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Abstract

Ribosome profiling has revealed pervasive but largely uncharacterized translation outside of 

canonical coding sequences (CDSs). Here, we exploit a systematic CRISPR-based screening 

strategy to identify hundreds of non-canonical CDSs that are essential for cellular growth and 

whose disruption elicit specific, robust transcriptomic and phenotypic changes in human cells. 

Functional characterization of the encoded microproteins reveals distinct cellular localizations, 

specific protein binding partners, and hundreds that are presented by the HLA system. 

Interestingly, we find multiple microproteins encoded in upstream open reading frames, which 

form stable complexes with the main, canonical protein encoded on the same mRNA, thus 

revealing the diverse use of functional bicistronic operons in mammals. Together, our results point 

to a family of functional human microproteins that play critical and diverse cellular roles.
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Sentence Summary

Systematic interrogation of unannotated open reading frames reveals extensive translation of novel 

microproteins with important functional roles, expanding our understanding of the proteome.

Main Text

Efforts to bioinformatically discover and annotate protein-coding open reading frames 

(ORFs) in genomes, termed coding sequences (CDSs), have traditionally relied on rules such 

as amino acid conservation and homology, translation initiation from an AUG start codon, 

and minimum length (e.g. 100 amino acids)(1). The widespread adoption of these rules has 

been based on the assumption that short peptides are unlikely to fold into stable structures to 

perform functions. However, the generality of these rules has been challenged. For example, 

the ribosomal protein RPL41 is a 25 amino acid (aa) peptide; Sarcolipin (SLN, 31 aa) and 

Phospholamban (PLN, 52 aa) bind to and regulate the sarcoplasmic Ca2+ transport ATPase 

SERCA(2, 3). In addition, MYC can be translated from a non-canonical start codon 

CUG(4), demonstrating that non-AUG initiation can produce functional proteins. Recent 

studies have added a handful of remarkable examples of short proteins, or “microproteins” 

(also called “micropeptides” or just peptides), performing diverse functions(5–18), some 

encoded on transcripts annotated as long non-coding RNAs (lncRNAs). Finally, upstream 

ORFs (uORFs), located in the 5’ untranslated regions (UTR) of mRNAs, have long been 

implicated in cis-acting translational control of the main, canonical CDS(19–21), though it 

has remained unclear whether they can generate stable, functional peptides.

Systematic identification of functional short CDSs remains challenging. Recent ribosome 

profiling (deep sequencing of ribosome protected fragments) and mass spectrometry (MS) 

studies have identified thousands of previously unannotated CDSs(22–25) across bacteria, 

yeast, viruses, and mammalian cells. However, for most cases, the cellular function of these 

identified CDSs or their peptide products remains unexplored. We reasoned that the advent 

of CRISPR and its ability to precisely disrupt protein-coding regions(26), when combined 

with ribosome profiling, provides a unique opportunity to define and characterize 

empirically the functional protein-coding capacity of a given genome. Here, we applied a 

diversity of approaches, including ribosome profiling, mass spectrometry, and multiple 

CRISPR-based techniques, to systematically discover non-canonical CDSs encoded in the 

human genome and validate their critical roles in diverse cellular pathways.

To annotate potential CDSs comprehensively and accurately, we first investigated genome-

wide translation by ribosome profiling across multiple cell types and conditions, including 

human induced pluripotent stem cells (iPSCs), iPSC-derived cardiomyocytes, human 

foreskin fibroblasts (HFFs), and HFFs infected with cytomegalovirus(27, 28) (fig. S1A). We 

leveraged the ORF-RATER algorithm to annotate ORFs(27), incorporating multiple lines of 

evidence to identify ORFs undergoing active translation. This included consideration of 

accumulation of ribosome densities at the start and stop codons, three-nucleotide periodicity, 

and additional experimental results such as data from harringtonine-treated cells, in which 

ribosomes are stalled at initiation sites(27). In iPSCs and cardiomyocytes, in addition to 

9490 annotated CDSs (62% of the identified CDSs), we identified 3455 distinct, non-
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canonical CDSs (22%, i.e. with no in-frame overlap with previously annotated CDSs) and 

2466 variant CDSs of annotated proteins (16%) in our high statistical confidence set (Fig. 

1A, see Methods and (27)). Among the distinct CDSs, 818 were CDSs on transcripts lacking 

prior protein-coding annotations (“new”, i.e. lncRNAs), 2342 were upstream CDSs (i.e. 

uORFs or “start overlaps”, CDSs that overlap annotated start codons in a different reading 

frame), and only 13 were downstream CDSs. Similar numbers of CDSs were present in 

HFFs (fig. S1B), with 75% of the CDSs shared between the two cell types. 96% of the 

distinct CDSs are less than 100 aa in length, and 36% of the CDSs use non-AUG start 

codons (Fig. 1B, C, and see fig. S2 for further characterizations).

Multiple lines of evidence suggested that the non-canonical CDSs are actively translated. 

The average ribosome density (metagene) of the lncRNA CDSs and of the translated uORFs 

closely mirrors footprints from that of annotated coding regions with strong 3-nucleotide 

periodicities, a hallmark of active translation, as exemplified by traces from the lncRNA 

LINC00998 transcript and a uORF of ARL5A (Fig. 1D, E and see fig. S3). Our analysis also 

successfully recapitulated well-characterized short ORFs, such as the uORF on ATF4(29), 

and the recently discovered lncRNA-encoded microproteins MOXI/mitoregulin(11, 12) and 

NoBody(10). Bona fide lncRNAs such as XIST, HOTAIR, and NEAT1 were not identified 

to be protein coding (fig. S3E). Moreover, many of the CDSs were differentially translated 

during iPSC differentiation or viral infection (fig. S3F), providing evidence for translational 

control in different cell states.

MS-based proteomics in iPSCs and major Human Leukocyte Antigen Class I (HLA-I) 

peptidomics confirmed the stable expression of hundreds of non-canonical CDS peptides 

(Fig. 1F, fig. S4–5). HLA-I peptidomics identified 240 non-canonical peptides, suggesting 

that these peptides enter the HLA-I presentation pathway and contribute to the antigen 

repertoire and possible immunogenicity (Fig. 1F)(30). HLA class I prediction analysis cross-

validated strong binding (Kd ≤ 50 mM) of non-canonical CDS HLA-I peptides to their 

respective allotype (fig. S6)(30). MS-based proteomics based on tryptic digestion identified 

far fewer non-canonical peptides, which may be due to challenges in detecting the trypsin-

digested products from short, non-canonical CDSs, or possibly due to more rapid turnover of 

these non-canonical peptides (fig. S7).

To test whether translation of the non-canonical CDSs are important for cell growth and 

potentially yield functional peptides, we measured the growth phenotypes resulting from 

CRISPR-mediated ORF knockout in pooled screens(26). We designed a Cas9 ORF single-

guide RNA (sgRNA) library to specifically knock out thousands of the non-canonical CDSs 

identified by ribosome profiling (Fig. 2A, see Methods)(31, 32), targeting 1098 uORFs, 613 

lncRNA CDSs, 352 extensions of annotated coding regions, 283 “start overlaps”, and 7 

downstream CDSs. We performed pooled Cas9 knockout screens in iPSC and K562 chronic 

myeloid leukemia cells expressing Cas9 and the sgRNA library, akin to conventional pooled 

screens for essential proteins(26, 31). We measured sgRNA abundance in the cell 

populations shortly after library transduction and after 10 additional population doublings by 

deep sequencing to quantify the fitness defect conferred by each sgRNA. We then calculated 

a “phenotype” score (γ) and confidence (P-value) for each ORF from the relative 

enrichment or depletion of sgRNAs targeting a particular ORF (Fig. 2B and Methods). In 
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iPSCs, our screen identified over 500 ORF knockout “hits” that result in statistically 

significant phenotypes. The hits include 169 genes that are variants of annotated proteins, 78 

“start overlap” hits, 230 uORF hits, 91 lncRNA CDS hits, and 2 downstream CDS hits. iPSC 

and K562 cells had 401 shared hits, suggesting housekeeping or general cellular roles, as 

well as CDSs that may play cell-specific functions (fig. S8). A fraction of the uORF hits do 

not have main, canonical CDSs with fitness defects upon knockout, suggesting an 

independent function of the uORFs or that disruption of the uORFs result in increases in 

main CDS expression that results in the growth phenotype (fig. S8E). Thus, unannotated 

CDSs with important functions across multiple cell types are an abundant feature of the 

genome.

Several lines of evidence further suggested that our screen reports specifically on the 

phenotypes of the selected ORFs. First, the phenotypes of control sgRNAs targeted directly 

upstream of each ORF in the genome (Fig. 2C) were significantly weaker than those of 

sgRNAs targeting within the ORF (P = 10−26, Mann-Whitney test). Second, sgRNA 

phenotypes are independent of distance to other annotated proteins, splice sites, or 

transcriptional start sites (fig. S9A). Functionally, ORF hits are on average more 

phylogenetically conserved, with a higher conservation score than non-hits (PhyloCSF score 

per codon, P = 10−20, Kolmogorov–Smirnov test, Fig. 2D)(33), and have other 

distinguishing sequence features (e.g. enrichment for Kozak consensus sequence) (fig. S10). 

Though, interestingly, the non-canonical CDSs on average have lower PhyloCSF scores 

compared to canonical proteins (fig. S2B). Finally, sgRNAs targeting ORF hits versus non-

hits have indistinguishable off-target and on-target scores (fig. S9B)(32). We then performed 

validation follow-ups with individual sgRNAs, which recapitulated the growth phenotypes 

from our genome-scale screen (fig. S8D). Sequencing of the targeted genomic regions 

revealed indels of <50 bp (fig. S9C, D). Together, these analyses independently supported 

the conclusion that our screen phenotypes result specifically from the disruption of the target 

ORFs.

To survey function of the non-canonical CDSs at scale, we combined CRISPR screening 

with single-cell RNA sequencing (Perturb-seq) (34, 35). Disruptions of the various non-

canonical CDSs resulted in broad and diverse changes in RNA-seq profiles across a variety 

of critical pathways, suggesting that the candidate CDSs play diverse cellular roles (fig. 

S11). As an example, disruption of the CDS on LINC00998 resulted in differentially 

expressed genes related to glycosylation (P-value < 10−10), suggesting a function at the 

Golgi or ER (see below). Importantly, the transcriptional phenotype also allowed us to 

functionally profile CDSs that are not essential for robust growth (fig. S11C). Furthermore, 

we found that CRISPR-targeted transcripts did not show detectable changes in abundance 

that might result from processes such as nonsense-mediated decay, indicating that the 

phenotypes we observed were not due to decreasing the abundance of the entire transcript 

(fig. S11D). Thus, similar to screens for essential protein-coding genes(26, 31), our screen 

for non-canonical CDSs required for robust cell growth underestimated the true number of 

functional CDSs in the genome, further underscoring the pervasiveness of functional, 

unannotated CDSs in the genome affecting a wide range of cellular activities.
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We next explored the functional role of the peptides encoded by the non-canonical CDSs 

identified from our screen, first focusing on lncRNA CDSs. For seven lncRNAs, we 

ectopically expressed the transcript encoding for the peptide and found in all cases 

knockout-induced growth defect was partially or completely rescued. This rescue was 

abrogated by the removal of the initiating start codon (Δstart codon) (Fig. 3A), suggesting an 

essential role of the peptide itself in cell growth. To further interrogate the specific functions 

of the non-canonical microproteins, we adopted a split-fluorescent protein (FP) approach 

using mNeonGreen (mNG), in which we fused each peptide with a minimally disruptive 16 

aa tag (mNG11). Co-expression of the tagged peptide with the remainder of the mNG 

protein (mNG1–10) results in a fluorescence signal upon complementation (36, 37), creating 

both a fluorescent reporter to detect stable expression and cellular localization, and a handle 

for co-immunoprecipitation (co-IP) and MS to define interaction partners(36) (fig. S12A). 

We probed the functions of six essential lncRNA CDSs and found five to form specific 

complexes that were consistent with their subcellular localization. For example, the 62 aa 

peptide encoded by lncRNA RP11_469A15.2 specifically localized to the mitochondria. The 

peptide has a predicted transmembrane domain and co-immunoprecipitates with the 

cytochrome c oxidase (COX) complex and the mitochondrial Prohibitin complex (Fig. 3B). 

Moreover, the 70 aa peptide encoded by RP11–84A1.3 localizes to the plasma membrane 

and interacts with various cell surface proteins (Fig. 3C). Thirdly, the 59 aa peptide encoded 

by lncRNA LINC00998, which contains two predicted transmembrane domains, localizes 

specifically to both the ER and Golgi, and co-immunoprecipitates with lysosomal and 

vesicular transport proteins (Fig. 3D). Finally, the 55 aa peptide encoded on TOPORS-AS1 

and the 124 aa peptide on RP11–132A1.4 also form functional complexes consistent with 

their cellular localization (fig. S12C, D and fig. S13). Consistent with prior studies(5–18), 

these examples demonstrated that lncRNAs can encode uncharacterized proteins, and 

highlight the need to fully extend the annotation of lncRNAs and the proteome.

We next explored the functional effects of uORF translation, which is complicated by the 

fact that phenotypes can in principle be mediated by the peptide product (24, 38–41) or the 

impact of uORF translation on expression of the main, canonical CDS(20), or both. To 

distinguish between these possibilities, we first separately tagged the uORF and the main 

CDS, and used Western blot to confirm the independent expression of uORF peptides from 

the canonical protein (fig. S14). Furthermore, we established that ectopic expression of a 

transcript encoding only the uORF peptide was able to at least partially rescue the growth 

phenotype caused by disruption of the endogenous uORF. Critically, in all cases this rescue 

is dependent on the initiating start codon in the ectopically expressed message, 

demonstrating that the rescue is due to production of the expressed peptide (Fig. 4A). 

Consistent with this, in all cases we tested, deleting the start codon for the uORFs only 

minimally increased (around 20% - 60%) the expression of the main CDS, suggesting that 

the growth defect seen is mediated by the peptide and not increased expression of the 

canonical protein (fig. S14E, F). Taken together, these findings established that uORFs could 

function through the peptide they produce independently of any cis regulatory effects.

To explore the functions of uORF-encoded microproteins, we examined their localization 

and protein binding partners by tagging the uORF peptides with mNG11. Out of the 10 

uORF peptides further tested by co-IP MS, we failed to detect statistically significant 
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interaction partners for three of the tagged peptides. Two peptides, encoded by the uORFs of 

TBPL1 and ARL5A, localize generally to the cytoplasm, while the main CDS proteins 

exhibit different cellular localization patterns. Consistent with our observed cellular 

localizations, these two uORF peptides immunoprecipitate specifically proteins with 

function independent of the main CDS protein (Fig. 4B, C and fig. S12). Thus, these uORF 

peptides and their main CDS protein have independent functions.

Interestingly, we found that five of the ten uORF peptides co-localized and formed a stable 

physical complex with the downstream-encoded, canonical protein on their shared mRNA. 

These include MIEF1, DDIT3, FBXO9, HMGA2, and HAUS6 (Fig. 4B, D, E and fig. S12). 

In all the cases, we expressed the tagged peptides in their native transcript context but 

without the downstream CDS, eliminating the possibility of stop codon read-through. We 

further confirmed this interaction by co-IP of the canonical protein and immunoblotting for 

the uORF peptide (fig. S12F), as well as with endogenously tagged clonal lines (fig. S15, 

Fig. 4F). This physical interaction between the proteins encoded by the uORF and the 

canonical CDS on the same transcript is particularly interesting(39, 42, 43), because it 

implies an additional layer of regulation beyond the propensity of uORFs to modulate 

translation of downstream CDSs.

We further explored the function of uORF-expressed microproteins by HAUS6 and MIEF1. 

In both cases, disrupting the uORF led to minimal increase in the expression of the main 

CDS protein, and the ectopic expression of a peptide-encoding transcript rescued the 

knockout-induced growth phenotype (Fig. 4A and fig. S14). mNG11-tagged HAUS6 uORF 

expressed from its endogenous locus efficiently pulled down key components of the HAUS6 

complex, localized to the centrosome, and knockout of the uORF caused cells to arrest in the 

G1 stage, consistent with the role of HAUS6 microtubule attachment to the kinetochore and 

central spindle formation (Fig. 4F, G, fig. S12, fig. S15). Similarly, the MIEF1 uORF 

peptide localized to the mitochondria, consistent with the localization of the MIEF1 protein 

(Fig. 4E), which regulates mitochondrial fission and fusion (44). The MIEF1 uORF peptide 

knockout induced differential expression of mitochondrial fusion and fission genes, with a 

distinct transcriptional signature from that seen in the knockout of the MIEF1 protein (Fig. 

4H). We observed that overexpression of the MIEF1 uORF peptide alone induced a 

fragmented mitochondrial phenotype (increased fission), whereas a clonal knockout of the 

MIEF1 uORF (with the sequence disrupted but nonetheless preserving an upstream ORF, 

see fig. S15) resulted in a tubular and more elongated mitochondrial phenotype (increased 

fusion). Importantly, this knockout morphology could be rescued by the exogenous 

expression of the MIEF1 uORF peptide (Fig. 4I). Together, our results indicated a possible 

role of the uORF-encoded peptide in regulating the downstream-encoded protein thereby 

challenging the monocistronic assumption in mammalian genomes. We speculated that this 

type of genomic architecture may be general, opening the doors to the investigation of the 

cooperative and regulatory nature of bicistronic human mRNAs. Indeed, a number of stress-

regulated alternate translation initiation factors can modulate translation initiation site choice 

and uORF usage suggesting that regulation of bicistronic expression could play important 

roles in both normal biology and diseases states(21, 45).
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In summary, we described a strategy that combines ribosome profiling, MS-based 

proteomics, microscopy and CRISPR-based genetic screens to discover and characterize 

widespread translation of functional microproteins and define the protein-coding potential of 

complex genomes. We identified a subset of lncRNAs that can encode stable, functional 

proteins, suggesting that they may be mis-annotated RNAs or potentially have dual roles at 

the RNA and protein levels. Furthermore, we provided examples of uORFs encoding 

functional peptides, highlighting the diverse cellular roles that uORFs may play beyond 

translational control. Intriguing, we also identified uORF-encoded peptides binding to the 

downstream-encoded protein on the same mRNA. Thus, our data highlighted an 

unappreciated complexity to the functional mammalian proteome, as well as the full 

spectrum of antigens presented by the HLA system.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Ribosome profiling reveals translation of unannotated CDSs.
(A) ORF-RATER analysis of ribosome profiling data: 62% are previously annotated coding 

sequences, while 16% are variants of canonical coding sequences that share portions of the 

coding sequence, and 22% are distinct from annotated coding sequences. The naming 

convention of the identified ORFs is shown on the right. (B) Start-codon usage of the 

identified CDSs. (C) Cumulative distribution of CDS length. For distinct CDSs, 96% are 

smaller than 100 amino acids. (D) Example ribosome profiling traces of a lncRNA peptide 

from LINC00998 and a uORF peptide from ARL5A displaying the hallmarks of translation, 
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including peaks of density around the start codon following harringtonine treatment and 

three nucleotide periodicities along the coding region. (E) Metagene analysis shows that the 

signatures of translation, including three-nucleotide periodicity in the expected reading 

frame, for uORFs and lncRNA CDSs are similar to annotated coding regions. (F) 

Identification of more than 200 non-canonical CDS peptides from HLA-I peptidomics, 

cross-validating their existence across the whole abundance range, with a mean Andromeda 

score of 141 compared to a total mean Andromeda score of 144. See Methods.
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Fig. 2. Genome-scale CRISPR screens to identify functional, non-canonical CDSs.
(A) Schematic of CRISPR library design and screening strategies, either by growth screens 

or Perturb-Seq. For growth screens, frequencies of cells expressing a given sgRNA are 

determined by next-generation sequencing, and phenotype scores are quantified with the 

formula shown. For Perturb-Seq, single-cell transcriptomes and sgRNA identities were 

obtained by single-cell RNA-Seq. (B) Volcano plot summarizing knockout phenotypes and 

statistical significance (Mann-Whitney U test) for ORFs targeted in the pooled screen in 

iPSCs. Each dot represents a targeted ORF, and ORF hits are labeled in purple, with a more 

negative phenotype score indicating a stronger growth defect. See Methods. (C) Plot of the 

sgRNA phenotypes and distance from the start codon, across all ORF hits. sgRNAs targeting 

the genome immediately upstream of the ORF (shown in red) have significantly lower 

phenotype than sgRNAs targeting within the ORF (shown in blue). Note the axis is 

increasingly negative (stronger) phenotype. The difference is not due to differences in 

sgRNA on-target efficiencies, as quantified by the Doench v2 score. (D) The PhyloCSF 

Score per codon (higher is more conserved across the Euarchontoglires) is generally higher 
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for ORF hits (P = 10−20, Kolmogorov–Smirnov test) and ORFs with a stronger phenotype. 

Note that lack of a growth phenotype does not necessarily imply a low PhyloCSF score.
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Fig. 3. Short lncRNA CDSs encode functional microproteins.
(A) Rescue of lncRNA CDS knockout growth phenotypes by the ectopic expression of the 

transcript encoding the peptide, as well as controls where the initiating start codon is 

removed (Δstart codon). Error bars represent standard deviation of triplicates. P < 0.05 for 

all comparisons between knockout (KO) and KO + rescue. (B-D) Microscopy images and 

volcano plots of the co-IP MS of three example lncRNA-encoded microproteins tagged with 

mNG11, expressed ectopically (in the native transcript context) in a HEK293T cell line 

expressing mNG1–10. Green is mNG, red is the indicated organelle localization, and blue is 

Hoechst 33342, which stains for the nucleus. Scale bar dimensions are labeled. Significant 

interactors are shown in the top, right corner of the volcano plots. Thick threshold line is 1% 

FDR (false discovery rate), and the thin threshold line is 5% FDR. The bait (the tagged 

peptide) is labeled in blue. The interactors are colored according to their functional groups. 

(E) lncRNA-encoded microproteins are uncharacterized proteins that may play important 

regulatory roles in cells.
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Fig. 4. Bicistronic mRNAs can encode uORF peptides that function in trans.
(A) Rescue of uORF knockout growth phenotypes by the ectopic expression of a transcript 

encoding the uORF peptide alone, as well as a controls where the initiating start codon is 

removed (Δstart codon). Error bars represent standard deviation of triplicates. P < 0.05 for 

all comparisons between KO and KO + rescue. (B) Summary of co-IP MS interactions, 

showing five uORF peptides that interact with their downstream-encoded protein (shown in 

red). Other significant interactors are shown in blue. (C-E) Examples of uORF peptides 

tagged with mNG11, expressed alone ectopically (in the native transcript context) in a 
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HEK293T cell line expressing mNG1–10. Volcano plot of co-IP MS reveals significant 

interactors with uORF peptides. Threshold line is 1% FDR. The bait (the tagged peptide) is 

labeled in blue. For microscopy in C and D, the main, canonical protein tagged with 

mCherry (red) is co-expressed. For E, the mNG11-tagged MIEF1 uORF peptide (green) 

localizes to the mitochondria (red). (F) Volcano plot of co-IP MS from endogenously 

mNG11-tagged HAUS6 uORF. For microscopy, the mNG11-tagged uORF is expressed 

alone ectopically (green), and the canonical HAUS6 tagged with mCherry (red) is co-

expressed. (G) Percent change for each cell cycle state for HAUS6 knockout (KO) and 

HAUS6 uORF KO, compared to control cells. (H) Transcriptome response of the MIEF1 

uORF KO compared with the main CDS KO from Perturb-Seq. (I) Quantification of 

mitochondria morphology upon MIEF1 uORF peptide overexpression and knockout, as well 

as rescue of knockout phenotype. Representative microscopy images of the different 

mitochondria morphologies are shown to the right. (J) Possible model of uORF peptide 

functions and regulatory roles in cells.
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