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In the fight against arthropod crop pests using plant secondary metabolites, most

research has focussed on the identification of bioactive molecules. Several hundred

candidate plant species and compounds are now known to have pesticidal properties

against a range of arthropod pest species. Despite this growing body of research,

few natural products are commercialized for pest management whilst on-farm use of

existing botanically-based pesticides remains a small, but growing, component of crop

protection practice. Uptake of natural pesticides is at least partly constrained by limited

data on the trade-offs of their use on farm. The research presented here assessed

the potential trade-offs of using pesticidal plant extracts on legume crop yields and

the regulating ecosystem services of natural pests enemies. The application of six

established pesticidal plants (Bidens pilosa, Lantana camara, Lippia javanica, Tephrosia

vogelii, Tithonia diversifolia, and Vernonia amygdalina) were compared to positive and

negative controls for their impact on yields of bean (Phaseolus vulgaris), cowpea (Vigna

unguiculata), and pigeon pea (Cajanus cajan) crops and the abundance of key indicator

pest and predatory arthropod species. Analysis of field trials showed that pesticidal plant

treatments often resulted in crop yields that were comparable to the use of a synthetic

pesticide (lambda-cyhalothrin). The best-performing plant species were T. vogelii, T.

diversifolia, and L. javanica. The abundance of pests was very low when using the

synthetic pesticide, whilst the plant extracts generally had a higher number of pests

than the synthetic but lower numbers than observed on the negative controls. Beneficial

arthropod numbers were low with synthetic treated crops, whereas the pesticidal plant

treatments appeared to have little effect on beneficials when compared to the negative

controls. The outcomes of this research suggest that using extracts of pesticidal plants

to control pests can be as effective as synthetic insecticides in terms of crop yields

while tritrophic effects were reduced, conserving the non-target arthropods that provide

important ecosystem services such as pollination and pest regulation. Thus managing

crop pests using plant secondary metabolites can be more easily integrated in to

agro-ecologically sustainable crop production systems.

Keywords: pest control, pesticidal plants, botanical products, ecosystem services, agro-ecological intensification,
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INTRODUCTION

The search for novel pest control products from plants continues
to grow, but not always with clear outcomes and benefits (Isman
and Grieneisen, 2013). However, there are many candidate plant
species with known pesticidal properties where much is already
known about their chemistry and efficacy under laboratory
conditions that could be rapidly developed in to new products
(Stevenson et al., 2017). Isman (2017) has argued that increasing
farmer use of natural pesticides needs research directed at the
practical application of such products under complex agro-
ecological conditions, particularly understanding how different
pesticidal plant species perform when applied to different crops
under different growing conditions. Furthermore, their effects
against target and non-target species, safe use and overall socio-
economic and agro-ecological benefits need work. Only through
their evaluation under field conditions can the evidence for more
widespread adoption of natural pest control products be found,
particularly as natural compounds are often not as effective
as current synthetic pesticides (Casida, 1980). Using unrefined
plant extracts for pest control has several advantages in terms
of preventing the development of insecticide resistance due
to the usual presence of several bio-active compounds, their
low persistence in the environment and their generally low
cost of use, particularly for smallholder farmers with limited
income (Angioni et al., 2005; Caboni et al., 2006; Isman, 2008).
However, disadvantages include variable efficacy, and low toxicity
and persistence against target pests, which is partly due to the
rapid breakdown of bio-active compounds, for example through
photodegradation, and due to such extracts easily washing off
when it rains. Consumers and policy makers are demanding
reduced synthetic inputs in food production, and practices
that support agro-ecological intensification and pesticidal plant
products may be well suited to this vision (Grzywacz et al., 2014;
Sola et al., 2014; Pavela, 2016).

An important trade-off to consider in the fight against
arthropod crop pests using plant secondary metabolites, is the
impact of crop protection strategies on ecosystem services.
Pollination and natural pest regulation by arthropods are affected
negatively by the use of synthetic pesticides (Rundlöf et al.,
2015; Potts et al., 2016). The value of natural suppression of
aphids on soya bean was valued at US$239 million in four
US states (Landis et al., 2008), so the benefits of natural
pest regulation can be measured in terms of environmental
and economic value. Natural pest control is an ecosystem
service that can be augmented and sustained by natural or
manipulated agro-ecosystems (Gurr et al., 2016, 2017) as well
as local land management practices which can impact on
availability of pollinators on legume crops such as pigeon
pea (Lautenbach et al., 2012). Many factors appear to be
causing pollinator decline; however, the increasing use of
synthetic pesticides is one of the primary causes (Potts et al.,
2016), and policies that facilitate more environmentally benign
approaches are required for sustainable agriculture (Dicks
et al., 2016). Although some research has been conducted on
the impact of pesticidal plant use on non-target arthropods
(Mkenda et al., 2015; Mkindi et al., 2017), this remains a

neglected area of research that needs further investigation to
understand the trade-offs of using more plant-based pest control
products.

The research presented here established whether crude
extracts of six cosmopolitan pesticidal plant species have
potential as the basis of biopesticides on different legume crops
and to understand the impacts of using pesticidal plants on
non-target arthropods.

MATERIALS AND METHODS

Study Site
The study was conducted at field sites in Tanzania and Malawi
over three years where common bean (Phaseolus vulgaris) was
grown during 2015, cowpea (Vigna unguiculata) was grown
during 2016 and pigeon pea (Cajanus cajan) was grown during
2017 cropping seasons. Field trials were carried out at Nelson
Mandela African Institution of Science and Technology, Arusha,
Tanzania (Latitude 3◦24′S Longitude 36◦47′E and at Lilongwe
University of Agriculture and Natural Resources, Bunda, Malawi
(Latitude 14◦11′S Longitude 33◦46′E). In Tanzania, the location
was at an elevation of 1,168 masl with a mean annual rainfall
of 1,200mm, mean maximum temperature of 21.7◦C and mean
minimum temperature of 13.6◦C. ForMalawi, the location was at
an elevation of 1,100masl with a mean annual rainfall of 700mm,
mean maximum temperature of 29◦C and mean minimum
temperature of 17◦C.

Experimental Design
The farm land where field trials took place was disc harrowed
and ridged prior to planting. The common bean seeds used for
planting were of the variety Lyamungo 90 in Tanzania andKalima
in Malawi. In Tanzania, the seeds were planted at a spacing of
50 cm between rows and 20 cm within rows in 5 × 5m plots
which were 1m apart. In Malawi, beans were planted 75 cm part
with 2 rows of beans on each ridge, with rows spaced 10 cm
apart and ridges 30 cm apart and plants spaced 10 cm within
rows in 5 × 5m plots which were 1m apart. The cowpea seeds
used for planting were of the variety Raha1 in Tanzania and
Mkanakaufiti in Malawi. In Tanzania, the seeds were planted at
a spacing of 50 cm between rows and 20 cm within rows in 5 ×

5m plots which were 1m apart. In Malawi, cowpeas were planted
on ridges of 75 cm apart with 1 row on each ridge, spaced at
20 cm within rows in 5 × 5m plots which were 1m apart. The
pigeon pea seeds used for planting were of the variety Mali in
Tanzania and Mthawajuni in Malawi. In Tanzania, the pigeon
pea seeds were planted at a spacing of 75 cm between rows and
30 cm within rows in 5 × 5m plots which were 2m apart. In
Malawi, pigeon pea were planted at a spacing of 75 cm between
rows and 60 cm within rows in 5 × 5m plots which were 2m
apart. Diammonium phosphate fertilizer was applied according
to manufacturer’s instructions during planting of the seeds. Trials
were inspected each week with ad hoc hand weeding carried
out as necessary. The experimental layout was a randomized
complete block design, and the treatments were replicated on
four blocks (Anderson and McLean, 1974).
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Plant Species Collection and Processing
Fresh leaves of Tephrosia vogelii (Hook f.) (Fabales: Fabaceae),
Vernonia amygdalina (Delile) (Asterales: Asteraceae), Lippia
javanica (Burm.f.) Spreng. (Lamiales: Verbenaceae), Tithonia
diversifolia (Hemsl.) A. Gray (Asterales: Asteraceae), Bidens
pilosa L. (Asterales: Asteraceae), and Lantana camara L.
(Lamiales: Verbenaceae) were collected from different locations
around Hai District, Tanzania and Mitundu District, Malawi
(voucher specimens and GPS coordinates lodged at Nelson
Mandela African Institution of Science and Technology, Arusha,
Tanzania and Lilongwe University of Agriculture and Natural
Resources, Bunda, Malawi). Common bean field trials were
carried out with four plant species (L. javanica, T. diversifolia,
T. vogelii, and V. amygdalina in Tanzania and L. camara, T.
diversifolia, T. vogelii, and V. amygdalina in Malawi) whilst
cowpea and pigeon pea trials were carried out with all six
plant species. These plant species were chosen due to their
wide abundance around farms, roadsides, and bushland, their
familiarity to farmers and considerable existing knowledge on
their efficacy, bioactive constituents and safety (Ganjian et al.,
1983; Pereira et al., 1997; Gu et al., 2002; Adedire and Akinneye,
2004; Kawuki et al., 2005; Viljoen et al., 2005; Ambrósio et al.,
2008; Asawalam et al., 2008; Mujovo et al., 2008; Oyewole et al.,
2008; Bagnarello et al., 2009; Gadzirayi et al., 2009; Adeniyi et al.,
2010; Madzimure et al., 2011; Belmain et al., 2012; Stevenson
et al., 2012). To ensure uniformity, the leaves from each seasonal
collection were mixed together for each species before drying.
Leaves were dried under shade for a week and then crushed using
amill and sieved into a fine powder. Powders were stored in black
plastic bags in dark, dry conditions until required. New plant
material was harvested each year.

Field Treatments
Data on the effect of plant extract concentration has been
reported with expected dose response trends on crop yield
when applying plant treatments at 0.1, 1.0, and 10% w/v

(Mkindi et al., 2017). All data presented here are based on
the application of 10% w/v as this was determined to be the
most effective concentration for reducing insect damage and
maintaining high crop yield (Mkindi et al., 2017). In making
10% extracts, 1 kg of plant powder was weighed and added to
10 L water to extract at ambient temperature (20 ± 5◦C) for
24 h. In all cases 0.1% soap was added to the water during
extraction as detergent increases the extraction efficiency of
non-polar compounds from plant material (Belmain et al.,
2012). Extracts were kept in 10 L buckets with lids in the
shade and, shortly before application, filtered twice through a
coarse and then fine cloth to remove all plant material that
may inadvertently clog the sprayer. Negative controls consisted
of water +0.1% soap and water only. The positive control
in all trials was synthetic pesticide Karate 5 EC (lambda-
cyhalothrin pyrethroid, Syngenta) which was applied as per
the manufacturers’ instructions (20 g/ha). All treatments were
replicated across four blocks and were sprayed throughout the
growing season at an interval of 7 days starting 1 week after crop
plant emergence. A 15 L knapsack sprayer was used to apply the
various treatments, and the sprayer was thoroughly cleaned with
soap and water prior to being re-filled with another formulation
for application.

Sampling for Presence of Arthropod Pest
and Beneficial Species
All assessments were carried out the day before treatments
were to be sprayed. Three inner rows from each plot were
selected for sampling. Five plants in the selected three middle
rows were visually examined to record the number of each
arthropod type. Preliminary work indicated that a number
of pest and beneficial species were documented on legume
crops; however, many were only present infrequently or in
low numbers. Furthermore, to assist with data collection,
enumerators focussed on more obvious life stages and relatively
larger insects. For example, parasitoids and larval forms of

FIGURE 1 | Effect of different pesticidal plant treatments on mean weekly number of (A) key indicator pest species (aphids, flower beetles and foliage beetles) and (B)

key indicator beneficial species (lady beetles, spiders and hoverflies). All plant treatments were applied at 10% w/v with 0.1% liquid soap added to the water during

the 24 h extraction period. Control–w is the application of water only, Control–ws is the application of water containing 0.1% liquid soap only, and Control+s is the

application of the synthetic pesticide Karate 5 EC (lambda-cyhalothrin pyrethroid, Syngenta) which was applied as per the manufacturers’ instructions (20 g/ha).
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hoverflies and lacewings were not monitored due to their
small size and difficulty to assess quickly. Thus indicator pest
and beneficial species were chosen for monitoring that were
easily identified and observed to be abundant throughout the
cropping season. Thus the main target pest species evaluated
were aphids (Aphis fabae Scopoli) (Hemiptera: Aphididae),
bean foliage beetle (Ootheca mutabilis (Schönherr) and O.
bennigseni Weise) (Chrysomelidae: Galerucinae) and flower
beetle (Epicauta albovittata Gestro and E. limbatipennis Pic)
(Coleoptera: Meloidae). The target predatory species were lady
beetles (adults and larvae) (Coccinellidae), spiders (Araneae),
and hoverflies (adults only) (Syrphidae). Due to often very high
numbers, a categorical index was used to assess aphid abundance,
where 0 = None; 1 = A few scattered individuals; 2 = A few
isolated colonies; 3= Several isolated colonies; 4= Large isolated
colonies; and 5 = Large continuous colonies (Mkindi et al.,
2017). For analytical purposes, this index was used as a proxy to
report aphid numbers. For all other arthropod species, the actual
number of individuals was counted.

Data Analysis
Differences among treatments in insect abundance and bean
yield were assessed by analysis of variance (ANOVA) and
Tukey’s post-hoc Honestly Significant Difference (HSD) test to
separate the means at the 95% confidence interval. Analyses
were performed in XLSTAT version 2015.1.01 (Addinsoft, Paris,
France). Datasets are available on request.

RESULTS

Arthropod Abundance
Field trials carried out across the two countries with three
different legume crops over three seasons showed similar
trends with respect to pest and beneficial arthropod abundance
(Figure 1). The general trend shared across trials was that
the positive control synthetic pesticide treatment had very low
numbers of both pest and beneficial species, with the negative
controls (water only and water with soap) usually having the
highest numbers. The pesticidal plant treatments did reduce
numbers of both pest and beneficial species but these data
more generally followed the abundance observed in the negative
controls as opposed to the positive control. An analysis of
variance confirms these trends for each crop and location
(Table 1). Lippia javanica, T. vogelii, and T. diversifolia were
the most able to reduce pest insect numbers, showing similar
effects to the synthetic pesticide in cowpea and bean crops but
not for pigeon pea. Bidens pilosa, L. camara, and V. amygdalina
showed similar pest abundance as to that observed in the negative
controls. Pest abundance was higher on pigeon pea than on
cowpea or bean crops, and this is likely related to the larger
size of each plant where pigeon pea grows to ∼1.5m high
whereas cowpea and bean crops are <0.5m high. However,
this trend in relative abundance among crops was not strongly
observed for beneficial species. Abundance of beneficial species
was highest for bean crops, but this was not found to differ
significantly from abundance observed in cowpea or pigeon
pea crops (Table 1). Beneficial insect numbers in cowpea crops T
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treated with pesticidal plants were higher than that observed
in the negative controls, while lower numbers of beneficials
were found in bean and pigeon pea when compared to the
negative controls. In all crops, the synthetic positive control
significantly reduced beneficial numbers compared to all other
treatments.

Crop Yield
Despite insect pest abundance on crops treated with pesticidal
plants being significantly higher than observed with the synthetic
control, crop yields obtained from pesticidal plant treatments
were often comparable to the synthetic pesticide treatment
(Figure 2). This is most notable with the use of T. vogelii
in Tanzania where the yields were statistically comparable
for cowpea (1,016–1,125 kg/ha) and pigeon pea (4,407–4,464
kg/ha) and where the bean yield was statistically higher for
T. vogelii compared to the positive control (2,044 vs. 1,659
kg/ha). Tephrosia vogelii treated plants also performed as well
as the synthetic pesticide treated on beans in Malawi, but its
application on cowpea and pigeon pea produced lower yields
than the synthetic in Malawi. Other plant treatments that
generally performed well across locations and crops were L.
javanica and T. diversifolia. With the exception of pigeon pea
crop yields in Malawi, the negative control treatments (water
only, water + soap) had the lowest yields of all the treatments.
In some cases, yields of certain pesticidal plant treatments were
no better than the untreated controls, notably B. pilosa on
pigeon pea in Tanzania and V. amygdalina on cowpea in Malawi.
However, these species did work effectively in other contexts,
e.g., B. pilosa was effective on cowpea and V. amygdalina was
effective on bean crops. None of the pesticidal plants appeared
to be effective on pigeon pea in Malawi. We suspect this was
probably caused by frequent high rainfall in Central Malawi
during the 2017 cropping season that inadvertently washed off
the pesticidal plant treatments before they were able to affect
pests. The synthetic pesticide was still effective on pigeon pea
in Malawi, arguably because it was more resistant to frequent
rainfall events. An analysis of variance performed on crop
yields confirms these observations on yield differences among
treatments (Table 1). Comparing the crop yields obtained with
the water only application with the different treatments showed
that the plant treatments were able to significantly increase
the percentage crop yield (Table 2). The simple addition of
0.1% soap to the water generally showed a 20–30% increase
in crop yields, most likely due to the well-known effects of
soaps on arthropod cuticles and water regulation (Butler et al.,
1993). The synthetic control showed the largest percentage
increase in yield. However, T. vogelii showed comparable yield
increases for cowpea and pigeon pea in Tanzania and even

exceeded the synthetic on beans in Tanzania. Crop yield will
also be affected by the different varieties planted and the slightly

different crop spacing employed in each country. Yields are
well-known to differ by crop variety (Wallace and Munger,
1966; Talbot, 1984) and other location specific issues such as
soil type (Chmelíková et al., 2015), thus preventing statistical
analyses of our field trials across locations due to uncontrolled
environmental parameters.

DISCUSSION

Previous research on the pesticidal plant species used for pest
control in this study all have reported bioactivities against insects,
parasites, bacteria and fungi (Ganjian et al., 1983; Jisaka et al.,
1992; Lina et al., 1992; Pereira et al., 1997; Gu et al., 2002;
Rabe et al., 2002; Ogendo et al., 2003; Adedire and Akinneye,
2004; Boeke et al., 2004; Omolo et al., 2004; Kawuki et al., 2005;
Koona and Dorn, 2005; Viljoen et al., 2005; Koona et al., 2007;
Ambrósio et al., 2008; Asawalam et al., 2008; Mujovo et al.,
2008; Oyewole et al., 2008; Bagnarello et al., 2009; Chukwujekwu
et al., 2009; Deng, 2009; Gadzirayi et al., 2009; Koul and Walia,
2009; Madzimure et al., 2011; Tesch et al., 2011; Chagas-Paula
et al., 2012; Bartolome et al., 2013; Ellse and Wall, 2013; Nhamo
et al., 2013; Utono et al., 2014; Green et al., 2017; Kamanula
et al., 2017); however, none of these works have investigated the
effects of their application on field crop performance or tritrophic
impact. Much is also known about the phytochemistry of the
six species evaluated. Previous analysis of L. javanica has shown
the major bioactive component to be camphor, along with minor
components including camphene, α-pinene, eucalyptol, Z and E
α-terpineol, linalool, cymene, thymol, 2-carene, caryophyllene,
and α-cubebene (Mkenda et al., 2015). Camphor has well-
documented insecticidal properties (Singh et al., 2014). Chemical
analysis of T. vogelii has indicated the presence of the rotenoids
deguelin, tephrosin and rotenone (with deguelin being the
most abundant) (Belmain et al., 2012; Stevenson et al., 2012).
Rotenoids are well-known for their anti-insect properties (Ott,
2006). The major compounds in T. diversifolia confirmed to
have anti-insect properties were identified as the sesquiterpene
lactones tagitinin A and tagitinin C (Green et al., 2017). Both
compounds were reported recently to be themajor compounds in
this species (Miranda et al., 2015) while other research indicated
tagitinins to have insecticidal activity (Ambrósio et al., 2008). The
main anti-insect components of V. amygdalina were identified
as vernodalin and 11,13-dihydrovernodalin as well as several
vernoniosides (Green et al., 2017). Like tagitinin A and C,
the first two compounds are sesquiterpene lactones which have
exhibited antimalarial, antibacterial and cytotoxic activities (Rabe
et al., 2002; Chukwujekwu et al., 2009). The major bioactive
components of L. camara are germacrene D, β-caryophyllene,
a-phellandrene, limonene, and 1,8-cineole (Tesch et al., 2011).
Bioactive constituents from B. pilosa include β-caryophyllene and
τ -cadinene (Deba et al., 2008). B. pilosa bioactivity is mainly
reported as pharmacological, allopathic, anti-fungal, and anti-
bacterial, with no clear anti-insect properties previously noted
(Bartolome et al., 2013).

Synthetic pesticides are often misused leading to negative
effects on ecosystems and human health, particularly in
developing countries (Ecobichon, 2001). Using biocontrol
options such as extracts of pesticidal plants has long been argued
to be more sustainable and appropriate for smallholder farmers
in developing countries (Isman, 2006, 2008; Sola et al., 2014),
and our data support this and show that use of pesticidal plants
can effectively control pests and be integrated into sustainable
agricultural practice. Our data also showed that plant pesticide
pest control on legume crops could support yields similar to
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FIGURE 2 | Effect of different pesticidal plant treatments on crop yield of (A) Pigeon pea grown in Tanzania, (B) Pigeon pea grown in Malawi, (C) Cowpea grown in

Tanzania, (D) Cowpea grown in Malawi, (E) Common beans grown in Tanzania and (F) Common beans grown in Malawi. All plant treatments were applied at 10% w/v

with 0.1% liquid soap added to the water during the 24 h extraction period. Control–w is the application of water only, Control–ws is the application of water

containing 0.1% liquid soap only, and Control+s is the application of the synthetic pesticide Karate 5 EC (lambda-cyhalothrin pyrethroid, Syngenta) which was applied

as per the manufacturers’ instructions (20 g/ha). Boxes represent mean and 95% confidence intervals, blue markers are max. and min. values, orange markers are

median values.

TABLE 2 | Percentage yield increase when comparing the yield obtained from the untreated control applying water only to the yields obtained from applying the other

treatments.

Treatment Bean yield increase (%) Cowpea yield increase (%) Pigeon pea yield increase (%)

Tanzania Malawi Tanzania Malawi Tanzania Malawi

Control–w

Control–ws 20.8 −2.8 35.8 4.8 19.3 39.8

B. pilosa – – 227.5 94.4 62.5 −30.6

L. camara – 43.8 346.4 73.4 158.6 −11.9

L. javanica 46.8 – 220.6 107.5 130.6 71.7

T. diversifolia 70.3 55.5 363.3 108.3 125.6 4.3

T. vogelii 71.1 98.6 563.3 107.3 208.5 20.9

V. amygdalina 31.9 76.1 322.4 31.8 141.7 −41.0

Control+s 38.9 97.7 634.5 214.3 204.6 376.7

Control-w, application of water only; Control-ws, application of water containing 0.1% soap; Control+s, application of synthetic pesticide treatment Karate 5 EC (lambda-cyhalothrin).

those on which synthetic pesticides were used. This required
relatively frequent weekly application of 10% w/v plant extracts
highlighting a trade-off of using pesticidal plants since the
active components break down quickly and have low persistence

(Casida, 1980). This means that labor inputs must increase
when using crude preparations of pesticidal plants, although
the commercialization of botanical products that incorporate
photostabilizers and sticking agents could prolong their efficacy
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on crops. This sort of trade-off is generally accepted by many
smallholder farmers because using synthetic pesticides requires
financial outlay, whereas using pesticidal plant materials simply
requires labor costs for harvesting and processing. Economic
analyses of pesticidal plant use in Africa generally show that
they are more cost-beneficial for smallholder farmers than using
synthetic pesticides as pesticidal plant use reduces input costs,
even when costing in extra labor, with generally little yield loss
trade-off (Amoabeng et al., 2014; Mkenda et al., 2015). On the
other hand lower persistence of pesticidal plants means that the
health of consumers is at less risk owing to reduced exposure
to bioactive compounds from the plants which decompose into
harmless natural products unlike the synthetic compounds that
persist in and on plants for weeks or in soil for months or
years. This means that crops can be harvested without the risk
of residues remaining due to the rapid breakdown of naturally
occurring compounds when exposed to UV light, and micro-
organisms in soil/water (Isman, 2000; Angioni et al., 2005;
Caboni et al., 2006). Another benefit for smallholder farmers is
that it enables production for higher value organic markets and
for export.

The research presented highlights another important trade-
off when comparing synthetic vs. pesticidal plant crop protection
effects on non-target species. The persistence and generic
toxicity of synthetic pesticides inevitably means their impact on
pollinators, predators, and parasitoids is usually very high (Potts
et al., 2010; Stanley and Preetha, 2016). Indeed, our research
showed that a synthetic pesticide commonly used on legume
crops and other horticultural produce resulted in the absence
of nearly all beneficial indicator species monitored over the
cropping season. This typically leads to the phenomenon of pest
resurgence once the synthetic pesticide wears off enabling pest
species populations to expand in the absence of predatory species
(Roubos et al., 2014; Welch and Harwood, 2014). However,
the pesticidal plant treatments had much less of an impact
on indicator beneficial species. Some of the plant materials
did reduce the numbers of beneficials in comparison to the
untreated (water and water+soap) controls, but in all cases
these reductions were not as severe as that observed in the
synthetic treatment. Overall, there was very little difference
among the pesticidal plant treatments and the untreated controls
in terms of beneficial numbers. We expect this is partly due to
lower persistence of plant treatments but also due to different
modes of action where the plant treatments may be acting
against pests as repellents, anti-feedants or through toxicity
post-ingestion. Lower toxicity and persistence of the pesticidal
plant treatments is supported through their reduced effects on
indicator pest species. In only a few cases were the pesticidal
plant treatments just as successful as the synthetic in reducing
pest abundance. Pest and beneficial species were less affected
by the pesticidal plant treatments compared to the synthetic.
We would argue that this would help natural pest regulation
manage pest numbers more effectively because natural pest
regulation is most effective when the ratio between pest and
predator numbers is low (Arditi and Ginzburg, 1989; Rusch et al.,

2010). The continual knock-down provided by the pesticidal
plant treatments allows the beneficial species to contribute to
pest regulation at a meaningful scale (Crowder et al., 2010).
The protection and facilitation of ecosystem services provided
by pollinators, predators and parasitoids through using pesticidal
plants is a strong argument for the adoption of pesticidal plant
extracts in crop protection.

Despite higher numbers of pests on the pesticidal plant
treatments compared to the synthetic treatment, yields were
often comparable. This could be due to further pest reduction
through natural enemies. However, thismay also be because plant
species can tolerate a certain amount of damage and are able to
physiologically compensate tomaintain overall yield (Rubia et al.,
1996; Brown, 2005). Compensation usually requires that plants
are generally in good health, with access to sufficient nutrients
and water, with little other sources of stress (Tardieu and
Tuberosa, 2010). Although we did not measure such responses,
legume crop compensation may have been facilitated through
the frequent application of pesticidal plant extracts. This could
involve other forms of plant protection by direct control of
bacterial or fungal pathogens (Soylu et al., 2010; Marei et al.,
2012; Rasoul et al., 2012), or indirect physiological assistance
by acting as a topical green fertilizer (Jama et al., 2000), bio-
stimulant (Pretali et al., 2016), or foliar feed (Shaaban, 2001). We
are undertaking further field trials to assess the multiple benefits
of using pesticidal plants for smallholder crop production, which
should provide more evidence for their integration in to agro-
ecologically sustainable crop production systems.
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