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Perturbing the consistency of
auditory feedback in speech
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Kevin G. Munhall1

1Department of Psychology, Queen’s University, Kingston, ON, Canada, 2School of Communication
Sciences and Disorders, Western University, London, ON, Canada, 3National Centre for Audiology,
Western University, London, ON, Canada

Sensory information, including auditory feedback, is used by talkers to

maintain fluent speech articulation. Current models of speech motor control

posit that speakers continually adjust their motor commands based on

discrepancies between the sensory predictions made by a forward model and

the sensory consequences of their speech movements. Here, in two within-

subject design experiments, we used a real-time formant manipulation system

to explore how reliant speech articulation is on the accuracy or predictability

of auditory feedback information. This involved introducing random formant

perturbations during vowel production that varied systematically in their

spatial location in formant space (Experiment 1) and temporal consistency

(Experiment 2). Our results indicate that, on average, speakers’ responses to

auditory feedback manipulations varied based on the relevance and degree

of the error that was introduced in the various feedback conditions. In

Experiment 1, speakers’ average production was not reliably influenced by

random perturbations that were introduced every utterance to the first (F1)

and second (F2) formants in various locations of formant space that had an

overall average of 0 Hz. However, when perturbations were applied that had

a mean of +100 Hz in F1 and −125 Hz in F2, speakers demonstrated reliable

compensatory responses that reflected the average magnitude of the applied

perturbations. In Experiment 2, speakers did not significantly compensate for

perturbations of varying magnitudes that were held constant for one and

three trials at a time. Speakers’ average productions did, however, significantly

deviate from a control condition when perturbations were held constant for

six trials. Within the context of these conditions, our findings provide evidence

that the control of speech movements is, at least in part, dependent upon the

reliability and stability of the sensory information that it receives over time.
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speech motor control, speech production, auditory feedback, perturbation,
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Introduction

Painted on the window of a café in the Norrmalm district
of Stockholm is information to help customers find their way
in. Within an arrow pointing to the left is the text, “Entrance
8,47 M”. What makes this signage funny is its precision.
Knowing the door’s location to the hundredth of a meter when
you are steps away from entering is excessive and it makes
passersby smile when they see it. People have an intuitive feel
for what information they need and how precise it should be.

Current models of the control of actions include sensory
information that is used to coordinate the movements accurately
or is needed to maintain the stability of the motor system [see
Parrell et al. (2019a) for a review of recent speech models]. Such
models include closed-loop processing of sensory information
to guide immediate motor responses and predictive algorithms
where sensory information is used to tune representations of
the effectors and their activities. In both types of sensorimotor
control, the required precision of the sensory information and
reliability of that information is a part of the control system.

The present paper addresses this issue of the precision of
perceptual information for action in a specific context—spoken
language. All the papers in this special issue present studies of
how the auditory feedback for speech is processed and how
it influences the accuracy of talking. The technique that is
employed in these papers is the real-time modification of the
sounds that talkers produce so that they hear themselves say
sounds slightly differently than they actually spoke. Studies have
shown that introducing errors in the timing (Mitsuya et al.,
2014), amplitude (Heinks-Maldonado and Houde, 2005), pitch
(Kawahara, 1995), and spectral details (Houde and Jordan, 1998)
of the auditory feedback cause talkers to modify their speech in
compensation. The question we are asking here is: How “off”
can the feedback be?

The best answer to that question is: it depends. It depends
on the vocal parameter. Timing, amplitude, and frequency
parameters may be related in spoken language, but they are
the purview of different articulatory subsystems, and they
convey different communicative information in speech. They
are measured in different physical qualities with different units.
Thus, there is no simple one-to-one correspondence between
their signal ranges or their variabilities.

Here we report studies of variability in speech produced in a
very restricted context. Specifically, we present a series of studies
of vowel formant feedback produced in repetitive citation
format. This choice is determined by factors both pragmatic and
strategic. Practically, the custom real-time processor that we use
(Purcell and Munhall, 2006) is designed for cued production of a
stimulus set where real-time formant tracking is optimized for a
particular vowel. Repetitive productions of the same syllable are
ideal for this paradigm.

Our strategic reason for using repetitive syllable production
is that we aim to understand the operating principles of the
most basic speech utterances spoken at a normal rate. By using

feedback perturbations on a syllabic unit, we are trying to
carry out system identification for speech motor behavior. With
controlled conditions, and the subject performing the same task
(e.g., moving to the same target), the character of the dynamic
system that controls articulation can be uncovered1. This is an
admittedly reductionist approach, but we believe it serves as
important baseline behavior of the much more complex system.

Our focus here will be on trial-to-trial variability within and
between subjects. Variability is one of the hallmarks of speech
and motor systems generally, and it can be the result of ‘noise’ at
many levels in the nervous system (Faisal et al., 2008: cellular,
synaptic, sensory, motor, etc.). Such noise can be seen as a
challenge for control but is also thought to be beneficial in some
circumstances (e.g., in learning and skill acquisition: Dhawale
et al., 2017; Sternad, 2018). Here we treat it as a biomarker of the
state of the system (Riley and Turvey, 2002) as we assess changes
in the predictability of auditory feedback in speech.

Vowel production in both acoustic and articulatory terms
shows considerable variability (e.g., Whalen et al., 2018) but
variability that is consistent across vowels and correlated for
acoustics and articulation. While this variability can change over
the course of a day, it is relatively stable across days (Heald
and Nusbaum, 2015). Because of these attributes, changes in
variability are frequently used as an index of developmental
stage (Sosa, 2015) and clinical status (Miller, 1992). We will use
this parameter as an index of how the speech system responds to
changes in the predictability of auditory feedback.

Studying the predictability of auditory feedback has several
important advantages. Experimentally, it is something that
can be manipulated in the real-time feedback paradigm.
Critically, it is also at the heart of most current computational
models of speech, including DIVA (Villacorta et al., 2007),
GEPPETO (Patri et al., 2018, 2019), and FACTS (Parrell
et al., 2019b). Forward models are proposed to predict the
sensory consequences of speaking and adjust future motor
commands to the computed discrepancies between model and
sensory feedback. Sensorimotor speech control is thought to be
inherently predictive.

The present studies

Below in Figure 1 is a modified version of the production
half of Denes and Pinson’s (1973) speech chain. The figure
portrays a closed loop between intention and the feedback that
talkers hear of their own speech. The red arrow indicates our
experimental intervention. Our proposal is that, if subjects are

1 One complication in our approach is that speech targets are an
unknown quantity. Unlike eye-hand coordination, where targets can
be experimentally defined and error be measured from a physical
target location, speech targets can only be experimentally defined by
a linguistic category. Subjects are instructed to say a word or syllable and
they select their target. The target and target width can only be inferred
from repetitive utterances produced under the same conditions.
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FIGURE 1

The Speech Chain (Denes and Pinson, 1973).

producing naturally-paced syllables2, we can manipulate the
regularity of the auditory feedback and determine the assiduity
of the forward model.

Prior to considering our manipulations, it is useful to reflect
on what is known of the boundary conditions of the auditory
feedback system. For both temporal and spectral perturbations,
there are demonstrated ranges over which subjects respond to
change. In formant perturbation studies that increase or ramp
the changes by small amounts on successive utterances, subjects
do not produce compensations on average until the perturbation
is beyond a threshold (Purcell and Munhall, 2006). It is as if
there is a tolerance for variation in production and small errors
do not require correction. At the other end of the perturbation
range, subjects’ compensations increase linearly with steps in
the ramp until the perturbations become too large (MacDonald
et al., 2010). Compensations in both the first and second formant
reach an asymptote and, as perturbations in the experiment
continue to increase with each utterance, the compensation
starts to decrease. Finally, the auditory feedback system operates
optimally with simultaneous feedback and less so with delays
(Mitsuya et al., 2017). Mitsuya et al. (2017) showed that with
delays decreasing from 100 ms, the compensation grew linearly
to simultaneity. This presents a picture of a formant control
system that has inherent variability and that operates within

2 There is a strategy in several laboratories to instruct subjects to
prolong their syllables to study rapid, closed-loop control of speech.
While this strategy has been used to increase experimental efficiency and
to enable the study of both rapid closed-loop and feed-forward control
in the same trials, we are concerned that the prolonged utterances are a
different phenomenon than naturally-paced productions. Indeed, it has
been suggested that online responses to feedback perturbations and the
between-trial effects that we are studying are controlled by different
neural mechanisms (Raharjo et al., 2021).

a bounded set of conditions. It does not correct changes
smaller than a range of about plus or minus 50 Hz. The
control system does not make changes specifically tied to large
perturbations of more than 250 Hz and compensates most
strongly when there are no delays in auditory feedback. Sudden
step changes in formant frequency within this span of conditions
are compensated over a series of utterances (approximately 10
trials) rather than on the next trial.

Here, we aim to explore, within the scope of these
conditions, how reliant speech articulation is on a predictable
auditory feedback environment over a sequence of utterances.
In the study of visuomotor and force field paradigms for
limb movement, manipulations of feedback predictability have
advanced Bayesian perspectives on motor adaptation and
sensorimotor control (see Krakauer et al., 2019 for a review).
The extension of this approach to speech production has been
limited. Daliri and Dittman (2019) have addressed these issues
in a series of papers. Their work suggests that task relevance
and the magnitude of the error influence the magnitude of
the observed compensation. Here, we extend this work by
applying manipulations to the probability of perturbation and
the consistency or range of the errors that speakers hear.

The data presented in this paper stem from two separate
experiments, each involving multiple conditions. Experiment
1 was conducted at the University of Western Ontario, while
Experiment 2 was conducted at Queen’s University. The raw
data are publicly available on OSF here: osf.io/n4pgf.

Experiment 1

In Experiment 1, we directly manipulated the predictability
and, therefore, the variability of the auditory feedback of
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speakers’ formant frequencies during vowel production. In three
experimental conditions, we constrained the auditory feedback
speakers received into specific regions of the F1/F2 vowel space.
Our aim was to examine the influence of systematic variability
in auditory feedback on speakers’ moment-to-moment and
average speech production patterns.

We selected three different types of feedback variability that
varied in the range of the feedback error introduced, and in the
degree of independence of the perturbations to F1 and F2:

1. Randomly and independently perturbing F1 and F2 on
each trial over the frequency range that would change
the syllable “head” to either “hid” or “had” (F1±200 Hz;
F2 ±250 Hz) but with an overall mean perturbation of
0 Hz in both formants.

2. The same random perturbations over the same
frequency range but only for F1. No perturbation was
applied to F2. As in the first condition, the overall mean
perturbation was 0 Hz.

3. A more phonetic perturbation that randomly varied
the feedback for F1 and F2 on each trial in a coupled
manner as if the feedback was being shifted between
“head” and “had.” This varied the vowel quality within
a small region of the vowel space and smaller region
of the acoustic space (F1 +200 Hz; F2 −250 Hz). We
used this condition to also test whether introducing a
bias to the randomization would influence the behavior
of the speech motor system. In this condition, the
mean perturbation across trials was F1 = 100 Hz
and F2 =−125 Hz.

These feedback perturbations are only a subset of the
ways that unpredictability could alter feedback processing in
fluent speech. However, they sample distinct modes of noise
in speech feedback and will serve to test in a broad way
the dependence on similar noise levels in F1 and F2. They
also provide an initial test of the effects of the range of
perturbation variability.

Materials and methods

Participants
Eighteen female speakers fluent in Canadian English

ranging in age from 21 to 30 years of age (Mage = 24.06,
SDage = 2.26) participated in the study. Eight speakers reported
being fluent in at least one other language in addition to English.
To reduce variability in formant values due to sex differences,
only female participants were recruited. All participants had
normal audiometric hearing thresholds between 500 and
4,000 Hz (≤20 dB hearing level) and reported having no speech
or language impairments. All participants provided written,

informed consent prior to participating and all experimental
procedures were approved by the Health Sciences Research
Ethics Board at Western University.

Equipment
The equipment used for Experiment 1 was the same

as previously reported in Mitsuya et al. (2017). Participants
sat in front of a computer monitor in a sound-attenuated
booth (Eckel Industries of Canada, model C2) and wore
headphones (Sennheiser HD 265). Their speech was recorded
using a portable headset microphone (Shure WH20). The
microphone signal was amplified (Tucker-Davis Technologies
MA3 microphone amplifier), low-pass filtered with a cut-off
frequency of 4,500 Hz (Frequency Devices type 901) and
digitized at a sampling rate of 10 kHz. The signal was then
filtered in real-time to produce formant feedback perturbations
(National Instruments PXI-8106 embedded controller). The
processed speech signal was presented back to participants
with Sennheiser HD 265 headphones at approximately 80 dBA
sound pressure level (SPL) with speech shaped noise (Madsen
Itera) of 50 dBA SPL.

Acoustic processing
Voicing was detected using a statistical amplitude threshold,

and formant manipulations were introduced in real time
using an infinite impulse response filter (see Purcell and
Munhall, 2006). An iterative Burg algorithm (Orfanidis, 1988)
was implemented to estimate formant changes every 900 µs.
Formant estimates were then used to calculate filter coefficients.
A pair of spectral zeros were used to deemphasize energy
present in the existing formant frequency, and a pair of spectral
poles were used to emphasize energy present in the new
desired formant.

Prior to data collection, talkers were cued to randomly
produce six tokens of each English vowel in the /hVd/ context
(“heed,” “hid,” “hayed,” “head,” “had,” “hawed,” “hoed,” “who’d,”
“hood,” and “heard”). This was carried out to estimate a
parameter that determined the number of coefficients used
in the real-time filtering of the vowels in the experiment.
Participants were presented with a visual prompt of each word
that remained on a computer screen for 2.5 s (with an inter-
stimulus interval of approximately 1.5 s).

Formants were analyzed offline in the same manner as
previously reported in Munhall et al. (2009). For each utterance,
vowel boundaries of the vowel segment were estimated using
an automated process based on the harmonicity of the
power spectrum. Vowel boundaries were then inspected by
hand and corrected, if necessary. Trials were occasionally
removed from the dataset when participants made an error
(i.e., pronounced the wrong word, failed to produce the
correct vowel, coughed or lip smacked during production).
The same algorithm that was used for real-time formant
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FIGURE 2

Auditory feedback perturbation values in the Perturbation phase (trials 21–80) of Experiment 1 in the F1/F2 Random Perturbation Condition (A),
F1-Only Random Perturbation Condition (B), and F1/F2 Coupled Random Perturbation Condition (C). In the F1/F2 Random Perturbation
Condition, perturbation magnitudes were not related. Half of the perturbations were positive, and half were negative. The overall average
perturbation value in F1 and F2 was 0 Hz. In the F1-Only Random Perturbation Condition, only F1 was perturbed. An equal number of random
positive and negative F1 perturbations were applied, and the overall average perturbation value in F1 was 0 Hz. In the F1/F2 Coupled Random
Perturbation Condition, speakers received feedback that was biased toward the vowel /æ/ in “had” in F1/F2 space. Random perturbation
magnitudes in F1 and F2 were related, with F1 and F2 perturbations being applied in multiples of 4 and –5 Hz, respectively.

tracking was also used offline to estimate the first three formant
frequencies (F1, F2, and F3) for each utterance. Formants
were estimated from the middle 40–80% of each vowel’s
duration. On the occasion when a formant was incorrectly
categorized as another (e.g., F1 was categorized as F2), it
was manually corrected by inspecting the utterance with
all the “steady state” F1, F2, and F3 estimates marked for
that participant.

Design and procedure
Prior to the experiment, participants filled out a

questionnaire to indicate their native language and current
language(s) spoken, and to screen for any known vision,
hearing, speech, and language impairments. Each participant
also completed a hearing screening test at octave frequencies
of 500, 1,000, 2,000, and 4,000 Hz prior to beginning the
speech experiment.
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Participants sat in a sound-attenuated booth in front of
a computer monitor and said the monosyllabic word “head”
140 times in each of three conditions: (1) F1/F2 Random
Perturbation Condition, (2) F1-Only Random Perturbation
Condition, and (3) F1/F2 Coupled Random Perturbation
Condition. In each condition, three successive experimental
phases that were not indicated to participants were tested. In the
Baseline phase (trials 1–20), participants spoke while receiving
natural, unaltered auditory feedback. In the Perturbation phase
(trials 21–80), participants’ auditory feedback was manipulated.
In the F1/F2 Random Perturbation Condition, this involved
randomly perturbing F1 and F2 in multiples of 4 and 5 Hz,
respectively, on each trial. The magnitude of the perturbations
in F1 and F2 were not related. However, the directions of the
perturbations in F1 and F2 were equally distributed. A quarter
(i.e., 15) of the perturbations in F1/F2 were both positive
(F1 + F2+), both negative (F1 − F2−), and one positive and
one negative (F1 + F2−; F1 − F2 +). The overall average
perturbation magnitude during the Perturbation phase of the
F1/F2 Random Perturbation Condition was 0 Hz in F1 and
F2 (see Figure 2A). In the F1-Only Random Perturbation
Condition, perturbations were applied in the same way, but
only in F1. As in the F1/F2 Random Perturbation Condition,
an equal number of positive and negative F1 perturbations
were applied during the Perturbation phase (see Figure 2B). In
the F1/F2 Coupled Random Perturbation Condition, speakers
were presented with perturbations that biased the auditory
feedback they received from the vowel /ε/ in “head” toward
the vowel /æ/ in “had” in F1/F2 space (see Figure 2C). This
was achieved by randomly applying positive F1 perturbations
in multiples of 4 Hz ranging from +4 to +200 Hz. The average
F1 perturbation value was +100 Hz. Perturbation values in F2
were negative and were determined by dividing the value of
the F1 perturbation by four and multiplying by negative five.
All subjects received the same randomization of perturbations
in each condition. The final Return phase (trials 81–140) was
the same in all three conditions; participants’ natural unaltered
auditory feedback was restored.

The order of each condition was counterbalanced across
participants. Before the experiment began, the experimenter
instructed participants to speak in their normal conversational
voice, and to keep the loudness and pitch of their voice as stable
as possible throughout the experiment. To ensure participants
returned to baseline speech production after each condition, the
experimenter entered the sound booth, and engaged in a short
conversation with the participant for a few minutes.

Data analysis
The procedure for data analysis involved first eliminating

trials 1–5 from the dataset to minimize the impact of
subjects’ familiarization with the speech task and with
speaking while receiving feedback through headphones.
Each speaker’s utterances were then normalized for each

condition by subtracting that speaker’s mean Baseline formant
frequencies from each of their utterances. This procedure
facilitated our ability to compare formant frequencies
across speakers. Speakers’ normalized F1 and F2 values
were used as the dependent variable in all reported analyses.
Descriptive statistics of raw formant values are provided in the
Supplementary material.

In both experiments, linear mixed-effects modeling (LMM)
was used to examine the influence of condition and phase on
speakers’ normalized speech production. Modeling was carried
out using the lme4 package (v1.1-27; Bates et al., 2015) in R
(R Core Team, 2020). Analyzing our data in this way allowed
for the simple handling of missing data. It also allowed us to
maximize our control over unexplained variance in formant
frequencies among individual speakers by including a random-
effects term. For each experiment, two linear mixed-effects
models were constructed—one for F1 and one for F2. As per
the guidelines set forth by Barr et al. (2013), the random effects
structure for each model was kept as maximal as possible
based on our experimental design and the satisfaction of model
convergence criteria. In each model, this involved including a
random intercept for speakers causing non-independence in
the data and, if possible, a random slope for each within-unit
predictor if there were no convergence errors. If convergence
criteria were not satisfied, the random effects structure was
simplified by removing the random slope that explained the
smallest amount of variance. This process was continued until
the random effects model converged (Barr et al., 2013). The
random effects structure for each model was determined prior
to adding any fixed effects.

In each LMM analysis, we refer to the model with the
best fit to the data as the Best Fit Model. In all cases, Best
Fit Models were determined using a “backward-fitting” model
selection approach (Bates et al., 2015). This involved first
testing a model with the maximal random effects structure that
satisfied convergence criteria and all fixed effects of interest
(i.e., condition, phase, and their interaction term). Fixed effects
were then removed one at a time and alternative models were
compared for goodness of fit to the data using likelihood
ratio tests (LRTs). Two-tailed p-values and confidence intervals
were estimated using a Wald t-distribution with Satterthwaite
approximation. The Best Fit Model for each analysis always
significantly outperformed all other testable models and satisfied
convergence criteria. In cases where significant fixed effects
were observed, the emmeans package (v.1.7.0; Lenth, 2019)
was used to conduct pairwise comparisons with the Bonferroni
correction. In secondary analyses, within-subjects ANOVAs
(one for F1, one for F2) were used to examine whether average
within-speaker variability (i.e., standard deviation) differed by
condition and phase.

We also investigated the possibility of oscillations in
compensation throughout the Perturbation phase of each
condition. This was achieved by computing an amplitude
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spectrum for each subject in each condition using the
normalized F1 values from the Perturbation phase as time
series. The spectra were calculated in MATLAB (2020b)
using a discrete Fourier transform with a Hanning window
and a sampling rate of one sample per trial. The resulting
amplitude spectra had normalized units of frequency
(normalized by the sampling rate and reported as cycles
per trial) and were averaged across subjects for each
condition. If there was a prominent oscillation of F1 values
across trials in the Perturbation phase of any condition, it
would be expected to appear as a peak in the frequency
spectrum. By averaging only the amplitude spectra, between-
subject variability in the temporal position of cycles of
a potential oscillation across trials in the Perturbation
phase will not diminish detection of the oscillation in the
average spectrum.

Results

The primary dataset for Experiment 1 involved a total of
7,290 utterances (18 speakers ∗ 3 conditions ∗ 135 trials = 7,290).
Thirty F1 values and 43 F2 values were omitted from the
dataset due to issues with formant tracking. The reported results
involve normalized formant frequencies. We begin by visually
presenting the average normalized results for F1 and F2 in each
condition. We then report the results from the Best-Fit Models
used to predict normalized speech production in F1 and F2,
followed by analyses of average within-speaker variability.

The average normalized results for F1 and F2 across all
three phases of each condition in Experiment 1 are shown in
Figure 3. The general pattern apparent in Figure 3 is that the
random perturbations with a mean of zero relative formant
frequency in the F1/F2 Random Perturbation Condition and
F1-Only Random Perturbation Condition had minimal effects
on average formant production. In contrast, when the random
perturbations had a mean of F1 = 100 Hz and F2 = −125 Hz
in the F1/F2 Coupled Random Perturbation Condition,
the average compensations resembled those produced in
experiments with a step perturbation (e.g., Munhall et al., 2009;
MacDonald et al., 2011).

In the LMM analysis of speakers’ normalized F1 speech
production values, the Best-Fit Model produced a significantly
better fit to the data than a null model that only included the
random effects, χ2(8) = 505.67, p < 0.001. It also significantly
outperformed alternative models that only included the fixed
effect of Phase [χ2(6) = 301.12, p < 0.001] or Condition,
χ2(6) = 492.82, p < 0.001. The Best Fit Model was a significantly
better fit to the data than another alternative model that did
not include the interaction between Condition and Phase,
χ2(4) = 288.24, p < 0.001.

Results from the Best-Fit Model revealed a significant Phase
effect. Pairwise comparisons using the Bonferroni correction

revealed that speakers’ normalized F1 values were significantly
more negative during the Perturbation (M =−14.02, SE = 2.95)
and Return (M =−7.64, SE = 2.95) phases than they were during
the Baseline phase (M = −0.04, SE = 3.06), all ps < 0.001.
The main effect of Condition was not significant. However,
there was a significant interaction between Condition and Phase.
Adjusting for multiple comparisons, pairwise tests showed that
there were significant mean differences between the F1 values
produced by speakers during the Perturbation phase of the
F1/F2 Coupled Random Perturbation Condition (M = −32.47,
SE = 3.64), and the Perturbation phases of the F1/F2 Random
Perturbation Condition (M = −4.80, SE = 4.71) and F1-Only
Random Perturbation Condition (M = −4.79, SE = 3.78), both
ps < 0.001. In the F1-Only Random Perturbation Condition,
speakers’ F1 values were significantly more negative during
the Return phase (M = −8.88, SE = 3.78) than during the
Baseline phase (M = −0.009, SE = 4.03), p < 0.001. In the
F1/F2 Coupled Random Perturbation Condition, speakers’ F1
values were also significantly more negative during the Return
phase (M = −13.43, SE = 3.64) than during the Baseline phase
(M = 0.03, SE = 3.89), p < 0.001. Thus, on average, speakers
did not reliably compensate for random F1 perturbations that
had a relative overall average of 0 Hz. However, when random
F1 perturbations had an average that deviated from zero,
speakers demonstrated significant compensatory behavior. In
two conditions, speakers’ average F1 production also remained
significantly negative as compared to the Baseline phase
following the restoration of their natural auditory feedback
during the Return phase. A full list of pairwise comparisons
and their significance values are provided in the Supplementary
material. Best-Fit Model coefficients are shown in Table 1.

The Best-Fit Model predicting speakers’ normalized F2
production was a significantly better fit to the data than a
null model that only had the random effects, χ2(8) = 373.2,
p < 0.001. An alternative model that did not have the Condition
effect failed to converge. The Best-Fit Model significantly
outperformed alternative models that did not have the Phase
effect [χ2(6) = 354.59, p < 0.001], or the interaction between
Condition and Phase [χ2(4) = 208.91, p < 0.001], both
ps < 0.001.

Results from the Best-Fit Model in F2 revealed that the main
effects of Condition and Phase were not significant. However,
there was a significant interaction between Condition and Phase.
Pairwise comparisons using the Bonferroni correction revealed
that, on average, speakers’ F2 production was significantly more
positive during the Perturbation phase of the F1/F2 Coupled
Random Perturbation Condition (M = 38.26, SE = 6.99)
than during the Perturbation phases of the F1/F2 Random
Perturbation Condition (M = 3.07, SE = 7.51) and the F1-Only
Random Perturbation Condition (M =−14.86, SE = 5.05), both
ps < 0.001. In the F1-Only Random Perturbation Condition,
there were significant mean differences between speakers’ F2
values produced during the Baseline phase (M = −0.20,
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FIGURE 3

Average normalized F1 (gray) and F2 (gold) speech production values from 18 speakers in the F1/F2 Random Perturbation Condition (A), F1-Only
Random Perturbation Condition (B), and F1/F2 Coupled Random Perturbation Condition (C) of Experiment 1. From left to right, the dotted lines
denote boundaries between the Baseline, Perturbation, and Return phases, respectively.

TABLE 1 Coefficients from the Best-Fit Model used to predict speakers’ normalized F1 values during Experiment 1.

Fixed effects Estimate (SE) 95% CI t-value P-value Random effects SD

Intercept (F1/F2 condition baseline) −0.15 (4.92) [−10.39, 10.08] −0.03 0.975 Speaker

F1-only condition 0.14 (5.16) [−10.49, 10.78] 0.03 0.978 Intercept (F1/F2 random condition) 19.71

Linear condition 0.18 (4.80) [−9.68, 10.05] 0.04 0.970 F1-only condition 19.66

Perturbation phase −4.65 (1.80) [−8.18,−1.11] −2.58 0.010 Linear condition 17.94

Return phase −0.46 (1.80) [−4.00, 3.07] −0.26 0.797 Residual 26.27

F1-only*perturbation −0.14 (2.54) [−5.13, 4.85] −0.05 0.956

Linear*perturbation −27.85 (2.54) [−32.84,−22.87] −10.95 <0.001

F1-only*return −8.41 (2.54) [−13.39,−3.42] −3.30 <0.001

Linear*return −13.00 (2.54) [−17.98,−8.01] −5.11 <0.001

Significant effects are bolded. 95% confidence intervals and p-values were computed using a Wald t-distribution with a Satterthwaite approximation. Number of observations = 7,260;
Number of speakers = 18.

SE = 5.56) and Return phase (M = −22.93, SE = 5.05), and
between the Perturbation phase (M = −14.86, SE = 5.05) and
the Return phase, both ps < 0.001. In the F1/F2 Coupled
Perturbation Condition, speakers’ average F2 production also
significantly differed in the Baseline phase (M = 0.34, SE = 7.36)

as compared to the Return phase (M = 9.93, SE = 6.99; p = 0.047),
and in the Perturbation phase (M = 38.26, SE = 6.99) as
compared to the Return phase, p < 0.001. Hence, as in the
F1 model, speakers’ compensatory behavior in F2 was most
pronounced during the F1/F2 Coupled Random Perturbation
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Condition, where average relative perturbation magnitudes
deviated from zero. A full list of pairwise comparisons and their
significance values are provided in the Supplementary material.
Best-Fit Model coefficients for F2 are shown in Table 2.

Two repeated-measures ANOVAs (one for F1, one for
F2) were carried out to examine the influence of Condition
(F1/F2 Random Perturbation, F1-Only Random Perturbation,
F1/F2 Coupled Random Perturbation) and Phase (Baseline,
Perturbation, and Return) on average within-subject speech
production variability (i.e., standard deviation; SD). In the F1
model, the Phase effect violated the sphericity assumption,
Mauchly’s Test of Sphericity, p = 0.002. The Greenhouse–
Geisser correction was thus used to make decisions about
the statistical significance of this effect. The main effect of
Condition was not significant at the 0.05 level, F(2,34) = 3.14,
p = 0.056, ηp = 0.156. However, there was a significant
Phase effect, F(1.30,22.09) = 5.20, p = 0.025, ηp = 0.234.
Follow-up comparisons revealed that, on average, speakers
were significantly less variable in F1 during the Baseline phase
(M = 20.72; SE = 0.984) than they were during the Perturbation
(M = 24.05, SE = 1.21) and Return (M = 24.47, SE = 1.27) phases,
both ps < 0.029. The difference in within-speaker F1 variability
in the Perturbation and Return phases was not significant,
p = 0.552. The interaction between Condition and Phase was also
not significant, F(4,68) = 12.52, ηp = 0.038, p = 0.609. Average
within-subject variability in Experiment 1 is shown in Figure 4.

There were no significant effects in the F2 model. Within-
speaker standard deviation in F2 did not significantly differ
by Condition [F(2,34) = 0.819, p = 0.450, ηp = 0.046] or
Phase, F(2,34) = 52.92, p = 0.323, ηp = 0.064. The interaction
between Condition and Phase was also not significant,
F(2.5,42.51) = 0.608, p = 0.585, ηp = 0.035.

The average amplitude spectrums computed to examine
oscillations in speakers’ F1 compensatory behavior throughout
the Perturbation phase of each condition in Experiment 1 are
presented in Figure 5. The frequency zero represents the DC-
offset and reflects the mean change in normalized F1 values in
the Perturbation phase relative to the Baseline phase. As can

be seen, the mean amplitude at zero cycles/trial for the F1/F2
Coupled Random Perturbation Condition is numerically larger
than the other two conditions. This is consistent with the LMM
results above. At higher frequencies, all three conditions display
low amplitudes and are intermingled, indicating that there were
no prominent oscillations of F1 within the Perturbation phase
of any condition.

Discussion

The massive unpredictability of the F1/F2 Random
Perturbation Condition and F1-Only Random Perturbation
Condition had minimal effects on the formant production
characteristics. Variability in the Perturbation and Return
phases increased from baseline but only modestly and did so in
similar fashions for all three experimental conditions equally
for Perturbation and Return phases. While this might be due
to the unpredictability of the feedback, our design in these
studies does not permit this explanation to be distinguished
from a generalized increase in production variance with the
extended repetition of the same syllable. This will be examined
in Experiment 2.

The average data showed two surprising patterns. First,
both the F1/F2 Random Perturbation Condition and the F1-
Only Random Perturbation Condition essentially remained at
baseline levels. The second surprising result was that the F1/F2
Coupled Random Perturbation Condition, which perturbed the
feedback randomly between 0 and +200/−250 Hz (F1/F2) with
a mean of +100/−125 Hz (F1/F2), yielded results consistent
with a static perturbation of +100/−125 Hz. The observed
compensations are approximately 40–50% of the perturbation
magnitude, which is consistent with many studies who have
used a step perturbation (e.g., Munhall et al., 2009; MacDonald
et al., 2011). The results suggest that the compensatory system
is integrating feedback error over a sequence of utterances and
thus, showing a sensitivity to an average error. In Experiment
2, the temporal consistency of the perturbations will be

TABLE 2 Coefficients from the Best-Fit Model used to predict speakers’ normalized F2 values during Experiment 1.

Fixed effects Estimate (SE) 95% CI t-value P-value Random effects SD

Intercept (F1/F2 condition baseline) −0.03 [−16.36, 16.30] −0.004 0.997 Speaker

F1-only condition −0.17 [−18.73, 18.38] −0.02 0.985 Intercept (F1/F2 random condition) 19.71

Linear condition 0.37 [−15.12, 15.86] 0.05 0.961 F1-Only condition 19.66

Perturbation phase 3.10 [−2.73, 8.93] 1.04 0.297 Linear condition 17.94

Return phase −0.36 [−6.18, 5.47] −0.12 0.905 Residual 26.27

F1-only*Perturbation −17.76 [−26.01,−9.52] −4.22 < 0.001

Linear*Perturbation 34.81 [26.56, 43.06] 8.27 <0.001

F1-only*Return −22.37 [−30.62,−14.13] −5.32 < 0.001

Linear*Return 9.94 [1.69, 18.19] 2.36 0.018

Significant effects are bolded. 95% confidence intervals and p-values were computed using a Wald t-distribution with a Satterthwaite approximation. Number of observations = 7,247;
Number of speakers = 18.
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FIGURE 4

Average normalized F1 within-subject variability (i.e., SD) in the Baseline (blue), Perturbation (red), and Return (green) phases of the F1/F2
Random Perturbation Condition, F1-Only Random Perturbation Condition, and F1/F2 Coupled Random Perturbation Condition in Experiment 1.
Error bars represent 95% confidence intervals.

manipulated to explore the nature of this integration of feedback
error. A step perturbation will also be tested to compare the
relative consistency of compensation to a static perturbation
versus a variable one such as tested here.

Experiment 2

Our aim in this experiment was to examine whether
the feedback system would show greater responsiveness to
perturbations held constant for longer periods of time. Such
findings would allow us to carry out a preliminary test of
the temporal span over which the feedback integrates error
information. This experiment also included a non-perturbation
control condition where the feedback was held constant, and a
step perturbation condition in which feedback was shifted from
“head” to “had” during the Perturbation phase.

Materials and methods

The acoustic processing methods used for Experiment 2
were the same as reported above for Experiment 1. The design
and procedure for Experiment 2 was similar to Experiment 1.
The equipment was functionally similar to Experiment 1. As
such, only differences will be described.

Participants
Twenty-two female speakers fluent in Canadian English who

did not participate in Experiment 1 were recruited to participate

in the study. Two participants were removed from the dataset
due to technical issues with the formant perturbation system.
The remaining 20 participants ranged in age from 19 to 32 years
of age (Mage = 22.35; SDage = 2.74) and reported having no
speech or language impairments. Fourteen speakers reported
being fluent in at least one other language in addition to English.
All participants had normal audiometric hearing thresholds
between 500 and 4,000 Hz (≤20 dB hearing level) and provided
their informed consent prior to participating. All experimental
procedures were approved by the General Research Ethics Board
at Queen’s University.

Equipment
The equipment used for Experiment 2 was the same as

previously reported in Nault and Munhall (2020). Participants
sat in a different sound attenuated booth (Industrial Acoustic
Co. model 1201a), and a different controller was used to
produce formant shifts in real-time (National Instruments
PXI-8176 embedded controller) than in Experiment 1. All
other equipment was functionally the same as reported above
for Experiment 1.

Design and procedure
Participants were asked to vocally produce the word “head”

80 times in five different conditions (Control, One, Three, Six,
and Step conditions). In the Control Condition, participants
received normal, unaltered auditory feedback for all 80 trials. In
the four experimental conditions, there were three continuous
phases that were not indicated to participants. During the

Frontiers in Human Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnhum.2022.905365
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-905365 August 23, 2022 Time: 7:35 # 11

Nault et al. 10.3389/fnhum.2022.905365

FIGURE 5

Average amplitude spectra across all 18 speakers for the F1/F2 Coupled Random Perturbation Condition (green), F1/F2 Random Perturbation
Condition (blue), and F1-Only Random Perturbation Condition (red) in Experiment 1. The left-most frequency bin of 0 cycles/trial represents the
DC-offset. It reflects the mean change in normalized F1 values in the Perturbation phase of each condition as compared to Baseline. Instances
of peaks in amplitude at higher frequencies would represent prominent oscillation of F1 values across trials in the Perturbation phase. The
spectra were created using a discrete Fourier transform with a Hanning window and sampling frequency set to one sample per trial.

Baseline phase (trials 1–20), speakers received normal, unaltered
auditory feedback. Speakers’ auditory feedback was then
manipulated during the Perturbation phase (trials 21–50). In
conditions One, Three, and Six, perturbations were applied
in F1 and F2 with varying levels of temporal predictability
(see Figure 6). As in the F1/F2 Coupled Random Feedback
Condition in Experiment 1, the feedback perturbations for F1
and F2 were proportional in frequency. Thus, the feedback
participants received varied in a linear fashion between the
vowel /I/ in “hid” to /æ/ in “had” in F1/F2 space (see Figure 2C).
In Condition One, a different perturbation was introduced
on each trial. In Conditions Three and Six, perturbations
were held constant for three and six trials, respectively. In
all three conditions, the overall average of the F1 and F2
perturbation values was 0 Hz. During the Perturbation phase
of the Step Condition, F1 and F2 perturbations of 200 and
−250 Hz, respectively, were maintained for 30 trials (see
Figure 2B). This is a standard perturbation often used in
auditory feedback perturbation studies and it produces a shift
across the vowel category boundary from /ε/ to /æ/. In all
conditions, participants’ natural auditory feedback was restored
during the Return phase (trials 51–80). The order of conditions
was counterbalanced across participants.

In between each condition, the experimenter entered the
sound booth, and engaged in a few minutes of conversation
with each participant. Participants were also asked to read “The
Grandfather Passage” (Van Riper, 1963; Darley et al., 1975)
aloud. This seminal 132-word passage is often used in clinical
settings to elicit oral reading samples and to assess speech motor

functioning and speech intelligibility (e.g., De Bodt et al., 2002)
due to its semantic and syntactic complexity and diverse range
of English phonemes. It was used in the current experiment to
encourage speakers to return to baseline vowel production.

Results

The primary dataset for Experiment 2 included a total of
7,500 utterances (20 speakers ∗ 5 conditions ∗ 75 trials = 7,500).
Issues with formant tracking led to the removal of 253 formant
values (62 in F1; 191 in F2) from the final dataset. As in
Experiment 1, we removed trials 1–5 from the dataset to
reduce any possible influence on speech production of task
familiarization and speaking while receiving feedback through
headphones. We begin by providing a figure of the average
normalized results for F1 and F2 in each condition. We then
provide results from the Best Fit Models used to predict
normalized speech production in F1 and F2. We also report
results from within-subjects ANOVAs used to examine within-
subject variability. We conclude our Results section with a
visual depiction of the average amplitude spectra that were
computed to examine oscillations in F1 compensatory behavior
throughout the Perturbation phase of each condition.

The average normalized results for F1 and F2 across all three
phases of each condition in Experiment 2 are shown in Figure 7.
As shown, the Step Condition, on average, differed from all other
conditions during the Perturbation phase. The Perturbation
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FIGURE 6

F1 (red) and F2 (gray) perturbation values in Hz during the Perturbation phase of Condition One, Condition Three, Condition Six, and the Step
Condition of Experiment 2. The overall average F1 and F2 perturbation values in Condition One, Three, and Six was 0 Hz (F1 min = –200 Hz, F1
max = 200 Hz; F2 min = –250 Hz, F2 max = 250 Hz).

phase of Condition Six differed from the Control Condition
indicating that sequential consistency of perturbations was
required for compensatory behavior. The results for F2 were
similar to F1. On average, the Step Condition produced
more robust compensations than any of the other conditions.
Compensatory behavior was, on average, more evident in
Condition Six than it was during the Control Condition, which
suggests that the consistency of perturbations across trials was
important for compensation. The F2 results were generally more
variable than those observed for F1.

The Best-Fit Model used to predict speakers’ normalized
F1 production values in Experiment 2 produced the best fit to
the data and included a maximal random-effects structure with
random intercepts for speakers. Including random slopes for
condition and phase led to model convergence errors. The Best
Fit-Model also included the fixed effects of Condition, Phase,
and their interaction term. The Best-Fit Model significantly
outperformed a null model that only included the maximal
random-effects structure, χ2(14) = 499.25, p < 0.001, as
well as alternative models that only included the fixed
effect of Condition [χ2(10) = 200.43, p < 0.001] or Phase,
χ2(12) = 429.23, p < 0.001. The Best-Fit Model was also a
significantly better fit to the data than an alternative model
that did not have the interaction term, χ2(8) = 127.85,
p < 0.001.

Results from the Best-Fit Model indicated that there was
a significant Phase effect. Pairwise comparisons using the
Bonferroni correction indicated that speakers’ normalized F1
values were significantly more negative during the Perturbation
phase (M = −9.18, SE = 2.43) than during the Return phase
(M = −4.99, SE = 2.43) and Baseline phase (M = 1.00,
SE = 2.52), all ps < 0.001. The main effect of Condition was
not significant. However, there was a significant interaction
between Condition and Phase, which was mainly qualified by
significant differences between phases of the Step Condition and
phases of all other conditions. Notably, speakers’ normalized F1
values were significantly more negative during the Perturbation
phase of the Step Condition (M = −34.34, SE = 2.78) than they
were during the Perturbation phases of the Control Condition
(M = 0.89, SE = 2.78), Condition One (M = −0.44, SE = 2.78),
Condition Three (M = −5.24, SE = 2.78) and Condition Six
(M = −6.79, SE = 2.78), all ps < 0.001. Speakers’ mean
F1 values were also significantly more negative during the
Perturbation phase of Condition Six than they were during
the Perturbation phase of the Control Condition, p = 0.039.
Pairwise differences between the Perturbation phases of all
other conditions were not significant. Speakers’ mean F1 values
produced during the Return phase of the Step Condition
(M = −16.40, SE = 2.78) were also significantly more negative
than those produced during the Return phase of all other
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FIGURE 7

Average normalized F1 (red) and F2 (gray) speech production values in the Control Condition (A), Condition One (B), Condition Three (C),
Condition Six (D), and the Step Condition (E) of Experiment 2. From left to right, dotted lines denote boundaries between the Baseline,
Perturbation, and Return phases, respectively.

conditions, all ps < 0.001. A full list of pairwise comparisons
is provided in the Supplementary material. Best-Fit Model
coefficients are shown in Table 3.

The Best-Fit Model used to predict speakers’ normalized
F2 productions included a maximal random effects structure
with random intercepts for speakers. It also included fixed
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TABLE 3 Coefficients from the Best-Fit Model used to predict speakers’ normalized F1 values during Experiment 2.

Fixed effects Estimate (SE) 95% CI t-value P-value Random effects SD

Intercept (control baseline) 5.34 (3.19) [−1.03, 11.71] 1.68 0.099 Speaker (intercept) 10.41

Condition one −5.34 (3.06) [−11.35, 0.66] −1.74 0.081 Residual 37.29

Condition three −5.33 (3.06) [−11.34, 0.67] −1.74 0.082

Condition six −5.52 (3.07) [−11.53, 0.49] −1.80 0.072

Step condition −5.49 (3.08) [−11.52, 0.54] −1.79 0.074

Perturbation phase −4.45 (2.66) [−9.66, 0.76] −1.68 0.094

Return phase −8.95 (2.66) [−14.16,−3.74] −3.37 <0.001

One*Perturbation 4.02 (3.75) [−3.33, 11.36] 1.07 0.284

Three*Perturbation −0.80 (3.75) [−8.15, 6.55] −0.21 0.831

Six*Perturbation −2.16 (3.75) [−9.51, 5.19] −0.58 0.564

Step*Perturbation −29.73 (3.76) [−37.10,−22.37] −7.91 <0.001

One*Return 9.04 (3.75) [1.69, 16.38] 2.41 0.016

Three*Return 9.32 (3.75) [1.97, 16.67] 2.49 0.013

Six*Return 3.75 (3.75) [−3.61, 11.11] 1.00 0.318

Step*Return −7.30 (3.76) [−14.67, 0.07] −1.94 0.052

95% confidence intervals and p-values computed using a Wald t-distribution with a Satterthwaite approximation. Significant effects are bolded. Number of observations = 7,438; Number
of speakers = 20.

effects of Condition, Phase, and their interaction term.
The Best-Fit Model significantly outperformed a null model
that only included the maximal random-effects structure,
χ2(14) = 584.43, p < 0.001. It was also a significantly better
fit to the data than alternative models that only included the
fixed effect of Condition [χ2(10) = 222.54, p < 0.001] or Phase,
χ2(12) = 520.20, p < 0.001. The Best-Fit Model significantly
outperformed an alternative model that did not include the
interaction between Condition and Phase, χ2(8) = 156.21,
p < 0.001.

In the Best Fit Model for F2, the main effects of Condition
and Phase were not significant. However, there was a significant
interaction between these effects. As in the F1 model, the
interaction was mainly explained by significant differences
between phases of the Step Condition and phases of all
other conditions. Importantly, speakers’ average F2 values were
significantly more positive during the Perturbation phase of the
Step Condition (M = 42.47, SE = 3.90) than they were during
the Perturbation phases of the Control Condition (M = −0.25,
SE = 3.91), Condition One (M = −16.62, SE = 3.92), Condition
Three (M = −10.95, SE = 3.91), and Condition Six (M = 2.72,
M = 3.91), all ps < 0.001. Speakers’ mean F2 values were
significantly more negative during the Perturbation phase of
Condition One than they were during the Perturbation phases
of the Control Condition and Condition Six, both ps < 0.001.
Speakers’ mean F2 values were significantly more positive
during the Perturbation phase of Condition Six than they were
during the Perturbation phase of Condition Three, p = 0.004. As
in the F1 model, there were also a number of significant mean
differences between formant values produced during the Return
phases of different conditions. A full list of pairwise comparisons

is provided in the Supplementary material. Best-Fit Model
coefficients for F2 are presented in Table 4.

Two repeated-measures ANOVAs (one for F1, one for F2)
were conducted to examine whether within-speaker speech
production variability (i.e., SD) differed by Condition (Control,
One, Three, Six, and Step) and Phase (Baseline, Perturbation,
and Return). One outlier in F1 that was more than three
standard deviations from the mean was Winsorized and
replaced with the next highest value in the dataset. The F1 model
revealed that speakers’ mean speech production variability
did not significantly differ by Condition, F(4,76) = 0.631,
p = 0.642, ηp = 0.032. However, there was a significant
main effect of Phase, F(2,38) = 4.85, p = 0.013, ηp = 0.203.
Pairwise comparisons showed that speakers’ F1 productions
were significantly more variable during the Perturbation phase
(MSD = 31.64) than they were during the Baseline phase
(MSD = 28.47), p = 0.018. There were no statistically significant
differences in within-speaker variability between the Baseline
and Return (MSD = 29.75) phases (p = 0.172), nor between
the Perturbation and Return phases, p = 0.052. The interaction
between Condition and Phase was only marginally significant,
F(8,152) = 2.00, p = 0.050, ηp = 0.095. Using the Bonferroni
correction to adjust for multiple comparisons, it was determined
that none of the interaction comparisons were significant, all
ps > 0.059. Notably, there was no significant difference in
within-subject variability between the Baseline (MSD = 30.42),
Perturbation (MSD = 29.16), and Return (MSD = 28.65) phases
of the Control Condition, all ps > 0.05.

In the F2 model, the within-subjects effect of Condition
and the interaction between Condition and Phase violated the
sphericity assumption, Mauchly’s Test of Sphericity, ps < 0.05.
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TABLE 4 Coefficients from the Best-Fit Model used to predict speakers’ normalized F2 values during Experiment 2.

Fixed effects Estimate (SE) 95% CI t-value P-value Random effects SD

Intercept (control baseline) 1.35 (4.55) [−7.72, 10.41] 0.30 0.768 Speaker (intercept) 197.1

Condition one −1.23 (4.65) [−10.34, 7.88] −0.26 0.791 Residual 3163.3

Condition three −1.37 (4.67) [−10.53, 7.79] −0.29 0.769

Condition six −1.29 (4.66) [−10.43, 7.85] −0.28 0.782

Step condition −1.54 (4.67) [−10.69, 7.61] −0.33 0.742

Perturbation phase −1.60 (4.03) [−9.51, 6.31] −0.40 0.692

Return phase −1.86 (4.04) [−9.78, 6.07] −0.46 0.646

One*Perturbation −15.14 (5.70) [−26.31,−3.97] −2.66 0.008

Three*Perturbation −9.33 (5.71) [−20.53, 1.87] −1.63 0.103

Six*Perturbation 4.26 (5.71) [−6.93, 15.44] 0.75 0.456

Step*Perturbation 44.25 (5.70) [33.07, 55.43] 7.76 <0.001

One*Return −17.89 (5.69) [−29.05,−6.73] −3.14 0.002

Three*Return −22.14 (5.72) [−33.35,−10.94] −3.87 <0.001

Six*Return −4.99 (5.71) [−16.18, 6.21] −0.87 0.383

Step*Return 11.34 (5.71) [0.14, 22.54] 1.98 0.047

Significant effects are bolded. Number of observations = 7,309; Number of speakers = 20.

The Greenhouse-Geisser correction was thus used in making
decisions about significance. As in the F1 model, the main
effect of Condition was not significant, F(2.68,50.96) = 0.499,
p = 0.664, ηp = 0.026. However, there was a significant
main effect of Phase, F(1.58,30.09) = 5.31, p = 0.016,
ηp = 0.218. Follow-up comparisons revealed that speakers
were significantly more variable in F2 during the Perturbation
phase (MSD = 51.44) than they were during the Baseline phase
(MSD = 45.12), p = 0.012. Within-speaker production variability
did not significantly differ between the Baseline and Return
(MSD = 48.59) phases (p = 0.106), nor between the Perturbation
and Return phases, p = 0.054. The interaction between
Condition and Phase was not significant, F(4.70,89.22) = 2.25,
p = 0.060, ηp = 0.106. A visual depiction of the Phase effect in F1
and F2 is shown in Figure 8.

The spectra shown in Figure 9 summarize the findings
for F1 in Experiment 2. The DC-offset (seen at frequency
0 cycles/trial) shows the only major difference. The Step
Condition is larger than the other conditions at this
frequency. Condition Six is trending in the same direction.
Otherwise, across conditions, there are no differences at higher
frequencies in the spectra.

One possible explanation for compensation being
significantly more pronounced in the Perturbation
phase of the Step Condition and Condition Six than
in Condition One and Condition Three is that the
feedback error was held constant for a greater number
of trials in these two conditions and thus, the error
correction system was responding to more stable and
predictable conditions.

We computed a series of bivariate correlations between
F1/F2 perturbation values that were applied in the Perturbation
phase of Condition One, Condition Three, and Condition Six

and average normalized F1/F2 production values across all
subjects from these three conditions3. Correlations could not be
computed for the Step or Control Conditions due to the F1/F2
perturbation values being held constant throughout the entire
Perturbation phases. Correlations were computed at four lags:
zero (simultaneous), one, three, and five trials. Our reasoning
was that a comparison between simultaneous and time-lagged
correlations would provide insights into whether the error
correction system was operating instantaneously, or whether it
was integrating information over time.

A visual depiction of the average results from the bivariate
correlations in F1 and F2 are shown in Figure 10. More negative
correlation values indicate stronger compensatory responses.

As can be seen in each condition, the average simultaneous
correlation values are much lower (i.e., closer to zero or
more positive) than the average lag correlation values. This
is particularly the case in Condition Three and Condition
Six, where the feedback perturbations were applied in a more
consistent and stable manner during the Perturbation phase.

Discussion

As in Experiment 1, only the introduction of perturbations
that consistently deviated from baseline in direction and
magnitude produced significant shifts across the Perturbation
phase. The step change compensations resembled those
observed in other studies that introduced such perturbations

3 We also computed correlations at the individual participant level, and
they showed similar trends. Due to space limitations, these correlations
were not included in the main text of the manuscript. They are publicly
available on OSF here: osf.io/n4pgf.
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Average normalized F1 and F2 within-subject variability (i.e., SD) in the Baseline (blue), Perturbation (orange), and Return (gray) phases of
Experiment 2. Error bars represent 95% confidence intervals.
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Average amplitude spectra across all 20 speakers for the Step Condition (red), Condition Six (cyan), Control Condition (blue), Condition Three
(black), and Condition One (green) in Experiment 2. The left-most frequency bin of 0 cycles/trial represents the DC-offset. It reflects the mean
change in normalized F1 values in the Perturbation phase of each condition as compared to Baseline. Instances of peaks in amplitude at higher
frequencies would represent prominent oscillation of F1 values across trials in the Perturbation phase. The spectra were created using a discrete
Fourier transform with a Hanning window and sampling frequency set to one sample per trial.

(e.g., Munhall et al., 2009; MacDonald et al., 2011). The
different length of perturbations (1, 3, and 6 trials) did not
significantly differ from each other, although the Six Condition
was significantly different from the Control Condition. This
finding is consistent with the idea that feedback deviations
are compensated incrementally over trials and that six trials is

within the span that is required for compensation to develop
whereas one and three trials are too short for systematic change
to develop in response to perceived errors. The lag correlation
findings are consistent with this idea of a span of compensation.

For both F1 and F2, variability increased in the Perturbation
phases of all conditions, and this was particularly true for F2.
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Average bivariate correlations in F1 (A) and F2 (B) between perturbation values applied in the Perturbation phase of Condition One, Condition
Three, and Condition Six and participants’ normalized production values. Simultaneous correlations are shown in blue. Correlations at trial lags
of one, three, and five are shown in orange, gray, and yellow, respectively. ∗Correlation is significant at the 0.05 level. ∗∗Correlation is significant
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This finding contrasts with other studies that have not shown
an increase in variability in perturbation phases (e.g., Nault
and Munhall, 2020). Notably, the increase in within-subject
variability during the Perturbation phase does not appear to
be due to participant fatigue from being asked to say the same
word repeatedly, as variability in F1 and F2 did not significantly
differ in the three phases of the Control Condition. Rather, the
increase in variability appears to be due to the unpredictability
of the feedback in the experimental conditions.

General discussion

The experiments presented here are part of a broad literature
in speech, limb, and eye movements that examine a subtype

of motor learning called adaptation. Adaptive responses are
designed to maintain the accuracy and stability of movements
that are already learned when environmental conditions change,
or when sensory perception is noisy. Adaptation is thus usually
studied in paradigms that focus on reducing error following
some form of perturbation. While compensatory response to
auditory feedback perturbations is well documented, here we
examined the speech compensation when the sensory feedback
returned unpredictable errors.

Across a number of different interpretations of randomness
in feedback, our results indicate that the use of auditory feedback
in speech motor control is governed by the relevance of the
feedback. Talkers acted, on average, like random feedback was
irrelevant and average performance did not change from no
perturbation conditions. The exceptions to this summary were
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the three conditions that showed consistent error signals (Exp.
1: F1/F2 Coupled Random Perturbation Condition; Exp. 2:
Step Condition, Six Condition). In each of these conditions,
the error introduced to the feedback was relatively consistent
over a span of utterances. This finding is consistent with other
indicators that the auditory feedback system eschews correcting
the error when the deviation is too large (MacDonald et al.,
2010) or if the temporal delay is too great (Mitsuya et al.,
2017). Perceptual and motor learning also requires information
about the statistics of the environment, and non-stationary
environments provide challenges to learning (e.g., Petrov et al.,
2006; Narain et al., 2013). When sensory uncertainty exists, it
is thought that subjects rely more on their prior estimates of the
structure of the task (Körding and Wolpert, 2004). The detection
of the uncertainty of the sensory information can be seen as
equivalent to the relevance of feedback to performance of a task.

An outstanding issue is whether there is some flexibility
in the use of auditory feedback in speech control. Lametti
et al. (2012) suggested that individuals prioritized different
sources of sensory information. Some people were more
influenced by auditory feedback, while others were more reliant
on somatosensory signals. In contrast to these individual
differences in sensory processing are studies that indicate
contextual modification of use of the auditory signal. There
are indications that auditory errors can have reduced impact
on speech if the signals seem irrelevant [see Wei and
Körding (2009) for a study of feedback relevance in limb
movements]. Daliri and Dittman (2019) used a ‘clamping’
technique in which the auditory feedback was not contingent
on the talker’s productions. The error was constant even
when the talker compensated. This ‘irrelevant’ feedback, which
was not contingent on the talkers’ behavior, reduced the
magnitude of adaptation.

The increase in variability in the Perturbation phases of
the current experiments may be indicative of a destabilizing
effect of the random perturbations. While our repeated
measures designs and the repetitive nature of our protocols
are possible explanations as well, within-subject variability did
not significantly differ in F1 or F2 in the Control Condition
in Experiment 2. However, the heightened variability in the
Return phase of Experiment 1 is consistent with this possibility.
While we are using the relative variability as a measure of
the system’s organization of auditory feedback processing,
there are other possible contributions to changes in variability.
Bays and Wolpert (2007) review a number of computational
ways that the motor system can reduce the unpredictability
of sensory information and thus counteract the potentially
destabilizing effects of feedback uncertainty. One of these
solutions is the integration of multisensory information to
improve prediction. The importance of both somatosensory and
auditory information in speech motor control is highlighted
in theoretical accounts (e.g., Tourville and Guenther, 2011),
although the experimental study of dynamic auditory and

proprioceptive cues are technically difficult and infrequently
attempted (cf., Lametti et al., 2012).

Auditory feedback processing as studied in the laboratory
setting has many of the characteristics of phenomena that
have driven concerns about the Reliability Paradox (see
recent symposium at the Psychonomics Society 2021 meeting).
There are a number of phenomena which are robust at
a group average level but are not always apparent at the
individual subject level (see Nault and Munhall, 2020). Test–
retest reliability is also not strong in phenomena that are
frequently included in clinical test batteries (e.g., the Stroop
test, Implicit Association Test). The lack of robustness at
the individual participant level of auditory feedback effects
is somewhat unsettling. How can an error-correction system
that is supposedly guiding speech motor control be so difficult
to demonstrate? One answer is that auditory feedback is
not necessary or sufficient for the control of learned speech
sequences. Evidence from those who are deafened as adults can
be interpreted as supporting this suggestion. While precision
of some phonemes degrades, it does so slowly over time
and not completely (Cowie et al., 1982). A second answer
is that the precision and need for error-based correction of
speech is overrated. Fluent speech is a remarkable motor skill,
but its required precision is not as high as some manual
skills (Uccelli et al., 2021), microsaccades (Poletti et al., 2020)
and perhaps less than the bite force requirements of the
mandible in chewing. In an analysis of the Switchboard Corpus,
Greenberg (1999) reported that significant proportions of
phonemes are substituted or deleted in this database. This
indicates that intelligibility in communication does not always
require the kind of error-correcting precision that the feedback
paradigm might suggest.

Another contributing factor in formant-feedback processing
is error in measurement (Shadle et al., 2016), particularly in
speech produced with higher fundamental frequencies. This
problem will have an impact on the data quality but can
also have an impact on the quality of the perturbations.
In addition to the difficulties associated with formant
tracking, the data used to summarize performance makes
assumptions about what feedback parameter is important
for the talker. It is common, such as was done in the
experiments presented here, to use an average formant
frequency measured near the midpoint of the vowel. However,
talkers may be using other aspects of vowels to control
articulation than static indices of formant frequency. Vowels
have inherent formant dynamics that vary with dialect,
age, and gender of speakers (e.g., Stanley et al., 2021).
These dynamics can influence compensatory behavior with
participants correcting for changes in spectral trajectories
(Jibson, 2020).

Overall, the present results are consistent with a control
system that takes into account the statistics of the sensory
environment. Two of the conditions point to this conclusion.
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In Experiment 1, the F1/F2 Coupled Random Perturbation
Condition had a mean perturbation value that differed from
the baseline value across the 30 trials. This restricted or
biased random error signal generated a compensatory response
reflecting the average. In Experiment 2, keeping the perturbation
constant for six trials also produced differential response from
the pattern of responses for shorter perturbations. Our lag
correlation analysis in Experiment 2 is also indicative of
a control system that is not instantaneously responsive to
introduced error. Rather, it appears to be sensitive to the
consistency and reliability of the error, integrating information
and initiating compensatory behavior over a longer time span.
In the context that we are testing, more specific studies focused
on the predictability shown in these conditions and how
the nervous system computes the consistency are warranted
(Burge et al., 2008).
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