
Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 97–107

Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

97

Pervasive Attention: 2D Convolutional Neural Networks
for Sequence-to-Sequence Prediction

Maha Elbayad1,2 Laurent Besacier1 Jakob Verbeek2

Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, LJK, F-38000 Grenoble France
1 firstname.lastname@univ-grenoble-alpes.fr

2 firstname.lastname@inria.fr

Abstract

Current state-of-the-art machine translation

systems are based on encoder-decoder archi-

tectures, that first encode the input sequence,

and then generate an output sequence based

on the input encoding. Both are interfaced

with an attention mechanism that recombines

a fixed encoding of the source tokens based

on the decoder state. We propose an alterna-

tive approach which instead relies on a sin-

gle 2D convolutional neural network across

both sequences. Each layer of our network re-

codes source tokens on the basis of the out-

put sequence produced so far. Attention-like

properties are therefore pervasive throughout

the network. Our model yields excellent re-

sults, outperforming state-of-the-art encoder-

decoder systems, while being conceptually

simpler and having fewer parameters.

1 Introduction

Deep neural networks have made a profound im-

pact on natural language processing technology

in general, and machine translation in particular

(Blunsom, 2013; Sutskever et al., 2014; Cho et al.,

2014; Jean et al., 2015; LeCun et al., 2015). Ma-

chine translation (MT) can be seen as a sequence-

to-sequence prediction problem, where the source

and target sequences are of different and vari-

able length. Current state-of-the-art approaches

are based on encoder-decoder architectures (Blun-

som, 2013; Sutskever et al., 2014; Cho et al., 2014;

Bahdanau et al., 2015). The encoder “reads” the

variable-length source sequence and maps it into

a vector representation. The decoder takes this

vector as input and “writes” the target sequence,

updating its state each step with the most recent

word that it generated. The basic encoder-decoder

model is generally equipped with an attention

model (Bahdanau et al., 2015), which repetitively

re-accesses the source sequence during the decod-

ing process. Given the current state of the decoder,

a probability distribution over the elements in the

source sequence is computed, which is then used

to select or aggregate features of these elements

into a single “context” vector that is used by the

decoder. Rather than relying on the global rep-

resentation of the source sequence, the attention

mechanism allows the decoder to “look back” into

the source sequence and focus on salient positions.

Besides this inductive bias, the attention mecha-

nism bypasses the problem of vanishing gradients

that most recurrent architectures encounter.

However, the current attention mechanisms

have limited modeling abilities and are generally a

simple weighted sum of the source representations

(Bahdanau et al., 2015; Luong et al., 2015), where

the weights are the result of a shallow matching

between source and target elements. The atten-

tion module re-combines the same source token

codes and is unable to re-encode or re-interpret the

source sequence while decoding.

To address these limitations, we propose an al-

ternative neural MT architecture, based on deep

2D convolutional neural networks (CNNs). The

product space of the positions in source and tar-

get sequences defines the 2D grid over which the

network is defined. The convolutional filters are

masked to prohibit accessing information derived

from future tokens in the target sequence, obtain-

ing an autoregressive model akin to generative

models for images and audio waveforms (Oord

et al., 2016a,b). See Figure 1 for an illustration.

This approach allows us to learn deep feature

hierarchies based on a stack of 2D convolutional

layers, and benefit from parallel computation dur-

ing training. Every layer of our network computes

features of the the source tokens, based on the tar-

get sequence produced so far, and uses these to

predict the next output token. Our model therefore

has attention-like capabilities by construction, that

are pervasive throughout the layers of the network,
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Figure 1: Convolutional layers in our model use

masked 3×3 filters so that features are only com-

puted from previous output symbols. Illustration

of the receptive fields after one (dark blue) and two

layers (light blue), together with the masked part

of the field of view of a normal 3×3 filter (gray).

rather than using an “add-on” attention model.

We validate our model with experiments on

the IWSLT 2014 German-to-English (De-En) and

English-to-German(En-De) tasks. We improve on

state-of-the-art encoder-decoder models with at-

tention, while being conceptually simpler and hav-

ing fewer parameters.

In the next section we will discuss related work,

before presenting our approach in detail in Sec-

tion 3. We present our experimental evaluation re-

sults in Section 4, and conclude in Section 5.

2 Related work

The predominant neural architectures in machine

translation are recurrent encoder-decoder net-

works (Graves, 2012; Sutskever et al., 2014; Cho

et al., 2014). The encoder is a recurrent neu-

ral network (RNN) based on gated recurrent units

(Hochreiter and Schmidhuber, 1997; Cho et al.,

2014) to map the input sequence into a vector rep-

resentation. Often a bi-directional RNN (Schuster

and Paliwal, 1997) is used, which consists of two

RNNs that process the input in opposite directions,

and the final states of both RNNs are concatenated

as the input encoding. The decoder consists of a

second RNN, which takes the input encoding, and

sequentially samples the output sequence one to-

ken at a time whilst updating its state.

While best known for their use in visual recog-

nition models, (Oord et al., 2016a; Salimans et al.,

2017; Reed et al., 2017; Oord et al., 2016c).

Recent works also introduced convolutional net-

works to natural language processing. The first

convolutional apporaches to encoding variable-

length sequences consist of stacking word vec-

tors, applying 1D convolutions then aggregating

with a max-pooling operator over time (Collobert

and Weston, 2008; Kalchbrenner et al., 2014; Kim,

2014). For sequence generation, the works of

Ranzato et al. (2016); Bahdanau et al. (2017);

Gehring et al. (2017a) mix a convolutional en-

coder with an RNN decoder. The first entirely

convolutional encoder-decoder models where in-

troduced by Kalchbrenner et al. (2016b), but they

did not improve over state-of-the-art recurrent ar-

chitectures. Gehring et al. (2017b) outperformed

deep LSTMs for machine translation 1D CNNs

with gated linear units (Meng et al., 2015; Oord

et al., 2016c; Dauphin et al., 2017) in both the en-

coder and decoder modules.

Such CNN-based models differ from their

RNN-based counterparts in that temporal connec-

tions are placed between layers of the network,

rather than within layers. See Figure 2 for a con-

ceptual illustration. This apparently small dif-

ference in connectivity has two important conse-

quences. First, it makes the field of view grow lin-

early across layers in the convolutional network,

while it is unbounded within layers in the recur-

rent network. Second, while the activations in the

RNN can only be computed in a sequential man-

ner, they can be computed in parallel across the

temporal dimension in the convolutional case.

In all the recurrent or convolutional models

mentioned above, each of the input and out-

put sequences are processed separately as a one-

dimensional sequence by the encoder and decoder

respectively. Attention mechanisms (Bahdanau

et al., 2015; Luong et al., 2015; Xu et al., 2015)

were introduced as an interface between the en-

coder and decoder modules. During encoding, the

attention model finds which hidden states from the

source code are the most salient for generating the

next target token. This is achieved by evaluating

a “context vector” which, in its most basic form,

is a weighted average of the source features. The

weights of the summation are predicted by a small

neural network that scores these features condi-
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<start> The cat sat on the

The cat sat on the mat

Figure 2: Illustration of decoder network topol-

ogy with two hidden layers, nodes at bottom and

top represent input and output respectively. Hor-

izontal connections are used for RNNs, diagonal

connections for convolutional networks. Vertical

connections are used in both cases. Parameters

are shared across time-steps (horizontally), but not

across layers (vertically).

tioning on the current decoder state.

Vaswani et al. (2017) propose an architecture re-

lying entirely on attention. Positional input coding

together with self-attention (Parikh et al., 2016;

Lin et al., 2017) replaces recurrent and convolu-

tional layers. Huang et al. (2018) use an attention-

like gating mechanism to alleviate an assumption

of monotonic alignment in the phrase-based trans-

lation model of Wang et al. (2017). Deng et al.

(2018) treat the sentence alignment as a latent vari-

able which they infer using a variational inference

network during training to optimize a variational

lower-bound on the log-likelihood.

Beyond uni-dimensional encoding/decoding.

Kalchbrenner et al. (2016a) proposed a 2D LSTM

model similar to our 2D CNN for machine trans-

lation. Like our model, a 2D grid is defined across

the input and output sequences, as in Figure 1.

In their model, each cell takes input from its left

and bottom neighbor. In a second LSTM stream,

each cell takes input from its left and top neigh-

bor, as well as from the corresponding cell in the

first stream. They also observed that such a struc-

ture implements an implicit form of attention, by

producing an input encoding that depends on the

output sequence produced so far.

Wu et al. (2017) used a CNN over the 2D

source-target representation as in our work, but

only as a discriminator in an adversarial training

setup. They do not use masked convolutions, since

their CNN is used to predict if a given source-

target pair is a human or machine translation. A

standard encoder-decoder model with attention is

used to generate translations.

3 Translation by 2D Convolution

In this section we present our 2D CNN translation

model in detail.

Input source-target tensor. Given the source

and target pair (s, t) of lengths |s| and |t| respec-

tively, we first embed the tokens in ds and dt di-

mensional spaces via look-up tables. The word

embeddings {x1, . . . , x|s|} and {y1, . . . , y|t|} are

then concatenated to form a 3D tensor X ∈
R
|t|×|s|×f0 , with f0 = dt + ds, where

Xij = [yi xj ]. (1)

This joint unigram encoding is the input to our

convolutional network.

Convolutional layers. We use the

DenseNet (Huang et al., 2017) convolutional

architecture, which is the state of the art for

image classification tasks. Layers are densely

connected, meaning that each layer takes as input

the activations of all the preceding layers, rather

than just the last one, to produce its g feature

maps. The parameter g is called the “growth rate”

as it is the number of appended channels to the

network’s output at each layer. The long-distance

connections in the network improve gradient flow

to early network layers during training, which is

beneficial for deeper networks.

Each layer first batch-normalizes (Ioffe and

Szegedy, 2015) its input and apply a ReLU (Nair

and Hinton, 2010) non-linearity. To reduce the

computation cost, each layer first computes 4g
channels using a 1×1 convolution from the f0 +
(l − 1)g input channels to layer l ∈ {1, . . . , L}.

This is followed by a second batch-normalization

and ReLU non-linearity. The second convolution

has (k × ⌈k
2
⌉) kernels, i.e. masked as illustrated

in Figure 1, and generates the g output features

maps to which we apply dropout (Srivastava et al.,

2014). The architecture of the densely connected

network is illustrated in Figure 3.

We optionally use gated linear units (Dauphin

et al., 2017) in both convolutions, these double

the number of output channels, and we use half

of them to gate the other half.



100

In
p

u
t

B
N

R
eL

U

C
o

n
v

(1
)

B
N

R
eL

U

C
o

n
v

(k
)

D
ro

p
o

u
t

Figure 3: Architecture of the DenseNet at block

level (top), and within each block (bottom).

Target sequence prediction. Starting from the

initial f0 feature maps, each layer l ∈ {1, . . . , L}
of our DenseNet produces a tensor H l of size

|t| × |s| × fl, where fl is the number of output

channels of that layer. To compute a distribution

over the tokens in the output vocabulary, we need

to collapse the second dimension of the tensor,

which is given by the variable length of the input

sequence, to retrieve a unique encoding for each

target position.

The simplest aggregation approach is to apply

max-pooling over the input sequence to obtain a

tensor Hpool ∈ R
|t|×fL , i.e.

H
pool
id = max

j∈{1,...,|s|}
HL

ijd. (2)

Alternatively, we can use average-pooling over the

input sequence:

H
pool
id =

1
√

|s|

∑

j∈{1,...,|s|}

HL
ijd. (3)

The scaling with the inverse square-root of the

source length acts as a variance stabilization term,

which we find to be more effective in practice than

a simple averaging.

The pooled features are then transformed to pre-

dictions over the output vocabulary V , by linearly

mapping them with a matrix E ∈ R
|V|×fL to the

vocabulary dimension |V|, and then applying a

soft-max. Thus the probability distribution over

V for the i-th output token is obtained as

pi = SoftMax(EH
pool
i ). (4)

Alternatively, we can use E to project to dimen-

sion dt, and then multiply with the target word

embedding matrix used to define the input tensor.

This reduces the number of parameters and gener-

ally improves the performance.

Implicit sentence alignment. For a given out-

put token position i, the max-pooling operator of

Eq. (2) partitions the fL channels by assigning

them across the source tokens j. Let us define

Bij = {d ∈ {1, . . . , fL}| j = argmax(HL
ijd)}

as the channels assigned to source token j for out-

put token i. The energy that enters into the soft-

max to predict token w ∈ V for the i-th output

position is given by

eiw =
∑

d∈{1,...,fL}

EwdH
pool
id (5)

=
∑

j∈{1,...,|s|}

∑

d∈Bij

EwdH
L
ijd. (6)

The total contribution of the j-th input token is

thus given by

αij =
∑

d∈Bij

EwdH
L
ijd, (7)

where we dropped the dependence on w for sim-

plicity. As we will show experimentally in the next

section, visualizing the values αij for the ground-

truth output tokens, we can recover an implicit

sentence alignment used by the model.

Self attention. Besides pooling we can collapse

the source dimension of the feature tensor with an

attention mechanism. This mechanism will gen-

erate a tensor Hatt that can be used instead of, or

concatenated with, HPool.

We use the self-attention approach of Lin et al.

(2017), which for output token i computes the at-

tention vector ρi ∈ R
|s| from the activations HL

i :

ρi = SoftMax
(

HL
i w + b✶|s|

)

, (8)

Hatt
i =

√

|s|ρ⊤i H
L
i , (9)

where w ∈ R
fL and b ∈ R are parameters of the

attention mechanism. Scaling of attention vectors

with the square-root of the source length was also

used by Gehring et al. (2017b), and we found it ef-

fective here as well as in the average-pooling case.

4 Experimental evaluation

In this section, we present our experimental setup,

followed by quantitative results, qualitative ex-

amples of implicit sentence alignments from our

model, and a comparison to the state of the art.
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4.1 Experimental setup

Data and pre-processing. We experiment with

the IWSLT 2014 bilingual dataset (Cettolo et al.,

2014), which contains transcripts of TED talks

aligned at sentence level, and translate between

German (De) and English (En) in both directions.

Following the setup of (Edunov et al., 2018),

sentences longer than 175 tokens and pairs with

length ratio exceeding 1.5 were removed from the

original data. There are 160+7K training sentence

pairs, 7K of which are separated and used for vali-

dation/development. We report results on a test set

of 6,578 pairs obtained by concatenating dev2010

and tst2010-2013. We tokenized and lowercased

all data using the standard scripts from the Moses

toolkit (Koehn et al., 2007).

For open-vocabulary translation, we segment

sequences using joint byte pair encoding (Sen-

nrich et al., 2016) with 14K merge operations on

the concatenation of source and target languages.

This results in a German and English vocabularies

of around 12K and 9K types respectively.

Implementation details. Unless stated other-

wise, we use DenseNets with masked convolu-

tional filters of size 5× 3, as given by the light

blue area in Figure 1. To train our models, we

use maximum likelihood estimation (MLE) with

Adam (β1 = 0.9, β2 = 0.999, ǫ = 1e−8) starting

with a learning rate of 5e−4 that we scale by a fac-

tor of 0.8 if no improvement (δ ≤ 0.01) is noticed

on the validation loss after three evaluations, we

evaluate every 8K updates.

After training all models up to 40 epochs, the

best performing model on the validation set is used

for decoding the test set. We use a beam-search

of width 5 without any length or coverage penalty

and measure translation quality using the BLEU

metric (Papineni et al., 2002).

Baselines. For comparison with state-of-the-

art architectures, we implemented a bidirec-

tional LSTM encoder-decoder model with dot-

product attention (Bahdanau et al., 2015; Luong

et al., 2015) using PyTorch (Paszke et al., 2017),

and used Facebook AI Research Sequence-to-

Sequence Toolkit (Gehring et al., 2017b) to train

the ConvS2S and Transformer (Vaswani et al.,

2017) models on our data.

For the Bi-LSTM encoder-decoder, the encoder

is a single layer bidirectional LSTM with input

embeddings of size 128 and a hidden state of size

Model BLEU Flops×10
5 #params

Average 31.57 ± 0.11 3.63 7.18M
Max 33.70 ± 0.06 3.44 7.18M
Attn 32.07 ± 0.13 3.61 7.24M

Max, gated 33.66 ± 0.16 3.49 9.64M
[Max, Attn] 33.81 ± 0.03 3.51 7.24M

Table 1: Our model (L=24, g=32, ds=dt=128)

with different pooling operators and using gated

convolutional units.

256 (128 in each direction). The decoder is a sin-

gle layer LSTM with similar input size and a hid-

den size of 256, the target input embeddings are

also used in the pre-softmax projection. For regu-

larization, we apply a dropout of rate 0.2 to the in-

puts of both encoder and decoder and to the output

of the decoder prior to softmax. As in (Bahdanau

et al., 2015), we refer to this model as RNNsearch.

The ConvS2S model we trained has embed-

dings of dimension 256, a 16-layers encoder and

12-layers decoder. Each convolution uses 3×1 fil-

ters and is followed by a gated linear unit with a

total of 2 × 256 channels. Residual connections

link the input of a convolutional block to its out-

put. We first trained the default architecture for

this dataset as suggested in FairSeq (Gehring et al.,

2017b), which has only 4 layers in the encoder and

3 in the decoder, but achieved better results with

the deeper version described above. The model

is trained with MLE using Nesterov accelerated

gradient with a momentum of 0.99 and an initial

learning rate of 0.25 decaying by a factor of 0.1

every epoch. ConvS2S is also regularized with a

dropout rate of 0.2.

For the transformer model, use the settings of

(Vaswani et al., 2017). We use token embeddings

of dimension 512, and the encoder and decoder

have 6 layers and 8 attention heads. For the in-

ner layer in the per-position feed-forawrd network

we use dff = 2048. For MLE training we use

Adam (β1 = 0.9, β2 = 0.98, ǫ = 1e−8) (Kingma

and Ba, 2015), and a learning rate starting from

1e−5 that is increased during 4,000 warm-up steps

then used a learning rate of 5e−4 that follows an

inverse-square-root schedule afterwards (Vaswani

et al., 2017). Similar to previous models we set the

dropout rate to 0.2.

4.2 Experimental results

Architecture evaluation. In this section we ex-

plore the impact of several parameters of our
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(a) L = 20, g = 32 (b) L = 20, d = 128 (c) d = 128, g = 32

Figure 4: Impact of token embedding size, number of layers (L), and growth rate (g).

model: the token embedding dimension, depth,

growth rate and filter sizes. We also evaluate dif-

ferent aggregation mechanisms across the source

dimension: max-pooling, average-pooling, and at-

tention.

In each chosen setting, we train five models

with different initializations and report the mean

and standard deviation of the BLEU scores. We

also state the number of parameters of each model

and the computational cost of training, estimated

in a similar way as Vaswani et al. (2017), based on

the wall clock time of training and the GPU single

precision specs.

In Table 1 we see that using max-pooling in-

stead average-pooling across the source dimen-

sion increases the performance with around 2

BLEU points. Scaling the average representa-

tion with
√

|s| Eq. (3) helped improving the per-

formance but it is still largely outperformed by

the max-pooling. Adding gated linear units on

top of each convolutional layer does not improve

the BLEU scores, but increases the variance due

to the additional parameters. Stand-alone self-

attention i.e. weighted average-pooling is slightly

better than uniform average-pooling but it is still

outperformed by max-pooling. Concatenating the

max-pooled features (Eq. (2)) with the represen-

tation obtained with self-attention (Eq. (9)) leads

to a small but significant increase in performance,

from 33.70 to 33.81. In the remainder of our ex-

periments we only use max-pooling for simplicity,

unless stated otherwise.

In Figure 4 we consider the effect of the token

embedding size, the growth rate of the network,

and its depth. The token embedding size together

with the growth rate g control the number of fea-

tures that are passed though the pooling operator

along the source dimension, and that can be used

used for token prediction. Using the same embed-

ding size d = dt = ds on both source and target,

the total number of features for token prediction

produced by the network is fL = 2d + gL. In

Figure 4 we see that for token embedding sizes

between 128 to 256 lead to BLEU scores vary

between 33.5 and 34. Smaller embedding sizes

quickly degrade the performance to 32.2 for em-

beddings of size 64. The growth rate (g) has an im-

portant impact on performance, increasing it from

8 to 32 increases the BLEU scrore by more than

2.5 point. Beyond g = 32 performance saturates

and we observe only a small improvement. For a

good trade-off between performance and compu-

tational cost we choose g = 32 for the remaining

experiments. The depth of the network also has an

important impact on performance, increasing the

BLEU score by about 2 points when increasing the

depth from 8 to 24 layers. Beyond this point per-

formance drops due to over-fitting, which means

we should either increase the dropout rate or add

another level of regularization before considering

deeper networks. The receptive field of our model

is controlled by its depth and the filter size. In Ta-

ble 2, we note that narrower receptive fields are

better than larger ones with less layers at equiva-

lent complextities e.g. comparing (k = 3, L= 20)

to (k = 5, L = 12), and (k = 5, L = 16) with

(k=7, L=12).

Comparison to the state of the art. We com-

pare our results to the state of the art in Ta-
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k L BLEU Flops×10
5 #params

3 16 32.99±0.08 2.47 4.32M
3 20 33.18±0.19 3.03 4.92M

5 8 31.79±0.09 0.63 3.88M
5 12 32.87±0.07 2.61 4.59M
5 16 33.34±0.12 3.55 5.37M
5 20 33.62±0.07 3.01 6.23M
5 24 33.70±0.06 3.44 7.18M
5 28 33.46±0.23 5.35 8.21M

7 12 32.58±0.12 2.76 5.76M

Table 2: Performance of our model (g = 32, ds =
dt = 128) for different filter sizes k and depths L

and filter sizes k.

ble 3 for both directions German-English (De-En)

and English-German (En-De). We refer to our

model as Pervasive Attention . Unless stated oth-

erwise, the parameters of all models are trained

using maximum likelihood estimation (MLE). For

some models we additionally report results ob-

tained with sequence level estimation (SLE, e.g.

using reinforcement learning approaches), typi-

cally aiming directly to optimize the BLEU mea-

sure rather than the likelihood of correct transla-

tion.

First of all we find that all results obtained using

byte-pair encodings (BPE) are superior to word-

based results. Our model has about the same num-

ber of parameters as RNNsearch, yet improves

performance by almost 3 BLEU points. It is also

better than the recent work of Deng et al. (2018)

on recurrent architectures with variational atten-

tion. Our model outperforms both the recent trans-

former approach of Vaswani et al. (2017) and the

convolutional model of Gehring et al. (2017b) in

both translation directions, while having about 3

to 8 times fewer parameters. Our model has an

equivalent training cost to the transformer (as im-

plemented in fairseq) while the convs2s imple-

mentation is well optimized with fast running 1d-

convolutions leading to shorter training times.

Performance across sequence lengths. In Fig-

ure 5 we consider translation quality as a func-

tion of sentence length, and compare our model

to RNNsearch, ConvS2S and Transformer. Our

model gives the best results across all sen-

tence lengths, except for the longest ones where

ConvS2S and Transformer are better. Overall,

our model combines the strong performance of

RNNsearch on short sentences with good perfor-

Figure 5: BLEU scores across sentence lengths.

mance of ConvS2S and Transformer on longer

ones.

Implicit sentence alignments. Following the

method described in Section 3, we illustrate in Fig-

ure 6 the implicit sentence alignments the max-

pooling operator produces in our model. For ref-

erence we also show the alignment produced by

our model using self-attention. We see that with

both max-pooling and attention qualitatively sim-

ilar implicit sentence alignments emerge.

Notice in the first example how the max-pool

model, when writing I’ve been working, looks at

arbeite but also at seit which indicates the past

tense of the former. Also notice some cases of

non-monotonic alignment. In the first example for

some time occurs at the end of the English sen-

tence, but seit einiger zeit appears earlier in the

German source. For the second example there

is non-monotonic alignment around the negation

at the start of the sentence. The first example

illustrates the ability of the model to translate

proper names by breaking them down into BPE

units. In the second example the German word

Karriereweg is broken into the four BPE units

karri,er,e,weg. The first and the fourth are mainly

used to produce the English a carreer, while for

the subsequent path the model looks at weg.

Finally, we can observe an interesting pattern

in the alignment map for several phrases across

the three examples. A rough lower triangular pat-

tern is observed for the English phrases for some

time, and it’s fantastic, and it’s not, a little step,

and in that direction. In all these cases the phrase

seems to be decoded as a unit, where features are

first taken across the entire corresponding source
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(a) Max-pooling (b) Self-attention

(c) Max-pooling (d) Self-attention

(e) Max-pooling (f) Self-attention

Figure 6: Implicit BPE token-level alignments produced by our Pervasive Attention model. For the max-

pooling aggregation we visualize α obtained with Eq. (7) and for self-attention the weights ρ of Eq. (8).
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Word-based De-En
Flops

(×10
5)

# prms En-De # prms

Conv-LSTM (MLE) (Bahdanau et al., 2017) 27.56
Bi-GRU (MLE+SLE) (Bahdanau et al., 2017) 28.53

Conv-LSTM (deep+pos) (Gehring et al., 2017a) 30.4
NPMT + language model (Huang et al., 2018) 30.08 25.36

BPE-based

RNNsearch* (Bahdanau et al., 2015) 31.02 1.79 6M 25.92 7M
Varational attention (Deng et al., 2018) 33.10

Transformer** (Vaswani et al., 2017) 32.83 3.53 59M 27.68 61M
ConvS2S** (MLE) (Gehring et al., 2017b) 32.31 1.35 21M 26.73 22M

ConvS2S (MLE+SLE) (Edunov et al., 2018) 32.84

Pervasive Attention (this paper) 33.81± 0.03 3.51 7M 27.77± 0.1 7M

Table 3: Comparison to state-of-the art results on IWSLT German-English translation. (*): results ob-

tained using our implementation. (**): results obtained using FairSeq (Gehring et al., 2017b).

phrase, and progressively from the part of the

source phrase that remains to be decoded.

5 Conclusion

We presented a novel neural machine translation

architecture that departs from the encoder-decoder

paradigm. Our model jointly encodes the source

and target sequence into a deep feature hierarchy

in which the source tokens are embedded in the

context of a partial target sequence. Max-pooling

over this joint-encoding along the source dimen-

sion is used to map the features to a prediction for

the next target token. The model is implemented

as 2D CNN based on DenseNet, with masked con-

volutions to ensure a proper autoregressive factor-

ization of the conditional probabilities.

Since each layer of our model re-encodes the

input tokens in the context of the target sequence

generated so far, the model has attention-like prop-

erties in every layer of the network by construc-

tion. Adding an explicit self-attention module

therefore has a very limited, but positive, effect.

Nevertheless, the max-pooling operator in our

model generates implicit sentence alignments that

are qualitatively similar to the ones generated by

attention mechanisms. We evaluate our model on

the IWSLT’14 dataset, translation German to En-

glish and vice-versa. We obtain excellent BLEU

scores that compare favorably with the state of the

art, while using a conceptually simpler model with

fewer parameters.

We hope that our alternative joint source-target

encoding sparks interest in other alternatives to the

encoder-decoder model. In the future, we plan to

explore hybrid approaches in which the input to

our joint encoding model is not provided by token-

embedding vectors, but the output of 1D source

and target embedding networks, e.g. (bi-)LSTM or

1D convolutional. We also want to explore how

our model can be used to translate across multiple

language pairs.

Our PyTorch-based implementation is avail-

able at https://github.com/elbayadm/

attn2d.
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