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Abstract—Conventional human activity recognition (HAR) re-
lies on accelerometers to frequently sample human motion (ac-
celeration). Unfortunately, power consumption of accelerometers
becomes a bottleneck for realising pervasive self-powering HAR
as the amount of power that can be practically harvested from
the environment is very small. Instead of using accelerometer,
this paper advocates the use of energy harvesting power signal
as the source of HAR when motion (kinetic) energy is being
harvested to power the device. The proposed use of harvested
power for classifying human activities is motivated by the fact
that different activities produce kinetic energy in a different way
leaving their signatures in the harvested power signal. Using
information theoretic analysis of experimental data, we show that
many standard statistical features provide significant information
gain when the kinetic power signal is used for discriminating
between different activities, confirming its potential use for HAR.
We have evaluated activity recognition accuracy for kinetic power
signal based HAR using 14 different sets of common activities
each containing between 2-10 different activities to be classified.
HAR accuracies varied between 68% to 100% depending on the
set of activities. The average accuracy over all activity sets is
83%, which is within 13% of what could be achieved with an
accelerometer without any power constraints.

I. INTRODUCTION

Continuous human activity recognition (HAR) is becoming
critical in many applications, including aged health care [1],
[2], smart living [3], and indoor positioning [4], [5] to name
a few. At the same time, there is a growing research and
development momentum in realising various types of energy
harvesting wireless devices [6]. These trends promise a new
pervasive human activity monitoring paradigm where numer-
ous wearable tiny devices continue to sense and monitor the
human on a permanent basis.

Conventional HAR relies on accelerometers to frequently
sample human motion (acceleration). Typically, a classifier is
trained with a large number of samples collected during vari-
ous types of activities, such as walking, running, standing, and
so on. Later, when acceleration samples are presented to the
classifier, it can recognise the activity using the trained model.
A decade long research has confirmed that accelerometers are
very effective in accurately detecting human activities.

Accelerometers are usually considered low-power electron-
ics drawing only about a few µW per sample per second (Hz).

However, when used in kinetic-powered devices, accelerome-
ter power requirements is considered relatively high compared
to the total kinetic power available, which is also measured in
µW . A linear reduction in accelerometer power consumption
is possible by reducing the sampling rates, but only at the
expense of reduced accuracy for activity recognition.

In this paper, we investigate the possibility of achieving
HAR using the harvested power signal instead of the acceler-
ation. The proposed use of harvested power for classifying
human activities is based on the observation that different
activities produce kinetic energy in a different way leaving
their signatures in the harvested power signal. Indeed, it was
recently reported that we could harvest 612-813 µW if the
user was running, but walking would generate only 155-202
µW [7]. Interestingly, due to the gravitational effect, going
up the stairs would generate less power than going down
the stairs [7], which indicates that we could even distinguish
between these two very similar activities using the energy
harvesting data. All these could be achieved without using any
accelerometer thereby conserving the scarce power harvested
from the environment.

The key contributions of this paper are summarised as
follows:
• Using experimental data, we show that the power require-

ment of accelerometer for HAR ranges between 35-515%
of the harvestable kinetic power. We also demonstrate that
down scaling power supply to the accelerometer reduces
HAR accuracy exponentially. These results indicate that
although accelerometers are considered low-power elec-
tronics in general, they can be the bottleneck of self-
powered pervasive HAR.

• We propose the use of harvested power signal as a new
source of realising HAR in a kinetic-powered device.
By not using the acceleration for activity classification,
the proposed HAR eliminates the need for accelerometer
sampling, making HAR practical for self-powered de-
vices. Applying information theoretic measures on exper-
imental data, we demonstrate that kinetic power contains
rich information for discriminating most typical activities
of our daily life.

• We test the performance of kinetic power based HAR on



TABLE I
ACTIVITY SETS

Activity
Set (AS)

Included Activities

AS 1 Walking (W), Running (R).
AS 2 Standing (S), Vacuuming (V).
AS 3 Going up the stairs (SU), Going down the stairs (SD).
AS 4 Standing on escalator going up (EU), Standing on esca-

lator going down (ED).
AS 5 Standing, Walking, Going up the stairs, Going down the

stairs.
AS 6 Standing, Walking, Going up the ramp (RU), Going down

the ramp (RD).
AS 7 Standing, Walking, Standing on escalator going up,

Standing on escalator going down.
AS 8 Going up the stairs, Going down the stairs, Standing on

escalator going up, Standing on escalator going down.
AS 9 Going up the stairs, Going down the stairs, Going up the

ramp, Going down the ramp.
AS 10 Standing, Walking, Running, Going up the stairs, Going

down the stairs.
AS 11 Standing, Walking, Standing on escalator going up,

Standing on escalator going down, Going up the ramp,
Going down the ramp.

AS 12 Going up the stairs, Going down the stairs, Standing on
escalator going up, Standing on escalator going down,
Going up the ramp, Going down the ramp.

AS 13 Standing, Walking, Running, Going up the stairs, Going
down the stairs, Vacuuming, Standing on escalator going
up, Standing on escalator going down.

AS 14 Standing, Walking, Running, Going up the stairs, Going
down the stairs, Vacuuming, Standing on escalator going
up, Standing on escalator going down, Going up the
ramp, Going down the ramp.

14 different sets of common activities each containing
between 2-10 different activities to be classified. We
find that HAR accuracies varied between 68% to 100%
depending on the set of activities. The average accuracy
over all activity sets is 83%, which is within 13% of what
could be achieved with an accelerometer not subjected to
power constraints.

The rest of the paper is organised as follows. Power con-
sumption of accelerometers relative to the harvestable kinetic
power is explored in Section II. This section also presents the
derivation of the exponential model that captures the HAR
accuracy as a function of power available to the accelerometer.
We present the proposed concept of using energy harvesting
data for HAR in Section III followed by its performance
evaluation in Section IV. Related work is reviewed in Section
V before concluding the paper in Section VI.

II. ACCELEROMETER POWER CONSUMPTION FOR HAR

The purpose of this section is to study the power consump-
tion of the accelerometer relative to the power harvested in
a kinetic-powered device. We are also interested in modelling
the HAR accuracy degradation under power constraints. These
objectives are achieved by evaluating HAR accuracy for a
given set of activities by varying the sampling rate of the
accelerometer. The harvestable power for a given set of
activities is obtained using known models that estimate kinetic
power generation from a given accelerometer trace.

TABLE II
FEATURE SET

Feature Name Description
Mean The central value of a window of samples
Standard deviation A measure the amount of variation or dispersion

from the mean.
Maximum The maximum value in a window of samples
Inter-quartile Range The difference between the upper quartile and

the lower quartile of the window of samples
Root Mean Square The square root of the arithmetic mean of the

squares of the values of the window of samples.
It is a measure of the magnitude of a varying
quantity.

Mean Absolute Devi-
ation

The mean of the absolute deviations from a cen-
tral point. It measures dispersion or variability in
values of the window of samples.

Skewness A measure of the asymmetry of the probability
distribution of the window of samples.

Kurtosis A measure of the ”peakedness” of the probabil-
ity distribution of the window of samples.

Auto-Correlation The cross-correlation of a signal with itself. It
measures the similarity between observations as
a function of the time lag between them.

Dominant Frequency The maximum spectral component of the Fourier
transform of the signal.

Power Spectrum
Mean

The mean of the power spectrum of the signal.

Frequency Domain
Entropy

The normalized information entropy of the dis-
crete FFT component magnitudes of the signal.

A. Recognition Accuracy vs Sampling Rate and Power

Acceleration-based HAR requires periodic measurement of
acceleration of the subject whose activity is to be recog-
nised. Typically a 3-axial accelerometer is used to measure
acceleration in three dimensions while the subject performs
different activities. These data are then used to train a clas-
sifier, which is used later to detect activities from a given
sample of acceleration values. Generally, the more frequent
the measurements, the more information is available enabling
more accurate classification. The frequency of measurement
is called the sampling rate of the accelerometer, which is
measured in Hz or number of measurements per second.

To perform a measurement, an accelerometer must be turned
on for a few ms. Because the accelerometer consumes power
when it is active, it is turned off when it is not measuring.
Therefore, an accelerometer is continuously turned on and off,
whose frequency is dictated by the sampling rate. As such,
the average power consumption of accelerometer is a linear
function of the sampling rate. For example, the data sheet of
an ADXL150 accelerometer [8] shows that the accelerometer
consumes about 5 µW on average per Hz, which means that it
would require 50 µW if a sampling rate of 10 Hz was required
for a given activity set.

Using a Samsung Galaxy Nexus smartphone in the hand, we
have collected accelerometer traces from five different subjects
for ten basic activities. Because different combinations of ac-
tivities pose different challenges for classifications, we created
14 different sets of activities from these 10 basic activities as
shown in Table I. The original data was collected at 100Hz, but



Fig. 1. HAR accuracy as a function of accelerometer rate for three different
activity sets.

we later subsampled each of these traces at 1-50 Hz to study
the effect of sampling rate on the activity recognition accuracy.
In this study, we use K-nearest neighbour (KNN) classifier,
which has been widely used by other researchers [9]–[11] due
to its simplicity and effectiveness in activity classification.
The KNN classifier is trained with 12 features (see table
II) extracted from 5-sec windows with 50% overlapping of
the accelerometer traces. Finally, for each sampling rate, we
perform 10 fold-cross validation test to obtain the accuracy.

Fig. 1 shows the HAR accuracy as a function of sampling
frequency of the accelerometer for three different sets, 1, 3 and
7. We make several observations. We can see that the HAR
accuracy increases with increasing sampling rate, but its rate
of increase continues to slow down as it approaches a limit
(saturates). The characteristic of this growth in HAR accuracy
is captured by the exponential function f(x) = a(1− e−λx),
where a is the limiting value of HAR accuracy and λ is a
constant defining the shape or slope of the curve (curve fitting
results shown in the legend). Note that different sets have
different limiting values and they also reach the limiting value
at different sampling rates, which we call critical sampling
rates. For example, activity set 1 has a critical sampling rate
of 10 Hz, because the accuracy does not improve any further
beyond this rate, whereas the accuracy for set 7 continues to
increase until 30 Hz.

A second observation is that the accuracy falls exponentially
if the accelerometer is sampled below the critical sampling
rate. This means that if there is not enough harvested power,
then the accelerometer will be forced to operate at a lower
sampling rate, which would cause exponential decrease in

TABLE III
AVERAGE HARVESTED POWER OF DIFFERENT ACTIVITIES

Activity Average Harvested Power (µW )
Standing 0.063
Walking 53.50
Running 153.40
Stairs Up 44.94

Stairs Down 97.39
Vacuuming 29.94

Escalator Up 0.2198
Escalator Down 0.2522

Ramp Up 64.68
Ramp Down 56.02

accuracy. This observation highlights the challenge facing the
realisation of pervasive HAR using energy harvesting wearable
devices. In the following section, we estimate the power that
could be harvested for each activity set in Table I and compare
it with the power requirements of the accelerometer.

B. Estimating Harvestable Kinetic Power

In the absence of commercially available kinetic energy
harvesting portable devices that could be used to collect energy
traces from users, we resort to mathematical estimations of
kinetic energy from accelerometer traces. Specifically, we use
a recently developed model by Gorlatova et al., [7] which has
been shown to accurately estimate the amount of harvestable
kinetic power from accelerometer data using a standard mass-
spring damping system and validated using a comprehensive
dataset collected from 40 participants going through unre-
stricted motions. Once the gravity is filtered out from the raw
acceleration values, the filtered acceleration is converted to
proof mass displacement using the Laplace domain transfer
function:

z(t) = L−1{Z(s)} = A(s)

s2 + b
ms+

k
m

(1)

where m is the proof mass, k is the spring constant, b is
the damping factor, A(s) and Z(s) denote, respectively, the
Laplace transforms of a(t) =

√
ax(t)2 + ay(t)2 + az(t)2, the

overall magnitude of the acceleration, and z(t), the proof mass
displacement. Next, the resulted proof mass displacement,
z(t), is limited by the limit of the proof mass displacement,
ZL. Finally, the generated harvested power is determined by:

p(t) = bż2(t) (2)

We used the configuration values, m = 10−3kg, ZL = 10mm,
k = 0.17, and b = 0.0005, optimised in [7] for typical
human activities. The entire procedure was implemented using
MATLAB and SIMULINK. The outcome is a trace of kinetic
power samples, which we use for further analysis.

Table III shows the average harvested power for each
activity1. Table IV presents the average harvested power for

1The average powers generated by some of the considered activities are
slightly lower compared to the ones reported in [7]. This is due to the different
holding positions of the sensing device. In our experiment, the device was held
in hand while in [7] the sensors were placed in shirt and pant pockets.



TABLE IV
SAMPLING RATES AND POWER CONSUMPTIONS OF THE ACCELEROMETER FOR DIFFERENT ACTIVITY SETS

Activity
Set

Average
Harvested Power
(µW ))

Required
Accelerometer
Sampling Rate
(Hz)

Required Power
(µW ))

Percentage
of Harvesting
Power consumed
(%)

Achievable
Accelerometer
Sampling (Hz)

AS 1 103.45 10 50 48.33 20.69
AS 2 15.00 5 25 166.6 3
AS 3 71.17 5 25 35.13 14.234
AS 4 0.236 5 25 10593.2 0.047
AS 5 48.97 10 50 102.10 9.79
AS 6 43.56 30 150 344.35 8.71
AS 7 13.51 30 150 1110.3 2.70
AS 8 35.70 15 75 210.08 7.14
AS 9 65.76 15 75 114.05 13.15
AS 10 69.86 10 50 71.57 13.97
AS 11 29.12 30 150 515.11 5.82
AS 12 43.92 30 150 341.53 8.78
AS 13 47.46 20 100 210.70 9.49
AS 14 50.04 15 75 149.88 10.01

each activity set (column 2) along with the required sampling
rates of the accelerometer to achieve the maximum (limiting)
accuracy (column 3). Column 4 shows the power requirement
of the accelerometer to achieve the maximum accuracy as-
suming a 5 µW power consumption per Hz on average. It
means that the accelerometer can only work without power
constraints as long as the harvested power (column 2) is grater
than the powers in column 4. Column 5 shows the percentage
of harvested power that would have been required by the
accelerometer to work without power constraints.

As we can see that apart from a few activity sets (sets
1, 3, and 10), the accelerometer would require more power
than could be harvested, forcing it to work under power
constraints or at a reduced sampling rates as shown in the final
column. Considering only the sets for which we have five or
more activities to recognise, i.e., sets 10 to 14, we find from
column 5 that the power requirement of the accelerometer
is between 35-515% of the harvestable kinetic power. These
results indicate that although accelerometers are generally
considered low-power electronics, they become the bottleneck
of self-powered HAR.

III. PROPOSED HAR USING HARVESTED POWER SIGNAL

Fig. 2 contrasts the proposed HAR architecture with con-
ventional accelerometer-based HAR. In the conventional HAR,
the acceleration samples are used to train a classifier which
in turn is used to detect activities based on a window of
acceleration samples. In contrast, no acceleration data is used
in the proposed architecture. Instead, training and classification
are accomplished entirely using the output signal of the kinetic
energy harvester. Energy saved by not using the accelerometer
can be used by other on-board units, such as the radio.

Fig. 3 compares the accelerometer signal with the estimated
kinetic power signal when a subject went through a series of
five activities in 35 seconds. It provides a clear visual con-
firmation that like the accelerometer signal, the power signal
is also affected differently by different activities. Therefore,
it should be possible to use kinetic power signal to achieve

Activity EH

Activity Classifier

Accelerometer

Radio

Accelerometer Data

(a) Conventional HAR

Activity EH

Activity Classifier

Radio

Kinetic Power Data

(b) Proposed HAR

Fig. 2. HAR Architectures: (a) Conventional accelerometer-based HAR and
(b) Proposed HAR based on kinetic power signal

HAR. In the following section, we measure the discriminating
ability of the kinetic power more formally using information
theory and investigate the HAR accuracy that it can achieve
for typical human activities.

IV. PERFORMANCE EVALUATION

The main purpose of this section is to evaluate the HAR
accuracy when kinetic power signal is used to classify the
different activities in a given activity set. But first, we provide
an information theoretic analysis to formally assess the dis-
criminating capacity of kinetic power signal for typical human
activities.
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Fig. 3. The accelerometer trace (the magnitude of the three axes) and the
corresponding harvested power trace for the activity sequence: stairs up-
standing-walking-running-stairs down .

A. Information Gain

Information gain (IG) is a measure that determines how
useful a given feature is for discriminating between the classes
(activities) to be learned [12]. The IG of feature fi measures
the expected reduction in entropy caused by partitioning the
data (instances) according to this feature. The calculation of
information gain is based on calculating the entropy H(S) of
a set of classes S.

H(S) = −
n∑
i=1

pi log2 pi (3)

where n is the number of different activity classes and pi is
the proportion of all instances belonging to the ith class. The
information gain is then calculated using:

Gain(S, fi) = H(S)−
∑

v∈V alues(fi)

|Sv|
|S|

H(Sv) (4)

where Sv is the subset of S for which feature fi has a value
v (i.e., Sv = s ∈ S|V alues(fi) = v) and |S| denotes the
cardinality of the set S.

A feature that cannot help with classification has a zero
IG. If the kinetic power signal does not contain any useful
information for activity classification, then it will be difficult
to find a feature with positive IG. Next, we compute IG for
a range of commonly used statistical features on the kinetic
power samples. The outcome for activity set 14 is shown in
Fig. 4 and the average for all sets with 5 or more activities,
i.e., sets 10-14, are shown in Table V . We see that there are
many features with significant IG, confirming that the kinetic
power signal contains rich information that can be used to train
a classifier to detect activities (see the following subsection).

An interesting observation is that the Maximum feature, i.e.,
the maximum power in a window of 5-sec, provides the most
information gain beating the Mean feature. This is interesting
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Fig. 4. Information gain of kinetic power signal of AS 14 for 12 features
commonly used for HAR

TABLE V
AVERAGE INFORMATION GAIN FOR ACTIVITY SETS 10 TO 14

Feature Average IG
Maximum 1.5299

Mean Absolute Deviation 1.4388
Mean 1.4364

Auto-correlation 1.4364
Dominant Frequency 1.4364
Standard Deviation 1.4131

Power spectrum mean 1.4109
Root mean square 1.4109

Inter-quartile Range 1.3615
Skewness 0.4476

Frequency Domain Entropy 0.4148
Kurtosis 0.4090

because in the literature [7], it is often mentioned that the
average kinetic power of different activities are different,
which may give the impression that the Mean kinetic power
would be the key for activity classification. In the following
subsection, we will compare the accuracies that could be
obtained by using different power features.

B. Classification Accuracy

In this subsection we use the same method used in Section
II to obtain HAR accuracy. There are some subtle differences
in how we obtain the features from the acceleration and the
kinetic power traces. For the accelerometer traces, we consider
both single, i.e., the overall acceleration, and 3-axial data,
which means we extract 12 features for the single but 36
features for the 3-axial traces. For the kinetic power, we only
have a single trace, so only 12 features are extracted. Table VI
compares the accuracies of kinetic power signal based HAR
when different power features are used in isolation and also
when all of the 12 features are used. First, we find that the
Maximum feature provides better accuracy than the Mean, as
it is expected from the IG results presented in the previous
subsection. Second, using multiple features together does not



TABLE VI
ACCURACIES FOR KINETIC POWER BASED HAR

Activity Set EH-based HAR Accuracy (%)
Using
Maximum
Feature

Using Mean
Feature

Using 12 Fea-
tures in Table II

AS 1 96.20 93.59 98.43
AS 2 100 100.00 100
AS 3 90.93 61.53 65.97
AS 4 82.67 60.00 63.21
AS 5 86.88 63.24 80.00
AS 6 81.84 60.26 67.35
AS 7 88.19 74.50 56.46
AS 8 86.21 61.36 61.07
AS 9 68.40 30.96 31.84
AS 10 84.06 55.53 79.73
AS 11 79.52 53.98 46.53
AS 12 73.91 41.80 41.39
AS 13 78.57 51.83 60.93
AS 14 72.00 41.51 49.00

Average 83.53 60.72 64.42

provide any accuracy gain. This is a surprising result because
it is well known that for accelerometer-based HAR, many
features are to be used in combination to achieve high accuracy
and in fact for our data set we have also found the same.
It is also known that the use of the individual acceleration
components in x, y, and z directions, albeit more complicated,
improves accuracy significantly. We therefore evaluate two sets
of accuracies for the accelerometer-based HAR, one with the
overall acceleration and the other applying the 12 features on
each of the three components.

HAR accuracies for accelerometer are shown in Table VII
along with those obtained for the kinetic power based HAR
with the Maximum feature used for classification. We see that
kinetic power based HAR performs better than accelerometer-
based HAR when only the overall acceleration is used and
remains with 13% on average when individual acceleration
components are considered. These results are encouraging
because Table VII presents the best case results for the
accelerometer, i..e, when the accelerometer is not power
constrained. As shown in Table IV, the accelerometers in a
self-powered device may often have to operate under power
constraints due to lack of enough kinetic power.

Next, we take a closer look into the classification results to
identify the source of lower accuracy for the kinetic power
based HAR. We examine the sets that achieved the three
lowest accuracies in Table VII. These are sets 9 (68.40%), 12
(73.91%), and 14 (72%). We find that these are the sets that
contain the activities going up the ramp (RU) and going down
the ramp (RD). In our experiments we collected data when
subjects walked over ramps with small slopes with angles
ranging between 10◦-30◦. For such low-angle ramps, they are
very similar to the walking (on the surface) activity.

A 3-axial accelerometer is fundamentally advantaged in
separating RU, RD, walking, or any other very similar human
activities due to the multi-dimensional measurement of the
motion, hence achieving very high accuracy for all activity sets
in our experiments including sets 9, 12, and 14. By measuring

TABLE VII
COMPARISON OF ACCURACIES FOR ACCELEROMETER-BASED AND

KINETIC POWER BASED HAR

Activity Set HAR Accuracy (%)
Power Accelerometer

(Overall)
Accelerometer
(3-axial)

AS 1 96.20 100 100
AS 2 100 100 100
AS 3 90.93 80 93.20
AS 4 82.67 62.14 100
AS 5 86.88 76.24 96.06
AS 6 81.84 64.47 95.86
AS 7 88.19 73.04 99.90
AS 8 86.21 63.07 96.50
AS 9 68.40 55.78 92.20
AS 10 84.06 81.21 94.64
AS 11 79.52 57.19 96.96
AS 12 73.91 51.71 94.25
AS 13 78.57 72.88 98.16
AS 14 72 64 95.45

Average 83.53 71.55 96.66
Power: using a single feature (max).

Accelerometer (Overall): using 12 Features (see Table II)
Accelerometer (3-axial): using 36 features (12 features (see Table II) from

each axis)

acceleration in three dimensions, new discriminating opportu-
nities arise, which is not possible with a single-dimensional
power measurement.

The advantage of a 3-axial accelerometer against the single-
dimensional harvested power signal is illustrated in Figure 5
by plotting the samples from three activities, RU, RD, and
walking. We see that the signals of these three activities look
very similar whether acceleration or power samples are used.
Even when each axis is considered separately, they look very
similar. However, when we consider the acceleration signals
in y and z directions together, we find two clear discriminating
patterns between the three activities.

The y and z acceleration signals closely follow the shape of
a sinusoidal wave due to the periodic motion of walking and
the tilting of the smartphone in the hand, but they have a phase
shift relative to each other. The relative shift for walking is
the maximum (close to 180◦) and minimum for RU. We also
see that the offsets between these two signals are different
for different activities. During training, a classifier quickly
learns such important differences, which allows it to accurately
distinguish the activities from each other. However, when a
single-dimensional power signal is used, the classifier does
not have access to such information, leading to confusions.
Whether we can extract multi-dimensional motion information
from the harvested power signal remains an open question.

V. RELATED WORK

Our work is related to energy-efficient HAR because we
reduce the power consumption of the HAR process in a
self-powered device by not using the accelerometer. Reduc-
ing HAR power consumption is also important in battery-
powered devices, which motivated many researchers to look
for new ways to reduce battery consumption of HAR. We
can categorise them in three basic approaches, reducing the
sampling rate of the accelerometer, reducing the classification



(a) Kinetic power signal for RU, RD, and W. Classification Accuracy=74.10%

(b) 3-axial accelerometer signal for RU, RD, and W. Classification Accuracy=94.31%

Fig. 5. A comparison of kinetic power signal (a) with 3-axial accelerometer signal (b)

complexity, and reducing the number of accelerometers placed
on the human body.

Reducing the sampling rate of the accelerometer is a widely
used method to save the system energy. However, this re-
duction is always achieved at the expense of the recognition
accuracy. Therefore, improving the trade-off between sensor
energy consumption and accuracy of HAR has been the focus
of many research studies. The authors in [13], [14] used a
single activity monitoring technique to adjust the sampling
rate and classification set of features to a choice that is optimal
for this activity and hence to reduce system energy overheads
without violating user accuracy requirements. In A3R [13],
they used sets of two classification features: Time domain
and frequency domain. However, AdSense [14] explores the
feature set space by Genetic Programming techniques and
finds the optimal feature set that effectively reduces both the
classification and the sampling rates.

When a large number of activities are to be classified, the
classifier model can be very complex. Higher complexity leads
to higher CPU usage and battery usage. Therefore, one way to
reduce HAR battery consumption would be to reduce classifier
complexity. The authors in [15] provided an adaptive HAR
which, instead of using a single complex classifier based on a
large set of features, employs multiple simple classifiers each
trained to classify only a subset of the activities using a small
number of features. Then at runtime, depending on the current
context, the system switches to the right classifier as the given
set of activities to recognise changes with the context.

An alternative approach to extend the battery life time of
HAR systems has been to reduce the number of accelerometers

to be used [16]. This approach works when the data collected
by body sensors are transmitted to a base station (PC or a
smartphone) to be analysed and classified. Such studies tried
to exploit the redundant and unreliable accelrometers in order
to reduce the communication cost between the sensor nodes
and the base station, and hence extend the life time of the
monitoring system.

While it is possible to extend the battery life time of
HAR through the previously mentioned ways, battery-powered
sensors cannot provide sustained HAR without the need for
battery replacement. Recently, a new research trend in energy
harvesting [6] has gained the attention of the research commu-
nity. Energy harvesting is commonly defined as the conversion
of ambient energy such as vibrations, heat, wind, light, etc
into electrical energy. EH devices can eliminate the need for
battery replacement and significantly enhance the versatility of
consumer electronics. Many energy harvesting models have
been recently developed [7], [17]–[20]. The main focus of
these models is to optimise the parameters of the harvester to
maximise the output harvested power. These recent advances
in energy harvesting devices have motivated us to consider
the concept of self-powered pervasive HAR. The novelty of
our work is in the use of the harvested power to classify the
activities that generate the power, which to our knowledge has
not been addressed before.

VI. CONCLUSION AND FUTURE WORK

Although accelerometers are considered low-power elec-
tronics in general, our study has revealed that the accelerome-
ter becomes the power bottleneck in realising self-powered



HAR. We have shown that the kinetic power signal itself
contains signatures for the human activities that are to be
classified and recognised. A standard KNN classifier can
detect many activities with very high accuracies using only
the kinetic power signal and not using the accelerometer at
all. Since the kinetic power is readily available from the
energy harvesting circuit, HAR based on kinetic power signal
conserves a significant fraction of the scarce harvested power
that would have been consumed by the accelerometer. Thus,
the proposed use of energy harvesting signal for HAR can be
considered a key enabler for realising the vision of pervasive
self powered human activity recognition.

This paper is the first detailed study of recognising human
activity directly from the energy harvesting signal. Although
we have shown that good HAR accuracies are possible for
many common activities, we have also found that the kinetic
power signal cannot distinguish very similar activities, such as
walking on a flat surface and walking on a ramp, with high
accuracy. For such cases, an accelerometer has a clear advan-
tage with its 3-axial measurement capability, which provides
more detailed (multi-dimensional) motion information of these
activities leading to high recognition accuracy. An interesting
future work would be to investigate the possibility of extracting
multi-dimensional (multi-axial) motion information from the
kinetic power signal. One possibility could be to consider
energy harvesting methods capable of harvesting kinetic power
separately from each components of human motion. This
would yield three separate power signals, one for each axis,
enabling more advanced training of the classifier similar to a
HAR based on a 3-axial accelerometer.

In this work, we used a mathematical model to estimate the
harvestable kinetic power from accelerometer traces because
portable kinetic energy harvesting devices are currently not
available. A natural continuation of the current work would be
to build a portable kinetic energy harvester and validate the
current results with real harvestable kinetic power data. The
portable device could also be used to further validate existing
mathematical models that estimate kinetic power data from
human motion data.

We have analysed HAR accuracy when the accelerometer
and the energy harvester are used in a mutually exclusive
manner. A logical future direction is to consider a hybrid
system where a 3-axial accelerometer is sampled at a low
sampling rate (low power consumption), but the classifier is
trained using both the acceleration samples as well as the
kinetic power signal, thus enabling very accurate HAR with
low power consumption. The hybrid system combines the
advantages of both signals to realise a more flexible HAR
with a goal to achieve a better accuracy-power tradeoff than
the one possible with the mutually exclusive method.
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