of coding theory to communication 
combinatorial problems. Discrete Math. vol. 83(2–3), pp. 
237–248, 1990. 

[18] R.P. Brent, S. Gao, A.G.B. Lauder, “Random Krylov Spaces 
Over Finite Fields”, SIAM J. Discrete Math. vol. 16(2), pp. 
276–287, 2003. 

[19] M. Luby, “LT Codes”, Proc. The 43rd Annual IEEE 
Symposium on Foundations of Computer Science, November 
16–19, pp. 271–282, 2002. 

[20] E.R. Dougherty, Random Processes for Image and Signal 
Processing, SPIE PRESS Monograph Vol. PM44, 1998. 

[21] O. Ore and Y. Ore, Number Theory and Its History, Dover 
Publications, 1998. 

[22] J. Lukáš and J. Fridrich, “Estimation of Primary 
Quantization Matrix in Double Compressed JPEG Images”, 
Proc. of DFRWS 2003, Cleveland, OH, August 5–8, 2003. 

[23] Ching-Yung Lin and Shih-Fu Chang, “Semi-Fragile 
Watermarking for Authenticating JPEG Visual Content”, 
Proc. Electronic Imaging, SPIE, Security and Watermarking 
of Multimedia Contents II, vol. 3971, pp. 140–151, 2000. 

[24] J. Fridrich, “Feature-Based Steganalysis for JPEG Images 
and its Implications for Future Design of Steganographic 
Schemes”, in: J. Fridrich (ed.): Information Hiding, 6th 
International Workshop, Lecture Notes in Computer Science 
vol. 3200, Springer-Verlag, New York Heidelberg, pp. 67–
81, 2005.  

[25] J. Fridrich, M. Goljan, D. Hogea, and D. Soukal, 
“Quantitative Steganalysis: Estimating Secret Message 
Length”, ACM Multimedia Systems Journal. Special issue on 
Multimedia Security, 9(3), 288–302, 2003. 

[26] N. Provos, Defending Against Statistical Steganalysis, 10th 
USENIX Security Symposium. Washington, DC 2001. 

[27] A. Westfeld, “High Capacity Despite Better Steganalysis 
(F5–A Steganographic Algorithm)”, in: I.S. Moskowitz (ed.): 
Information Hiding. 4th International Workshop, Lecture 
Notes in Computer Science, vol. 2137, Springer-Verlag, 
New York, pp. 289–302, 2001. 

[28] P. Sallee, “Model Based Steganography”, in: T. Kalker, I.J. 
Cox, Yong Man Ro (Eds.), Digital Watermarking. 2nd 
International Workshop, Lecture Notes in Computer Science, 
Vol. 2939. Springer Verlag New York, pp. 154–167, 2004. 

[29] M. Kharrazi, H. T. Sencar, N. Memon, “Benchmarking 
Steganographic and Steganalytic Techniques”, Proc. 
Electronic Imaging, SPIE, Security, Steganography, and 
Watermarking of Multimedia Contents VII, vol. 5681, pp. 
252–263, 2005. 

[30] H. Farid and L. Siwei, “Detecting Hidden Messages Using 
Higher-Order Statistics and Support Vector Machines”, in: 
F.A.P. Petitcolas (ed.): Information Hiding. 5th International 
Workshop. Lecture Notes in Computer Science, vol. 2578. 
Springer-Verlag, Berlin Heidelberg New York, pp. 340–354, 
2002. 

[31] I. Avcibas, N. Memon, and B. Sankur, “Steganalysis using 
Image Quality Metrics”, Proc. Electronic Imaging, SPIE, 
Security and Watermarking of Multimedia Contents II, vol. 
4314, pp. 523–531, 2001. 

 

 


