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aBStract

It has now been 15 years since the HER2-targeted monoclonal antibody trastuzumab was introduced 

in clinical and revolutionized the treatment of HER2-positive breast cancer patients. Despite this 

achievement, most patients with HER2-positive metastatic breast cancer still show progression of their 

disease, highlighting the need for new therapies. The continuous interest in novel targeted agents led to the 

development of pertuzumab, the first in a new class of agents, the HER dimerization inhibitors. Pertuzumab 
is a novel recombinant humanized antibody directed against extracellular domain II of HER2 protein that 

is required for the heterodimerization of HER2 with other HER receptors, leading to the activation of 

downstream signalling pathways. Pertuzumab combined with trastuzumab plus docetaxel was approved 

for the first-line treatment of patients with HER2-positive metastatic breast cancer and is currently used 
as a standard of care in this indication. In the neoadjuvant setting, the drug was granted FDA-accelerated 

approval in 2013. Pertuzumab is also being evaluated in the adjuvant setting. The potential of pertuzumab 

relies in the dual complete blockade of the HER2/3 axis when administered with trastuzumab. This 

paper synthesizes preclinical and clinical data on pertuzumab and highlights the mechanisms underlying 

the synergistic activity of the combination pertuzumab-trastuzumab which are essentially due to their 

complementary mode of action. 
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introdUction

The human epidermal growth factor receptor 2 

(HER2, ErbB-2 or HER-2/neu) gene, which encodes 

the HER2 receptor tyrosine kinase, is amplified in 
about 20% of breast cancers (Ross and Fletcher 

1998) and is associated with a poor prognosis and 

an aggressive phenotype (Slamon et al. 1987). 

By introducing trastuzumab (Herceptin) based 

therapy (Baselga et al. 1996) for the treatment 

of both, early (Slamon et al. 2011, Gianni et al. 

2012) and metastatic HER2-positive breast cancer 

(Slamon et al. 2001), the prognosis of patients has 

substantially improved. 

Trastuzumab works through multiple mecha-

nisms to inhibit tumor growth, including inhibition 

of downstream signalling by blocking either HER2 

homodimerization (Ghosh et al. 2011) or ligand-
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independent HER2/HER3 heterodime rization 

(Junttila et al. 2009). Trastuzumab also inhibits 

HER2 activation by inhibiting the cleava ge of its 

extracellular domain, thus preventing the formation 

of the truncated and very active form of HER2, 

p95HER2 (Molina et al. 2001, Nahta and Esteva 

2006). Finally, trastuzumab induces antibody-

dependent cell-mediated toxicity (Hudis 2007).

Despite its effectiveness in both adjuvant 

and metastatic settings, therapeutic resistance 

to trastuzumab remains an important clinical 

issue. Approximately, 15% of patients relapse 

after treatment (Kümler et al. 2014) because of 

acquired resistance (Pohlmann et al. 2009, Chung 

et al. 2013). Indeed, median time to progression 

remained less than one year when trastuzumab was 

combined with chemotherapy (Slamon et al. 2001, 

Esteva et al. 2002). 

It is important to mention that tumor cell 

with acquired resistance to trastuzumab continues 

to depend on the HER2 oncogene. Indeed, gene 

amplification and RNA/protein overexpression are 
still present in trastuzumab-resistant HER2+ clones 

(Ritter et al. 2007).  

The mechanisms underlying the frequent 

development of resistance to trastuzumab are 

only starting to be understood and are still under 

active investigation (Garrett and Arteaga 2011). 

Several of the proposed mechanisms of resistance 

to trastuzumab involve persistence or reactivation 

of the PI3K signalling through amplification of 

alternative tyrosine kinase receptor and/or mutations 

in the PI3K components (Rexer and Arteaga 2013). 

The formation of insulin-like growth factor-I 

receptor (IGF-IR)/HER-2 heterodimer may also 

contribute to trastuzumab resistance (Nahta et al. 

2005). In particular, trastuzumab does not seem to 

be able to prevent ligand-activated HER2/HER3 or 

HER2/HER1 heterodimerization which could give 

tumor cells a way to escape from the inhibitory 

effects of trastuzumab (Ghosh et al. 2011).

The mechanism of HER2 signalling has been 

the focus of extensive research in order to identify 

additional targets therapies for patients with 

trastuzumab-resistant breast cancer. A number of 

agents targeting various downstream components 

of the pathways associated with HER2 signalling 

are currently under clinical investigation. These 

molecules include extracellular targeted therapies 

(monoclonal antibodies directed against HER 

family receptors), intracellular targeted therapies 

(tyrosine kinase inhibitors) and agents that target 

downstream effectors including members of either 

the mitogen-activated protein kinase (MAPK) or 

the phosphatidylinositol 3-kinase (PI3K) pathways. 

In addition to PI3K/AKT modulators, targeted 

therapies directed at the Hsp-90 apoptotic pathway 

as well as factors modulating angiogenesis are also 

currently being developed (Rosen et al. 2010).

the eGFr FamilY recePtorS

HER2 is one of the four members of the human 

EGFR family, which also includes EGFR (HER1 

or ErbB-1), HER3, and HER4 (Hudis 2007). The 

HER gene family is encoded by genes on different 

chromosomes and regulate normal breast growth 

and development. However, their deregulations 

leading to the activation of downstream pathways 

appear to be particularly important, not only for 

tumor development but also for treatment efficacy 
(Roskoski Jr 2004).

Each HER receptor shows an extracellular 

domain, a helical transmembrane segment, and an 

intracellular protein tyrosine kinase domain. The 

extracellular region of each HER receptor contains 

four domains (I-IV). Domains I, III and IV are 

involved in ligand binding. The domain II loop, 

the so called dimerization arm, promotes direct 

receptor-receptor interaction.

Most of the HER receptors have a ligand. For 

example, HER3 has a specific ligand, heregulin 
(HRG), but does not have any kinase activity. 

HER2 is unique since it does not have any known 

ligand (orphan receptor) but shows a tyrosine 

kinase activity (Kim et al. 1998). HER2 is activated 
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through homo- or heterotypic interactions of 

its extracellular domain with that of other HER 

receptors (Arribas et al. 2011). 

In the absence of ligand binding, HER1 and 

HER3 exist in a tethered conformation in which 

intramolecular interaction between domains II and 

IV blocks the function of dimerization domain 

II. Ligand binding to HER receptors changes the 

tethered conformation into an extended confor-

mation, which exposes domain II, allowing them to 

undergo dimerization (Hynes and Lane 2005, Gala 

and Chandarlapaty 2014, Burgess et al. 2014). 

Interestingly, the structure of the HER2 

extracellular region dramatically diverges from 

those of either HER1 or HER3. The HER2 

extracellular region has indeed a fixed conformation 
and the domain II loop is exposed to interactions 

(Lemmon and Schlessinger 2010). This constitutive 

exposure of its dimerization arm might explain 

why HER2 is the favored partner for the other 

ligand-dependent HER (Graus-Porta et al. 1997, 

Yarden and Sliwkowski 2001, Badache and Hynes 

2004). Moreover, the high level of HER2 present at 

the surface of HER-positive tumor cells facilitates 

a spontaneous formation of HER2 homodimers 

(Yarden and Sliwkowski 2001, Atalay et al. 2003).

The role of HER2 in heterodimers formation 

seems to be related to its capacity to act as a co-

receptor, increasing the affinity of the ligand 

binding to the heterodimerized receptor complexes 

(Atalay et al. 2003, Graus-Porta et al. 1997). 

The HER receptors dimerization and phos-

phorylation lead to the activation of intracellular 

signalling cascades including both the phosphati-

dylinositol triphosphate kinase (PI3K)/protein 

kinase B (Akt) and the mitogen-activated protein 

kinase (MAPK)/ERK pathways (Yarden and 

Sliwkowski 2001, Atalay et al. 2003, Park et al. 

2008, Rosen et al. 2010). Ultimately, these signa-

ling cascades lead to the expression of target genes 

that regulate various cellular processes influencing 
growth, proliferation, migration and survival 

(Yarden and Sliwkowski 2001) (Fig. 1).

Preclinical works have reported that the 

HER3-ligand binding HRG enhanced HER2/HER3 

heterodimer formation. Indeed, HRG induces re-

cruitment of HER3 to an HER2-Src, resulting in 

upregulation of tyrosine phosphorylation and 

kinase activation (Vadlamudi et al. 2003, Ghosh et 

al. 2011). In contrast to HER3/HER2 heterodimers, 

HER2 homodimers and HER2/EGFR heterodimers 

do not induce Src kinase phosphorylation and acti-

vation (Vadlamudi et al. 2003, Huang et al. 2010).

It has been suggested that the formation of 

the HER2-HER3 heterodimer has the strongest 

transforming capacity compared to the other HER 

homo- and heterodimers. Despite the absence of 

tyrosine kinase activity, HER3 has multiple PI3K 

docking sites on its cytoplasmic domain, which 

therefore render it a potent activator of the tyrosine 

kinase enzyme (Xia et al. 2004).

novel StrateGY to tarGet 
her2: PertUzUmaB

Pertuzumab is a recombinant, humanized, 

monoclonal antibody that binds to the extracellular 

dimerization domain II of HER2 (located on the 

opposite side of the domain IV where trastuzumab 

binds). Pertuzumab inhibits heterodimerization of 

HER2 with EGFR, HER3, HER4 (Nahta et al. 2004, 

Agus et al. 2002, Metzger-Filho et al. 2013) and 

IGF-1R (Nahta et al. 2005), whereas trastuzumab 

is preferentially active against tumors driven by 

HER2 homodimers (Ghosh et al. 2011).

More specifically, pertuzumab prevents 

ligand-induced dimerization of HER2 with HER3, 

thus inhibiting the activation of downstream cell 

signalling pathways that are critical for the tumor 

growth (Agus et al. 2002, Cho et al. 2003, Yarden 

and Sliwkowski 2001, Harari and Yarden 2000). 

Pertuzumab can inhibit tumor cell growth 

following HRG-induced HER2 heterodimerization 

(Ghosh et al. 2011). However, pertuzumab, in 

contrast to trastuzumab, is not capable of preventing 

the formation of the p95HER2 truncated form 

(Molina et al. 2001). 
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For the above mentioned reasons, the different 

ways trastuzumab and pertuzumab work are likely 

to be complementary, and provide, when combined, 

a more complete blockade of HER2 downstream 

signaling than either agent alone (Fig. 2).

Preclinical data on PertUzUmaB

In vivo preclinical studies showed that pertuzumab 

is active against various tumor types, including 

breast (Agus et al. 2002), ovary (Mullen et al. 

Figure 1 - her receptors, their ligands and downstream signaling pathways activated following tyrosine kinase activity 
and receptor phosphorylation. the eGFr family consists of four different members: eGFr; human epidermal growth 
factor receptor (HER) 2; HER3; and HER4. Each HER receptor shows an extracellular domain, a helical transmembrane segment, 

and an intracellular protein tyrosine kina se domain. Upon ligand binding, these receptors can homodimerize or heterodimerize with 

each other to form several receptor combinations. The ligands of HER receptors are generated upon cleavage of transmembrane 

precursors and are characterized by an epidermal growth factor (EGF-like) domain composed of 3 disulfide-bonded intramolecular 
loops. HER2 is a unique member of the HER family which not bind any of the known ligands, but it is the preferred heterodimeric 

partner for other HER receptors. Ligand binding induces homo- or heterodimerization of the receptors, resulting in receptor 

phosphorylation on tyrosine residues within the cytoplasmic domains, which leads to activation of downstream signalling pathways. 

Note that the kinase domain of HER3 is catalytically inactive. The three best characterized signaling pathways induced through HER 

receptors are Ras–mitogen-activated protein kinase (Ras-MAPK), phosphatidylinositol 3 kinase(PI3K)-AKT (which is regulated by 

PTEN and involves other key effectors such as NFκB and mTOR), and phospholipase C–protein kinase C (PLC-PKC). As a result 
of these signaling pathways, different nuclear factors are recruited and modulate the transcription of different genes involved in cell-

cycle progression, proliferation and survival (Marmor et al. 2004, Fornaro et al. 2011).
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suggested. When both BT474MI and MCF-7 breast 

cancer cell lines were treated with heregulin and 

either pertuzumab or trastuzumab, pertuzumab was 

more efficient in disrupting ligand-mediated HER2/
HER3 complex formation and in blocking the 

appearance of a HRG-dependent phosphorylation 

signal of HER2 (Agus et al. 2002). 

More recently, other works showed that 

inhibition of HER2 phosphorylation by tyrosine 

kinase inhibitors (TKIs) targeting EGFR and 

HER2 in HER2-positive breast cancer cells, lead 

to feedback upregulation of activated HER3, 

thus limiting the inhibitory effect of HER TKIs 

(Sergina et al. 2007, Amin et al. 2010). Indeed, 

RNAi knockdown of HER3 or treatment with the 

HER3 neutralizing antibody AMG-888, sensitized 

Figure 2 - the complementary mechanisms of pertuzumab and trastuzumab. (left) HER2 receptors on the surface of 

the HER2-expressing breast cancer cells can dimerize with themselves or with other HER receptors in a ligand-dependent or 

independent manner, thus activating downstream signalling pathways promoting tumor cell proliferation, survival and invasion. 

Trastuzumab that binds to the domain IV of HER2, prevents the constitutive activation of HER2 by blocking its ligand-independent 

dimerization, induces its internalization and degradation, and stimulates the immune system to recognize and eliminate HER2-

overexpressing cells. (middle) However, trastuzumab does not prevent the ligand-induced heterodimerization of the receptor with 

HER3. Following the heregulin (HRG) binding to HER3, a switch from the closed to the open state is induced, exposing the domain 

II dimerization arm to allow the formation of a HER2/HER3 heterodimer and intracellular signaling. (right) Adding pertuzumab 

to trastuzumab promotes binding of pertuzumab to HER2 domain II and prevents HRG-mediated HER2/HER3 dimerization and 

signalling.

2007), non-small cell lung carcinoma (Sakai et al. 

2007), prostate (Agus et al. 2002, Mendoza et al. 

2002) and colon cancer (Pohl et al. 2009).

The resolution of the 3D structure of HER2 

bound to pertuzumab (Franklin et al. 2004) provided 

important information regarding the role played by 

the different domains of the receptor for its activity 

in the context of either its overexpression or its 

ligand-induced activation. 

The ability of pertuzumab to inhibit in vitro 

tumor cell growth by blocking HER2/HER3 

heterodimerization and its ligand-induced activation 

is a unique trait which is not shared by trastuzumab 

(Lee-Hoeflich et al. 2008). The essential role of 
HER3 in tumor progression and drug resistance 

in HER2-dependent cells has previously been 
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HER2-positive cells to lapatinib-induced apoptosis 

(Garrett et al. 2011). 

In agreement, the combination of pertuzumab 

with trastuzumab showed a synergistic effect when 

compared to pertuzumab single therapy in vitro on 

HER2-overexpressing BT474 breast cancer cell 

lines (Nahta et al. 2004). The combination of the 

two antibodies reduced by 60% the cell survival 

at doses for which individual drugs did not affect 

it. These data were confirmed in vivo in HER2-

positive breast and non-small cell lung cancer 

xenografts where the combination of trastuzumab 

and pertuzumab strongly enhanced the antitumor 

effect of both compounds and induced tumor 

regression in both xenograft models (Scheuer et 

al. 2009). 

The enhanced efficacy of pertuzumab 

based combination was also observed when 

tumor progression occurred during the course of 

trastuzumab monotherapy (Scheuer et al. 2009). 

Here, the authors treated mice bearing KPL-

4 (a human cell line isolated from the malignant 

pleural effusion of a breast cancer patient with an 

inflammatory skin metastasis; Kurebayashi et al. 
1999) tumor xenografts with trastuzumab until 

tumor mass started to progress again (day 35). 

At that point, the authors treated mice with either 

trastuzumab alone or trastuzumab combined to 

pertuzumab. The combination of the two antibodies 

was able to inhibit tumor growth and even reduce 

tumor mass for an additional 45 days.

Finally, it has been shown that both 

trastuzumab and pertuzumab induce the activation 

of the antibody-dependent cellular toxicity 

(ADCC) pathway, which is part of their antitumor 

activity (Scheuer et al. 2009, Mamidi et al. 2013). 

Indeed, through an in vitro ADCC assay, Scheuer 

and colleagues showed that both trastuzumab and 

pertuzumab applied as a single agent effectively 

activated ADCC with equal potency. However, 

there was no increase in ADCC efficiency when 
both agents were combined.

clinical StUdieS

A single-arm phase II study evaluated pertuzumab 

in patients who had received up to 3 trastuzumab-

containing regimens and found a 24% positive 

response rate with 50% of patients demonstrating 

stable disease. This study suggested a role of 

pertuzumab in treating trastuzumab-resistant HER2 

breast cancer (Baselga et al. 2010).

Although pertuzumab alone seemed to have 

antitumor activity, the combination of pertuzumab 

with trastuzumab was shown to be more efficient 
than pertuzumab monotherapy (Cortés et al. 2012). 

In this trial, pertuzumab was given as monotherapy 

to patients with advanced HER2 positive breast 

cancer whose disease had progressed during prior 

trastuzumab-based therapy. When progressive 

disease or unacceptable toxicity was observed, 

trastuzumab was reintroduced and patients received 

a combination of pertuzumab and trastuzumab. 

Progression-free survival was increased in the 

combination arm compared to the pertuzumab 

monotherapy arm (17.4 v 7.1 weeks, respectively). 

Importantly, the treatment was well tolerated with 

minimal cardiac dysfunction. 

The efficacy of adding pertuzumab to trastu-
zumab plus docetaxel for the first-line treatment 
of HER2-positive metastatic breast cancer was 

demonstrated in a randomized, double-blind, 

multinational, phase III CLEOPATRA (Clinical 

Evaluation of Pertuzumab and Trastuzumab) trial 

(Baselga et al. 2012). Patients with metastatic HER2-

positive breast cancer were randomly assigned to 

receive either pertuzumab by intravenous infusion 

(840 mg initial dose, 420 mg every 3 weeks 

thereafter) or matched placebo as an add-on to the 

standard-of-care trastuzumab (8mg/Kg initial i.v. 

dose, 6mg/Kg i.v. every 3 weeks thereafter) and 

docetaxel (75mg/m2 i.v. every 3 weeks for at least 

6 cycles, with the option of dose escalation to 100 

mg/m2) (Fig. 3). A prolongation of progression-

free survival (PFS) in the pertuzumab arm (18.5 vs 
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12.4 months, p<.001) with an objective response 

rate of 69.3% in the control arm compared with 

80.2% in the pertuzumab arm was observed. 

Follow-up data at a median of 50 months showed 

a significant improvement of the overall survival 
(OS) with pertuzumab, trastuzumab, and docetaxel 

in patients with HER2-positive metastatic breast 

cancer, compared to patients receiving placebo, 

trastuzumab, and docetaxel (Swain et al. 2013). 

On the basis of this clinical trial, pertuzumab 

has been approved by the U. S. Food and Drug 

Administration for use in combination with 

trastuzumab and docetaxel for the treatment of 

patients with HER2-positive metastatic breast 

cancer who have not received prior anti-HER2 

therapy or chemotherapy for metastatic disease.

The positive results of the CLEOPATRA 

clinical trial are even more encouraging with 

respect to ongoing investigations on pertuzumab 

and trastuzumab in combination with a taxane. One 

example is the PERUSE trial (ClinicalTrials.gov 

Identifier NCT01572038), evaluating pertuzumab 
and trastuzumab in combination with paclitaxel, 

docetaxel, or nab-paclitaxel (Abraxane) with 

the aim to clarify whether one taxane is more 

appropriate than the other in the first line setting for 
HER2 positive advanced breast cancer.

In the first line setting, however, the combi-
nation of pertuzumab, trastuzumab with ado-

trastuzumab emtansine (an antibody-drug 

conjugate consisting of the monoclonal antibody 

trastuzumab linked to the cytotoxic agent DM1) 

may be preferable. In that regard, the ongoing 

trial MARIANNE (ClinicalTrials.gov Identifier 

NCT01120184) has the potential to change first-line 
therapy for HER2 positive metastatic breast cancer. 

Even if both treatments are equally efficacious, the 
toxicity with ado-trastuzumab is minimal. T-DM1 

is a novel antibody-drug conjugate incorporating 

the trastuzumab with the cytotoxic activity of the 

microtubule-inhibitory agent DM1 (a derivative of 

maytansine). T-DM1 has been shown to significantly 
prolong progression-free and overall survival 

with less toxicity than lapatinib plus capecitabine 

in patients with HER2-positive advanced breast 

cancer previously treated with trastuzumab and a 

taxane (Verma et al. 2012).

Based on exciting results of trials which 

evaluated pertuzumab in the neoadjuvant setting, 

the drug was granted FDA-accelerated approval in 

2013. In this setting, pathological response rates 

of the combination of pertuzumab or trastuzumab, 

or both, with docetaxel and the combination of 

pertuzumab and trastuzumab without chemotherapy 

were evaluated in the NeoSphere trial. Patients 

with locally advanced inflammatory or early breast 
cancer were treated and a significant improvement 
in pathological complete response (pCR) was 

Figure 3 - the cleoPatra study design. The trial evaluated the efficacy of adding 
pertuzumab to trastuzumab plus docetaxel for the first-line treatment of HER2-positive 

metastatic breast cancer. MBC: metastatic breast cancer. Pertuzumab dosing: 840 mg loading 

dose over 60 min; 420 mg over 30-60 min for subsequent infusions. Trastuzumab dosing: 8 

mg/kg loading dose over 90 min; 6 mg/kg over 30-90 min for subsequent infusions.
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observed in the group of patients given pertuzumab 

and trastuzumab plus docetaxel compared with 

those given trastuzumab plus docetaxel (Gianni 

et al. 2012). Interestingly, in patients treated with 

pertuzumab, trastuzumab plus docetaxel, the pCR 

rate was higher in patients with estrogen receptor 

(ER)-negative tumors (63.2%) compared with those 

with ER+ tumors (27.3%) (Gianni et al. 2012). 

In the TRYPHAENA (Trastuzumab Plus 

Pertuzumab in Neoadjuvant HER2-Positive Breast 

Cancer) trial, patients with HER2+ tumors were 

randomized in three arms to receive six neoadjuvant 

cycles q3w (Arm A: 5-fluorouracil, epirubicin, 

cyclophosphamide [FEC] followed by docetaxel 

[T]; with trastuzumab [H] and pertuzumab [P] 

given concurrently throughout [FEC + H + P x 3 

→ T + H + P x 3]; Arm B: FEC followed by T + 
H + P [FEC x 3 → T + H + P x 3]; or Arm C: T, 
carboplatin; H with P [TCH + P x 6]. Following 

neoadjuvant therapy, patients underwent surgery 

and continued trastuzumab to complete 1 year of 

treatment (Fig. 4). The primary end-point was 

cardiac safety. All grades of symptomatic left 

ventricular systolic dysfunction (LVSD) were low 

across all 3 study arms: 5.6%, 4.0%, and 2.6% in 

Arms A, B, and C, respectively. Grade 3 or higher 

LVSD was observed in 2.7% of patients in Arm 

A but not in Arms B and C. In conclusion, the 

combination of pertuzumab with trastuzumab and 

the standard chemotherapy resulted in low rates of 

symptomatic LVSD (Schneeweiss et al. 2013).

The combination of pertuzumab and trastuzu-

mab is also under investigation in the adjuvant 

setting. The APHINITY trial (Adjuvant Pertuzumab 

and Herceptin in Initial Teraphy of breast cancer; 

ClinicalTrials.gov Identifier NCT01358877) is a 
placebo-controlled study in patients with HER2-

positive primary breast cancer who have had an 

excision of their tumor. Patients were randomized 

in two arms: (1) the investigational arm with a 

course of adjuvant chemotherapy consisting of 

a taxane-based regime (anthracycline-taxane or 

taxane-platin) and trastuzumab and pertuzumab for 

1 year; (2) the comparator arm which consisted in 

the same adjuvant chemotherapy with trastuzumab 

and placebo for 1 year. The primary objective was 

to compare invasive disease-free survival between 

both treatment arms. 

Figure 4 - the trYPhaena study design. The trial evaluated trastuzumab plus 

pertuzumab in neoadjuvant HER2-positive breast cancer. H: Trastuzumab; FEC: 

5-fluorouracil, epirubicin, cyclophosphamide; T: docetaxel; TCH = docetaxel, carboplatin, 
and trastuzumab.
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conclUSionS

The introduction of trastuzumab in the treatment 

of HER2-positive metastatic breast cancer patients 

favorably changed the natural history of this disease. 

However, despite this major advance, HER2-

positive metastatic breast cancer will eventually 

progress in most patients. One of the mechanisms 

responsible for the development of resistance to 

trastuzumab is the heterodimerization of HER2 

with other HER receptors which may redundantly 

trigger cell proliferation signals. 

A few years ago, one might have asked why 

we should combine two therapeutic antibodies 

targeting the same receptor. Today, in view of the 

mechanistic differences that have been identified 
through numerous preclinical works between 

trastuzumab and pertuzumab, this therapeutic 

approach should be encouraged. Pertuzumab, 

which could be considered as a prototype of 

HER2 dimerization inhibitor, shows mechanistic 

advantages that distinguish it from trastuzumab, in 

particular in regards to HER2 heterodimerization. 

However, one might consider that trastuzumab also 

shows mechanistic advantages over pertuzumab 

in regards to its ability to prevent the formation 

of the p95HER2 truncated form of HER2, thus 

highlighting their functional complementarity. 

This particularity is likely to play an important role 

on the demonstrated synergistic effect when both 

compounds are combined.

The approval of pertuzumab marked the first 
licensed dual anti-HER2 regimen for treatment 

of breast cancer and is likely to represent a 

major advance in the treatment of this pathology, 

comparable to the approval in 1998 of trastuzumab.

The clinical benefit of dual treatment with 

HER2-targeted antibodies with complementary 

mechanism of growth inhibition should also 

encourage further research in this field and 

open new therapeutic strategies. Consequently, 

numerous molecules are currently being developed. 

For example, LJM716 is a novel monoclonal 

antibody that is capable of neutralizing either 

ligand-dependent or independent HER3 signalling 

by locking HER3 in its inactive conformation. 

LJM716 is a potent inhibitor of both HER3/

AKT phosphorylation and proliferation in HER2-

expressing cancer cells and has displayed single 

agent efficacy in tumor xenograft models (Garner 
et al. 2013). 

The development of a bispecific anti-HER2 
antibody using both trastuzumab and pertuzumab 

is another example. This bispecific antibody 

(named TPL) retained the full binding activities 

of both parental antibodies, and exhibited 

pharmacokinetic properties similar to those of a 

conventional IgG molecule. TPL showed superior 

HER2 heterodimerization-blocking activity over 

the combination of both parental monoclonal 

antibodies. The unique potential of TPL to overcome 

trastuzumab resistance should be considered as a 

promising treatment in the clinic (Li et al. 2013).

Despite these recent advances, there are still 

a number of issues to be addressed. In particular, 

the identification of biomarkers is needed to 

identify patients more likely to respond, and to 

avoid treating patients likely to experience a worse 

outcome compared to the standard of care.

To date, and despite multiple researches in 

this area, the only robust biomarker allowing the 

prediction of response to HER2-targeted therapies is 

HER2 itself. Currently, HER2 status is determined 

by measurement of HER2 receptor protein and/or 

erbB2 gene amplification by immunohistochemistry 
or fluorescence in situ hybridization (FISH) (Singer 

et al. 2008). While the negative predictive value of 

these assays for predicting the absence of benefit 
from trastuzumab-based therapy is high, their 

positive predictive value remains insufficient. The 
clinical benefit and response rates appear to depend 
on the intensity of HER2 overexpression (2+ or 3+) 

with response rates of 35% in grade 3+ expressors 

compared to only minimal benefit in 2+ positives 
(Vogel et al. 2002).
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Results of biomarker analysis in the CLEO-

PATRA (Baselga et al. 2014) trial were consistent 

with those with smaller TRYPHAENA and 

NeoSphere of neoadjuvant trastuzumab plus 

pertuzumab in patients with HER2 positive early 

breast cancer, where the primary efficacy end-

point was pCR (Schneeweiss et al. 2012, Gianni 

et al. 2011). The PI3KCA status identified a 

subpopulation of patients with HER2-positive 

disease with poor prognosis when treated with 

anti-HER2 antibodies. Based on the findings of 
CLEOPATRA trial, clinical trials of HER2-targeted 

molecules in combination with PI3K pathway 

targeted agents may therefore be justified.
The identification of biomarkers is thus, 

urgently required in order to enable a better care 

of patients. Also, the medical staff would be 

able to adapt the treatment on the basis of the 

molecular features of the tumors and anticipate 

their modifications during the course of tumor 

progression. The understanding of the underlying 

mechanisms of either intrinsic or acquired 

resistance to HER2-targeting antibodies is also 

necessary, to define new therapeutic strategies and 
identify new targets. The ongoing development and 

success of these novel approaches rely, more than 

ever, on translational collaborations between basic 

scientists, preclinical researchers and clinicians. 

reSUmo

Tem se passado 15 anos desde que o anticorpo 

monoclonal trastuzumab, direcionado contra a proteina 

HER2, foi introduzido na clinica e revolucionou o 

tratamento de pacientes com câncer de mama HER2-

positivo. Apesar disto, a maioria das pacientes com 

câncer de mama metastático e HER2-positivo ainda 

mostram progressão da doença, destacando a necessidade 

de desenvolver novas terapias. O interesse contínuo 

em novas moléculas alvo levou ao desenvolvimento 

do pertuzumab, o primeiro agente de uma nova classe, 

os inibidores da dimerização de HER. Pertuzumab é 

um novo anticorpo humanizado recombinante dirigido 

contra o domínio II extracelular da proteína HER2 que 

é necessário para a heterodimerização de HER2 com 

outros receptores HER, o que conduz à ativação de vias 

de sinalização intracelular. O pertuzumab combinado 

com trastuzumab e docetaxel foi aprovado como terapia 

de primeira linha para pacientes com câncer de mama 

metastático HER2-positivo e é atualmente indicado 

como padrão de tratamento para estas pacientes. Como 

terapia neoadjuvante, o medicamento recebeu aprovação 

do FDA em 2013. Além disso, o pertuzumab também 

está  sendo avaliado como terapia adjuvante. O potencial 

do pertuzumab se baseia no bloqueio completo do eixo 

HER2/3 quando administrado em associação com o 

trastuzumab. Este artigo sintetiza dados pré-clínicos 

e clínicos do pertuzumab e destaca os mecanismos de 

ação complementares que explicam a atividade sinérgica 

da combinação pertuzumab-trastuzumab. 

Palavras-chave: câncer de mama, dimerização, HER2/3, 

anticorpo monoclonal, pertuzumab, trastuzumab.
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