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Perturbing Hele-Shaw flow with a small gap gradient

H. Zhao, J. Casademunt, C. Yeung, and J. V. Maher
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
(Received 5 August 1991)

A controlled perturbation is introduced into the Saffman-Taylor flow problem by adding a gradient
to the gap of a Hele-Shaw cell. The stability of the single-finger steady state was found to be strongly
affected by such a perturbation. Compared with patterns in a standard Hele-Shaw cell, the single
Saffman-Taylor finger was stabilized or destabilized according to the sign of the gap gradient. While
a linear stability analysis shows that this perturbation should have a negligible effect on the early-
stage pattern formation, the experimental data indicate that the characteristic length for the initial
breakup of a flat interface has been changed by the perturbation.

PACS number(s): 47.20.—k, 68.10.—m

I. INTRODUCTION

The Saffman-Taylor (ST) problem [1] has been studied
intensively [2] since Saffman and Taylor published their
classic paper in 1958. The problem consists of study-
ing the interfacial patterns between two fluids which are
driven either by applied pressure or by gravity in a nar-
row gap between two parallel glass plates (a Hele-Shaw
cell [3]). For Newtonian fluids, the flow can simply be
modeled by Darcy’s law, i.e., the velocity of the fluid is
proportional to the pressure gradient. For this reason,
the ST problem has a very close relation with studies of
viscous fingering in porous media. The pressure obeys
the Laplace equation and the boundary conditions can
be written down easily. The dynamical equations are
usually called the Hele-Shaw equations for this ST prob-
lem [4-6].

In the problem of directional solidification (DS) [7],
the situation is different. The bulk equation is a diffu-
sion equation in a moving reference frame. Even within
the quasisteady approximation, this is different from the
bulk equation of ST flow. In addition, the boundary
conditions introduce an extra length scale in DS, so the
pattern morphology in DS is richer than in ST flow.

Ben-Jacob et al. [8] have pointed out that the ST prob-
lem can be brought closer to DS by adding a linear gra-
dient term in the gap of the Hele-Shaw cell. Couder and
co-workers [9-11] have extended this reasoning to study
flow between two paraxial rotating cylinders as an ana-
logue of DS. They have been able to study cellular struc-
tures which are reminiscent of those seen in DS, but their
morphology diagram also includes other effects which are
not normally seen in DS and which seem to arise from
the fluid mechanical nature of their boundary conditions.

When a gradient term is added to the gap of the Hele-
Shaw cell, a controllable perturbation is introduced into
the ST problem. The dynamical equation and bound-
ary conditions can be easily written down in the same
manner as in the ordinary Saffman-Taylor problem and
are somewhat simpler than in the paraxial cylinder case
of Couder and co-workers (with the attendant disadvan-
tage that the average position of the interface must travel
through the cell). However, since a new length scale is
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introduced by the perturbation term, the system should
be richer than the ST problem. Although the resulting
equations are formally similar to DS, the analogy with
solidification only holds for a restricted range of param-
eters. Accordingly, nonparallel ST flow may introduce
new richness through the effective time and space depen-
dence of the analogues of the parameters of DS. At the
same time, as this is a fluid system, we have much better
control of the experimental conditions than in DS.

In this paper, we report our studies of effects of a lin-
early varying gap perturbation on the ST flow problem.
We see how the stability of the single-finger configura-
tion and the initial breakup of the flat interface have
been changed by the presence of this perturbation.

II. THE MODEL EQUATIONS

The dynamical equations for flows in a Hele-Shaw cell
with a gap gradient are as follows: Let the Hele-Shaw
cell lie in the z-z plane, and the flow be in the positive z
direction. The gap at position z is 8(2) = b+ bz, where
¥ is the gradient of the gap which can be either positive
or negative. The Darcy equation is obtained in a similar
manner as for the parallel-plate case [11]:

_ b
v=-— o ViP, (1)
where v is the velocity of flow averaged across the gap, P
is the pressure in the fluid, g is the fluid’s shear viscosity,
and V), is the two-dimensional gradient in the z-z plane.
Incompressibility of the invaded fluid (V}, -bv = 0) results
in a differential equation for P,

2p, 1 0P _
th+ [D(Z) 9z - 0; (2)

with £p(z) = b(2)/3b’. The pressure drop at the interface
is
c

P,=0k—0—v, 3

! b(z) (3)
where k is the curvature in the z-z plane, o is the sur-
face tension, and ¢ is a wetting parameter which relates
the sign and gap dependence of curvature in the gap di-
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rection. Here we have ignored all kinetic terms in the
boundary condition. The normal velocity of the inter-
face is given by

_ )PP op
Vi=~T 124 dn’ (4)

where 11 is the normal to the interface directed into the
invaded fluid. These equations are without approxima-
tions other than the standard ones used to obtain the
Hele-Shaw equations.

As shown by Ben-Jacob et al. {8], the perturbed Hele-
Shaw equations with a gap gradient can be brought closer
to the DS equations when b’ is small. We introduce a
dimensionless pressure p = Pbo/12Vou. Here Vj is the
mean rate of advance of the interface and is defined as

Vozl/dsfrvi, (5)
a

with a being the width of the cell. zy(t) = Vpt is the
average position of the interface at time ¢ and by = b(20).
Let £(z,t) = zi(z,t) — 20(t) be the deviation of the inter-
face zi(z,t), at ¢ and time ¢, from the average interface
position z9(¢). Expanding in the parameter b'€ /b we get

where, to lowest order, £p = b(2)/3b’ can be considered

independent of §. The lowest-order contribution to the
pressure drop is

1
pi = dok — 5=¢, (7)
T
where a capillary length dy is defined as
O'bo
dy = ——— 8
07 12Vou )
and
12pbo V1
by = ——=E070 9)
co

£p and £1 are the analogs of the diffusion length and
thermal length in the DS. To lowest order the continuity
condition is

(L Loe_
n'z(1+Voat>— (1+

We see that the current problem has three length scales:
a diffusion length, a thermal length, and a capillary
length. With the exception of an extra term in the right-
hand side of Eq. (10), these length scales come into the
equations in the same manner as in DS [7]. The lengths
can be independently tuned by changing liquids and cell
geometry, which allows us to access values of parame-
ters inaccessible to DS. For example, since the diffusion
length is not directly related to the average velocity Vj,
the interface can be unstable for arbitrary signs of the £p
and £r. Another important difference is that the average
position of the interface changes with time. Therefore
the parameters £p, £r, and dg are effectively time de-
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pendent. This implies that there is no true steady state.
Furthermore, higher-order corrections to Egs. (6)-(10)
would introduce spatial dependence in those parameters.

In this experiment, we study a nonwetting fluid invad-
ing a wetting fluid, making ¢ positive and giving £p and
£r the opposite sign. This situation is therefore inher-
ently different from the ordinary DS.

III. THE EXPERIMENT

The experiment was performed using a rectangular
Hele-Shaw cell of width 39 ¢cm and length 120 cm. We
varied the Teflon spacers in the cell to achieve five gra-
dients: —3.0 x 10~3, —1.5 x 103, 0 (which is a parallel
plate cell), 1.5 x 1073, and 3.0 x 1073, We could change
the initial gap in the range 1.5 < b < 4.6 mm by ini-
tiating the flat interface at different positions along the
length of the cell.

All flows reported in this paper involved nitrogen gas
invading heavy paraffin oil in the Hele-Shaw cell. As was
noted above, the heavy paraffin oil completely wets the
glass plates of the cell in the presence of nitrogen gas so
¢ = 1. All flows were operated very close to constant
volumetric injection rate. The shear viscosity of heavy
paraffin oil is 65 ¢P (manufacturer given value [12]) and
the interfacial tension between the oil and nitrogen is
measured by the capillary rise method to be 29.5 dyn/cm
at room temperature. To give an indication of typical
parameter values, if bp = 0.22 cm and & = 3.0 x 10~3,
thendy = 1cm,€p =24 cm,and €p = —20cmfor Vp =1
cm/sec. The patterns of late-stage single fingers were
captured by a 35-mm single-lens reflex camera, and the
early stage patterns were recorded by a charge-coupled
device television camera and stored on videotape.

IV. RESULTS AND DISCUSSION

A. Steady state

Strictly speaking there is no true steady state in this
experiment. However, we find that the single-finger con-
figurations roughly maintain their shapes for a significant
period of time. The tip-splitting instability that we study
occurs before we see any significant change in the shape
of these quasisteady fingers. Therefore we will treat these
as steady states.

The morphology is affected by the perturbation b’ but
the most drastic effect is in the stability of the single fin-
ger. When ¥ < 0, the steady-state finger turns into one
with a sharper tip (see Fig. 1) which stays stable up to
much larger advancing speed than is required to desta-
bilize the finger if ¥ = 0. When ¥ > 0, the steady-state
finger is converted to one which exhibits a flattened tip
[see Fig. 2(a)] and tip splitting occurs easily at advancing
speeds much lower than those needed to destabilize the
b = 0 case [see Fig. 2(b)].

In order to measure how unstable the tip has become,
we define a length D which is the distance between suc-
cessive tip-splitting events. This is approximately con-
stant for whatever number of tip splittings can be ob-
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FIG. 1.
dient b’ = —1.5 x 1073, If b = 0, the finger would be stable
at this driving velocity but would also be fatter at the tip and
more uniform along its length.

Pattern formed in a Hele-Shaw cell with gap gra-

served in the length of the Hele-Shaw cell. Figure 3 shows
the results of D versus Vj for the five different gradients.
The lines are best-fit curves through data of each gradi-
ent. Only data for b’ = 0 are shown on the graph, but the
scatter of data points for other gradients is similar to the
b’ = 0 case. From Fig. 3, we can easily see how the small
perturbation b’ has affected the stability of the single-
finger steady state. The value of D represents the spatial
frequency of occurrence of tip splitting, thus its inverse is
a rough measure of the strength of instability of the ST
steady-state finger. Figure 3 shows that D decreases as
Vo increases for all five different gap gradients, which is
simply the effect of changes of the capillary number due
to the increase of V3. Compared with the constant gap
case, b’ > 0 reduces D, and thus increases the frequency
of tip splitting; b’ < 0 increases D, and thus reduces the

FIG. 2.
dient b’ = 1.5 x 10~%. (a) At low driving velocity, no tip-
splitting occurs, but the finger exhibits a flattened tip. (b)
Tip-splitting occurs at a driving velocity at which the finger
would be stable if b’ = 0.

Patterns formed in a Hele-Shaw cell with gap gra-
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Vo(cm/s)

FIG. 3. Best fit curves through data of D vs V; for five
different gradients: b’ = —3.0 x107%, —1.5 x1073, 0, 1.5
%1072, 3.0 x10™2 (from upper right to lower left). Only data
for b’ = 0 are shown in the graph. The scatter of other data
is similar.

frequency of tip splitting. For the paralle]l ST flows, the
strength of instability of the steady-state finger can also
be indicated by a threshold of advancing speed below
which tip splitting does not occur. In our experiment
the threshold is not necessarily constant due to the net
advance of the interface. However, we can estimate an ef-
fective threshold by observing the advancing speed below
which the steady-state finger travels through the whole
length of our cell without destabilizing. This threshold
velocity is shown as Vp versus b’ in Fig. 4. Our observa-
tion indicates that b’ has notably affected this necessary
velocity with &’ > 0 (¥ < 0) decreasing (increasing) the
threshold. The relation between the threshold and the b’
is not a simple linear one. In fact we observe that the
threshold velocity seems to change abruptly near ' = 0.

Having introduced the empirical results, we now at-
tempt to provide at least qualitative discussion of their
important features. We first discuss the morphology of
the steady state. It is well known that the steady state
is very sensitive to small perturbations such as placing a
bubble at the tip [13]. Therefore it may not be surpris-
ing that we observe a change in the shape. The trends
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FIG. 4. The threshold velocity Vr of finger instability vs
the gap gradient b'.
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observed can be roughly explained by noticing the fact
that, for b’ < 0, incompressibility implies that the veloc-
ity of the fluid in the tip region will be larger than the
velocity behind it. This net acceleration of the tip will
stretch the tip in the flow direction relative to the ST
finger, thereby producing a sharper finger. On the other
hand, for ¥ > 0, the opposite will occur and the finger
will be flattened.

Now we consider the stability of fingers. It is interest-
ing to note that the results cannot be explained by an
adiabatic argument based on an instantaneous capillary
number Ca= (a/b)?(Vou/o). For b > 0 the effective Ca
seen by the tip decreases as the tip advances. In addition
since we apply an approximately constant injection rate
during our flow realizations, Vj decreases during our flow
realization, further reducing the capillary number. For
b < 0 the effective Ca would increase. Therefore such
an argument would predict that the finger will become
more stable (unstable) with time for » > 0 (¥ < 0).
While we do not know what effects would be produced
on the stability of the finger if a kinetic term were added
to Eq. (3), we note that the first expected effect would
be a reduction in the magnitudes of tip acceleration rela-
tive to the case without the kinetic term (e.g., faster tips
would produce larger pressure jumps). Thus the sim-
plest effect of including a kinetic term might be to bring
the finger back closer to the parallel-plate case and thus
would not, at least at first glance, be expected to furnish
an explanation of our results.

To understand the stability of the finger we recall the
mechanism by which the parallel-plate Saffman-Taylor
fingers are stabilized [4]. In that case, the disturbances at
the tip propagate backwards along the side of the finger
where they are dampened away. The experimental results
could be explained by a modification of the efficiency of
this process associated with the fact that the tip is being
accelerated relative to the region behind it. Accordingly,
a perturbation will be removed from the tip faster if ' <
0 and slower if ¥’ > 0. Furthermore, the changes in the
morphology also contribute in the same direction to the
stability of the finger. If the tip is flatter the disturbances
have more time to grow before leaving the tip region.
This implies that the finger would be less stable which
1s consistent with the experiments. If the tip is sharper
the disturbances can be easily swept away from the tip
region resulting in a more stable tip.

B. Linear regime

We have performed a linear stability analysis for a flat
interface in this system and obtained the following dis-
persion relation:

Vo bo ,
k)= 1— 2 _ dobok
w(k) 2!’Dl[( i 0 )

x[S(Ip) + /1 + 413, k2] — %s’(zu)] ,
(11)

where S(€p) is the sign of £p. Putting numerical values
for the parameters accessible to our experiment, we find
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that this dispersion relation predicts no observable de-
pendence on b’. That is, Eq. (11) predicts essentially the
same numerical values of w(k) as the parallel ST flow,

w(k) = Vo (1- 2% k2) k| (12)
124V

To test the behavior of the system in the initial stages
of breakup of a flat interface we have defined our average
wavelength A by dividing the width of the Hele-Shaw cell
by the number of fingers that are present at the earliest
stage of pattern development. For each flow realization,
in addition to A we know V;, the speed of advance of
the initial flat interface, ' and by, the gap in the cell
at the point where flow is initiated. Unexpectedly, after
measuring many flow realizations covering many values
for Vp, ¥, and by, we find a significant dependence of the
initial breakup of a flat interface on the magnitude of b’
but not its sign.

Figure 5 shows that we observe no dependence of A
on the sign of ¥’. The open circles are values of A mea-
sured with & = 3.0 x 10~2 while the solid triangles come
from flows with = —3.0 x 1073, The solid line is the
maximum growth rate wavelength from the dispersion re-
lation [Eq. (11) or (12)], and the dashed line is the cutoff
wavelength from the dispersion relation. The experimen-
tal values of A show a different slope than predicted by
the dispersion relation, migrating from near the expected
fastest growing mode to slightly below the expected cut-
off as velocity is reduced. All our attempts to explain this
in terms of experimental imperfection have failed; partic-
ularly convincing is the fact that most possible sources of
experimental error such as our growing uncertainty of the
position at which the planar interface becomes unstable
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FIG. 5. A bo vs (0/uVo)*/? for the cases bo = 3.4 mm,
and two gap gradients of the same magnitude but different
signs, b’ = %3 x 107%. The solid (dashed) lines are from the
modes of maximum (cutoff) growth rates of the numerical
solutions of the dispersion relation. The open (solid) points
are experimental data of positive (negative) 5. The data
support the dispersion relation in predicting the independence
of the wavelength from the sign of the gap gradient. All of
our flow realizations show this feature.
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as Vp is reduced (since the interface travels farther be-
fore becoming observably unstable) would push the data
in different directions for different signs of 4. The ro-
bustness of all our results against changes in the sign of
b’ adds strength to all the parameter dependence of A
discussed below.

Figure 6 shows a typical dependence of A on the mag-
nitude of ¥’. The data are for b = 3.4 mm (except for
those of ¥ = 0 where bp = 3.0 mm). When ¥ = 0
the typical A observed is slightly greater than the value
for the fastest growing wavelength. (The dispersion re-
lations were evaluated using values of viscosity given by
the manufacturer and surface tension measured for our
oil by the capillary rise method. The uncertainty in o is
sufficiently large that we could easily adjust the disper-
sion relation maximum to lie on the b’ = 0 experimental
values of A, pushing even more of the ¥ # 0 data beyond
the cutoff wavelength, but we have instead used our mea-
sured value of o for all calculations.) The solid triangles
come from ¥ = —1.5 x 10~3 flows; these have a smaller
slope than for ¥’ = 0 and always lie below the expected
fastest growing wavelength. This trend is accentuated
for ' = —3.0 x 103 (open circles) where the observed A
is generally near the expected cutoff wavelength.

Figure 7 shows the dependence of A on by. The
solid lines are expected fastest growing wavelengths as
by changes. The data change more drastically in both
relative spacing and slope than would be expected from
the dispersion relation, as is shown for ¥ = 3.0 x 10~3.
As was mentioned above, this effect, like all the others
we have discussed for Figs. 5-7, appears for both signs of
b’ and so cannot easily be ascribed to uncertainty in the
proper choice of bg.
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FIG. 6. A/bo vs ((7//1.‘/0)1/2 for the cases bp = 3.4 mm,
and two gap gradients of the same signs but different magni-
tudes. The solid (dashed) lines are from the modes of maxi-
mum (cutoff) growth rates of the numerical solutions of the
dispersion relation. The open (solid) points are experimental
data for ¥’ = —1.5 x 1072 (b’ = —3.0 x 10™%). The dispersion
relation makes no distinction between the two different gap
gradients, but the experimental data clearly show that there
is some difference between the two. The data with 4’ = 0 and
bo = 3.0 mm are also plotted for comparison in this figure as
square points.
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FIG. 7. X vs (¢/uVo)!/? for the cases b’ = 3 x 10~ and
three different initial gaps. The circle, solid triangle, and
square points are experimental data of b =2.2, 3.4, and 4.6
mm, respectively. The solid lines are from the modes of maxi-
mum growth rates of the numerical solutions of the dispersion
relation.

All our results are summarized in Fig. 8. This figure
is less easy to read than the others, since A measure-
ments for many values of by and Vj are superposed for
all five values of &'. However, using the scaling suggested
by the dispersion relation allows us to show that all the
data taken together support the general features illus-
trated in Figs. 5-7. That is, when we plot A/by versus
(0/pVo)Y/? we expect the fastest growing wavelength to
follow the solid line and we expect a cutoff wavelength
at the dotted line. The data for ¥ = 0 (triangles) run
parallel to and slightly above the solid line. The data for
b = £1.5 x 10~3 (circles) have slightly lower slope and
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e op'= 3.0x10°
4 »b=-3.0x10°
o 1 1 1 1
O 3 6 9 12 15
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FIG. 8. Scaled data of A/by of many different initial
gaps vs (o/uVo)*/? for five different gap gradients. The
solid (dashed) lines are from the modes of maximum (cut-
off) growth rates of the numerical solutions of the dispersion
relation. The points are experimental data with the values of
b’ indicated in the legend.
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lower absolute values in the range of observation, and the
data for b’ = £3.0 x 103 (squares) lie lowest and with
lowest slope of all, frequently lying below the predicted
cutoff wavelength.

We have no simple explanation for the origin of the ef-
fects illustrated in Figs. 5-8. The nonparallel-plate case
is clearly different from the parallel case in that the wave-
length selected is significantly different from the most un-
stable mode predicted by the linear analysis. This sug-
gests that early nonlinear effects can play an important
role in the selection of the observed wavelength. While
the inclusion of kinetic terms in this analysis may be
important for understanding the results, it should be
noted that the dispersion relation without kinetic effects
gives very accurate results for the parallel-plate case even
though kinetic effects are known to affect the steady-state
solution in the parallel-plate case.

V. CONCLUSIONS

We have observed the single-finger configurations to be
strongly affected by adding a small gradient ¥ in the gap
of the Hele-Shaw cell. For positive & the tip is flatter and
more unstable relative to the b’ = 0 case. For negative b’
the tip is sharper and more stable. Adiabatic arguments
predict the wrong trend for the stability suggesting that
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the mechanism by which the perturbations are removed
from the tip region is very sensitive to this perturbation
in the gap.

The linear analysis predicts that & produces no observ-
able effect for the parameters used in this experiment.
However, an important difference from the b’ = 0 case
was observed in that the characteristic length in the early
stages of the instability is significantly different from the
most unstable mode. This difference depends only on
the magnitude of ¥ but not on the sign and changes at
a systematically different rate as Vj is varied.
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FIG. 1. Pattern formed in a Hele-Shaw cell with gap gra-
dient b’ = —1.5 x 1073, If b’ = 0, the finger would be stable
at this driving velocity but would also be fatter at the tip and
more uniform along its length.



FIG. 2. Patterns formed in a Hele-Shaw cell with gap gra-
dient b’ = 1.5 x 1072, (a) At low driving velocity, no tip-
splitting occurs, but the finger exhibits a flattened tip. (b)
Tip-splitting occurs at a driving velocity at which the finger
would be stable if b’ = 0.



