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Abstract

Pesticides are a collective term for a wide array of chemicals intended to kill unwanted insects, 

plants, molds, and rodents. Food, water, and treatment in the home, yard, and school are all 

potential sources of children’s exposure. Exposures to pesticides may be overt or subacute, and 

effects range from acute to chronic toxicity. In 2008, pesticides were the ninth most common 

substance reported to poison control centers, and approximately 45% of all reports of pesticide 

poisoning were for children. Organophosphate and carbamate poisoning are perhaps the most 

widely known acute poisoning syndromes, can be diagnosed by depressed red blood cell 

cholinesterase levels, and have available antidotal therapy. However, numerous other pesticides 

that may cause acute toxicity, such as pyrethroid and neonicotinoid insecticides, herbicides, 

fungicides, and rodenticides, also have specific toxic effects; recognition of these effects may help 

identify acute exposures. Evidence is increasingly emerging about chronic health implications 

from both acute and chronic exposure. A growing body of epidemiological evidence demonstrates 

associations between parental use of pesticides, particularly insecticides, with acute lymphocytic 

leukemia and brain tumors. Prenatal, household, and occupational exposures (maternal and 

paternal) appear to be the largest risks. Prospective cohort studies link early-life exposure to 

organophosphates and organochlorine pesticides (primarily DDT) with adverse effects on 

neurodevelopment and behavior. Among the findings associated with increased pesticide levels are 

poorer mental development by using the Bayley index and increased scores on measures assessing 

pervasive developmental disorder, inattention, and attention-deficit/hyperactivity disorder. Related 

animal toxicology studies provide supportive biological plausibility for these findings. Additional 

data suggest that there may also be an association between parental pesticide use and adverse birth 

outcomes including physical birth defects, low birth weight, and fetal death, although the data are 

less robust than for cancer and neurodevelopmental effects. Children’s exposures to pesticides 

should be limited as much as possible.
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INTRODUCTION

Pesticides represent a broad classification of chemicals that are applied to kill or control 

insects, unwanted plants, molds, or unwanted animals (eg, rodents). “Pesticide” is a 

collective term for a wide array of products but is often inappropriately used in reference to 

only insecticides. The universe of pesticide types and products is broad, and a 

comprehensive review of all active ingredients is beyond the scope of this report. This 

review focuses on select insecticides, herbicides, and rodenticides and specific chemical 

classes within these groups that have the greatest acute and chronic toxicity for children on 

the basis of historical experience and/or emerging evidence (Table 1).

Several types of pesticides are not discussed in this report. Fumigants and fungicides, 

although potentially toxic, are less commonly involved in acute childhood exposure and 

poisoning, in general, so these are not included. Wood preservatives containing arsenic are 

also not included in this report. The specific compound containing arsenic, copper chromium 

arsenate, has been removed from the market since January 2004. Older wood structures 

treated with copper chromium arsenate may still be found in homes, on playgrounds, and in 

yards and should be treated yearly with a waterproof sealant.1 Insect repellents, including N, 

N-diethyl-meta-toluamide and picaridin, are different from most pesticides in that they are a 

product purposefully applied to human skin to prevent insect bites and are, in fact, not 

insecticides. These compounds are unique and have been reviewed recently.2

Although the severity of pesticide exposures and toxicity may be greater in developing 

countries where regulatory oversight and information is limited, the content of this technical 

report is oriented toward exposures most relevant to children residing in the United States. 

Commonly used insecticides, including the organophosphates (OPs), carbamate, and 

pyrethroid classes, are discussed, as are the relatively new neonicotinoids. Other pesticides 

that will be discussed in some detail include the phosphonate herbicides (eg, glyphosate), 

chlorophenoxy herbicides, and long-acting anticoagulants (rodenticides). For a more 

comprehensive survey of the acute toxicity from the spectrum of pesticide active ingredients 

and products, see other sources.1,3

CHILDREN’S EXPOSURE: VULNERABILITY, MECHANISMS, AND SOURCES 

OF EXPOSURE

Children’s Unique Vulnerabilities

Children are uniquely vulnerable to uptake and adverse effects of pesticides because of 

developmental, dietary, and physiologic factors. Exposure occurs through ingestion, 

inhalation, or dermal contact. Unintentional ingestion by children may be at a considerably 

higher dose than an adult because of the greater intake of food or fluids per pound of body 

Roberts et al. Page 2

Pediatrics. Author manuscript; available in PMC 2018 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



weight. Children exhibit frequent hand-to-mouth activity, and this is an important source of 

increased exposure in comparison with adults.4,5

Residential Factors

Fortunately, acute toxicity attributable to pesticide poisoning is relatively uncommon in US 

children, and a pediatrician in general practice may not encounter such an event. However, 

subacute and chronic low-level exposure is common. Residential factors that influence 

chronic exposure include the use of insecticides and rodenticides in the home, and herbicide 

and fungicide use on lawns, as well. Indoors, broadcast applications including sprays, “flea 

bombs,” and foggers can leave lingering residues in the air, carpet, toys, and house dust.6–9 

Typical exploratory behavior, including playing on and crawling across the floor, increases 

the risk of dermal, inhalation, and oral exposure to residues on surfaces or the air as it 

settles.10 Repeated and cumulative incidental exposure can also occur. Pesticides can be 

measured in indoor air samples and persist in dust vacuumed from carpeted areas, 

upholstered objects, and children’s toys, such as stuffed animals, and can also be brought 

home from the workplace.11–14 Herbicides applied on the lawn or garden can be tracked into 

the home, with residues building up over time.15 Applications of diazinon to lawns have 

been demonstrated to be carried indoors via the paws of pet dogs.16 Residential pesticide 

residue levels also vary geographically according to the specific pesticide needs in the area. 

In Los Angeles, high levels of chlorpyrifos and other insecticides were found because of the 

large numbers of crawling insects, fleas, and termites. Conversely, in Iowa, there were high 

levels of the herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and dicamba because of 

weed-control applications.17

Residentially related sources may be relevant in other settings where children spend time, 

including school, child care, a relative’s home, etc, depending on indoor and outdoor 

pesticide use patterns and proximity to pesticide use. In a North Carolina study of 142 urban 

homes and preschools, chlorpyrifos was detected in all indoor air and dust samples.18

Biomonitoring Data for Exposure Assessment

The Centers for Disease Control and Prevention (CDC) conducts a population-based 

biomonitoring program associated with the NHANES.19 The most recent report includes 

biomarker data for many organochlorine, OP, and carbamate insecticides; herbicides; 

pyrethroid insecticides; and some other pesticides. Testing of 44 pesticide metabolites 

revealed that 29 were detectable in most people from whom samples were analyzed (ages 6–

59 years), with OP and organochlorine insecticides reported to be most prevalent in the US 

population.19 Although the health implications of these “snapshot” sampling data are largely 

unknown, they do provide a reference point on pesticide metabolite distributions. Periodic 

reassessment also allows for evaluations of population-level exposure trends.

As noted previously, children’s unique behaviors and metabolic rate often place them at risk 

for absorption of higher doses from contaminated environments in comparison with adults. 

One example evident from the biomonitoring data is chlorpyrifos, a non-persistent OP 

insecticide. Although banned in 2000 for use inside the home, it continues to be used in 

agriculture, including orchard fruits, such as apples and pears, and other dietary staples of 
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children. In the CDC biomonitoring data, chlorpyrifos-specific urinary metabolites were 

highest for the youngest age group assessed (6–11 years) compared with older children and 

adults.19 In contrast, biomonitoring of serum markers of organochlorine insecticides and 

their metabolites, such as DDT, dieldrin, and chlordane, many of which were banned from 

use in the United States in the 1970s and 1980s, revealed lower concentrations in the 

youngest age group monitored (12–19 years). Despite relatively lower concentrations, the 

ongoing detection and the higher levels with increasing age likely reflect the influence of the 

accumulation of these fat-soluble, persistent compounds over a lifetime.

Exposures From the Food Supply

In the general population, the food supply represents the most important source of exposure 

for organochlorines and OPs. For pyrethroids, both food residues and household pest control 

products are important sources.20 The US Environmental Protection Agency (EPA) regulates 

exposure to pesticides in food by setting “tolerances,” which are the maximum amount of 

pesticides that may legally remain in or on food and animal feed. The US Food and Drug 

Administration is responsible for enforcement of these tolerances, which includes a modest 

monitoring program, which analyzed 7234 total samples in 2003. Among the domestically 

produced samples, 49% of fruit, 29% of vegetables, 26% of grain products, 24% of fish/

shellfish, and 0% of milk/dairy tested had detectable but legally allowable pesticide residues. 

Only fruit and vegetables had residues above the legal tolerance (approximately 2% each). 

Overall, the detection of residues in the samples from imported fruits and vegetables tested 

were less, but the exceedances of legal tolerances were greater (5%–7% of imported fruits/

vegetables sampled).21 Consumption of organic food may lower pesticide exposure, as 

demonstrated by a study in which children were placed on an organic diet for a period of 5 

consecutive days. A rapid and dramatic drop in their urinary excretion of metabolites of 

malathion and chlorpyrifos OP insecticides during the organic diet phase was observed.22

Agriculturally Related Exposures

Proximity to pesticide-treated agricultural areas or household members that work with 

pesticides presents another opportunity for contamination of the residential environment for 

some children. In a Washington State study of children of agricultural workers and 

nonagricultural workers in an agricultural setting, pesticide levels in carpet dust and 

pesticide metabolites in urine of residents increased with self-reported proximity of homes 

to orchard fields and during the pesticide application season.9,23 Similarly, in an agriculture 

center in California, pesticide residues of 3 chemicals used recently on crops were 

significantly correlated with house dust samples in nearby homes and urine samples among 

their inhabitants. The findings were noted in both farmworkers and nonfarmworkers.24 The 

presence of an agricultural worker in the home also increases pesticide levels through “take-

home” exposures.23 Children living on a farm had higher urinary pesticide metabolite levels 

than children not living on a farm.25 Children themselves may participate in agricultural 

work that involves the use of pesticides or contact with pesticide-treated foliage.26–28

Exposures From Drinking Water

Contamination of drinking water presents another potential source of exposure, particularly 

for herbicides. A 10-year study (1992–2001) by the US Geological Survey’s National Water-
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Quality Assessment program provided a national-scale view of pesticide occurrence in 

streams and groundwater. Overall, pesticides were detected in more than 50% of sampled 

wells from shallow groundwater tapped beneath agricultural and urban areas as well as in 

33% of the deeper wells that tap major aquifers used for water supply. The concentrations 

associated with these detections rarely exceeded water quality health reference levels 

(approximately 1% of the 2356 domestic and 364 public-supply wells that were sampled). 

Herbicides, particularly the triazine class, were the most frequently detected pesticide group 

in agricultural areas. (It should be noted that atrazine and other triazine herbicides were 

monitored from surface water.) In urban areas, both herbicides and insecticides (particularly 

diazinon and carbaryl) were frequently detected. The greatest proportion of wells exceeding 

a health reference level was for those tapping shallow groundwater beneath urban areas. It is 

noteworthy that the detection of pesticides usually occurred as mixtures, and health 

reference levels reflected exposure to a single agent.29

NATIONAL DATA ON ACUTE EXPOSURE, MORBIDITY, AND MORTALITY

Although some states (eg, California and Washington) mandate the reporting of pesticide-

related illness, there is no national surveillance system for pesticide exposure and poisoning. 

The American Association of Poison Control Centers’ National Poison Data System (NPDS 

[formerly known as the Toxic Exposure Surveillance System]) compiles annual data on 

pesticide exposures. Incidents reported by the NPDS are categorized by age (<6 years, 6–19 

years, and >19 years), reason (unintentional, intentional, other, adverse reaction), and 

outcome (none [no morbidity], minor, moderate, major, or death). However, these data 

represent self-reports from patients and/or family members and calls from medical treatment 

facilities. Although they are useful to describe trends, they do not indicate true prevalence or 

incidence. Data are reported annually and, since 2005, have been published in Clinical 
Toxicology.30

In 2009, pesticides were the tenth most frequently involved substance in human exposure 

(3.9% of all NPDS reports) and the ninth most common substance encountered in children 

(3.3% of pediatric NPDS reports). Nearly 55.8% of all single-substance pesticide exposures 

involved children ≤19 years of age, and 94% of all pesticide ingestions were unintentional. 

Twenty-one of the reports from pesticide exposure resulted in death; however, these were not 

categorized by age.30 Rates (calculated by using US census data for the catchment area 

served by the poison control center as the denominator) of reported pesticide poisonings 

described as moderate, major, and fatal declined from 1995 to 2004 by approximately 42%. 

The sharpest declines in poisonings were from OP and carbamate insecticides, likely 

reflecting EPA regulatory action to discontinue residential use of several previously widely 

available OP and carbamate insecticides on the basis of child health concerns.31

ACUTE TOXICITY MECHANISMS AND CLINICAL MANIFESTATIONS

OP and Carbamate Insecticides

OP and carbamates insecticides have been widely used for insect control in the home and in 

agriculture since the 1960s. During this period, OP and carbamates usage largely replaced 

the use of organochlorines because of environmental and human health concerns of the latter 
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class. In the past 10 years, chemical products in the OP and carbamate group have come 

under scrutiny, with subsequent regulatory action based on human health concerns. 

Examples include 2 commonly used OPs with high acute toxicity: parathion (banned) and 

chlorpyrifos (no longer allowed for residential use). Other OPs that remain widely used 

include dichlorvos, acephate, methyl-parathion, and malathion. Malathion has relatively 

lower acute toxicity among the OPs and is registered for the treatment of head lice (Ovide). 

A well-known example of a carbamate is aldicarb, although use has largely been curtailed by 

regulatory action because of its high toxicity. Commonly used carbamates include carbaryl 

and pirimicarb.1,3

Toxicity, Clinical Signs, and Symptoms—OPs and carbamates exert a common 

mechanism of action by inhibiting the acetylcholinesterase enzyme, thereby producing 

accumulation of acetylcholine at the synapses, neuromuscular junction, and end organs, 

which results in excessive stimulation at those sites. The reaction is generally an irreversible 

binding by OPs and a reversible binding by carbamates, and it influences treatment 

approaches for each class of insecticides. Consequently, acute poisoning by OPs tends to be 

more severe and refractory than that of carbamates; however, variations are observed in each 

class. There are some notable carbamates (such as aldicarb) that have equal if not greater 

toxicity than some OPs.1,3

Acute clinical manifestations reflect the development of cholinergic crisis and can arise from 

stimulation of muscarinic, nicotinic, and/or central nervous system receptors (Table 2). Early 

findings can often mimic a flulike illness and include hypersecretion. Miosis is a helpful 

diagnostic sign. The classic cardiovascular sign is bradycardia, although early on, 

tachycardia may be present initially because of nicotinic stimulation. Progressive symptoms 

lead to muscle and respiratory problems. The central nervous system may also be affected, 

signifying severe poisoning, particularly in children.1,3,32–34 Reviews of case series indicate 

that between 20% and 30% will have seizures, and between 50% and 100% of children will 

have lethargy, stupor, or coma.32–34 A high clinical suspicion plus directed and persistent 

environmental history taking to identify potential exposures are necessary to identify these 

poisonings. Reviews of pediatric poisonings note that, historically, most children were 

transferred to a referral center with the wrong preliminary diagnosis and parents initially 

denied any exposure history.33,34

Laboratory Evaluation and Treatment—Poisoning with OPs and carbamates can be 

detected on the basis of clinical findings and history of exposure. Laboratory confirmation 

can assist in the diagnosis by using red blood cell and plasma cholinesterase levels; both are 

typically depressed with acute poisoning, although there is some variation among active 

ingredients as well as variation in levels by severity of poisoning.35 Measurement techniques 

and resultant levels vary among laboratories; therefore, clinicians will need to check with 

their own laboratory for reference values. Red blood cell cholinesterase levels typically are 

more specific for acute poisoning and will be depressed longer than plasma cholinesterase 

levels (often 1–3 months) until enzyme is replaced.3 Interpretation of results can be 

discussed with a pediatric environmental health specialist or clinical toxicologist.
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The parent active ingredient cannot typically be measured in biological specimens. These 

compounds undergo metabolic transformation in the liver and are excreted in the urine 

mostly in their metabolized form, most of which are nonspecific metabolites for all OPs.19 

Exceptions include parathion, methyl-parathion, and chlorpyrifos, all of which have their 

own specific metabolite in addition to the nonspecific metabolites. Urinary metabolites can 

be measured, and human data are available from the CDC on a nationally representative 

sample.19 However, an evidence base to support clinical interpretation of urinary 

concentrations is lacking.

Treatment of OP poisoning (and this applies to the acute treatment of any other pesticide as 

well) begins with the basics of advanced life support, with any necessary airway or breathing 

support as needed. Gastrointestinal (GI) decontamination is controversial. The American 

Academy of Clinical Toxicology and the European Association of Poisons Centres and 

Clinical Toxicologists issued a joint statement on the use of single-dose charcoal for 

poisoned patients (inclusive of all types of poisonings). They stated that activated charcoal is 

most effective when given within 1 hour after the ingestion of a poison, but routine 

administration in all poisonings is not recommended.

Activated charcoal is contraindicated if the patient does not have a protected or intact airway.
36 A randomized controlled trial evaluating the effect of multiple-dose charcoal for 

pesticide-poisoned patients in Asia found no benefit, as measured by a reduction in 

mortality.37 Skin decontamination also is critically important, and clothing should be 

removed. Medical personnel should take measures to protect themselves from contaminated 

skin and clothing, because numerous cases of hospital-acquired OP poisoning have been 

documented.38 Parents or other family caregivers may also be at risk for skin contamination. 

Seizures should be controlled with intravenous lorazepam.3

Atropine can be given as a nonspecific antidote in both OP and carbamate poisoning. It will 

reverse the muscarinic effects of the poisoning; however, it is less effective on central 

nervous system effects. It is given as a dose of 0.05 to 0.1 mg/kg per dose and may be given 

as often as every 15 minutes until respiratory secretions are controlled.3 Notably, this dose is 

10 times the usual dose given during a resuscitation situation, because the purpose is to 

overcome complete blockade of the muscarinic channel. Pralidoxime is also given as a 

specific antidote to reverse the acetylcholinesterase inhibitor complex. The use of 

pralidoxime continues to be of interest, particularly in developing countries, although most 

studies have been performed with adult patients.39,40 The World Health Organization 

recommends its use for all patients who require atropine.41 Its use is indicated for OP 

poisoning, because cholinesterase inhibition usually is permanent in OP poisoning. Use of 

pralidoxime usually is not necessary or recommended for carbamate poisoning, because this 

inhibition is reversible.3

Pyrethrins and Pyrethroid Insecticides

Pyrethrins and pyrethroids are a relatively more recent class of insecticides that have been 

largely replacing the use of cholinesterase-inhibiting insecticides, especially in the consumer 

market. These insecticides are used for structural pest control in urban areas, in gardening or 

agriculture for row crops and orchards, and in the home for pet sprays and shampoo.
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The pyrethrins are botanically derived from pyrethrum, an extract of the chrysanthemum 

plant. For these consumer products, pyrethrins are usually combined with another active 

ingredient: either a longer-acting synthetically derived pyrethroid or one of the 

cholinesterase inhibitors. Pyrethrins are not stable in heat or sunlight and, therefore, are 

usually used more for indoor application. Permethrin is the most widely known example of a 

pyrethrin and is one of the few products licensed for use to apply to human skin, because it 

is commonly used as a pediculicide.3,42,43

Pyrethroids are synthetically derived compounds that have been modified to be more stable 

in sunlight and heat and are, therefore, used more widely for insect control, especially 

outdoors. Toxicity varies widely among pyrethrins and pyrethroids, and, although they are 

less acutely toxic as a class than the cholinesterase insecticides, there is a subgroup of these 

compounds that has been modified with a cyano side chain. This modification creates a 

compound that is significantly more resistant to degradation and potentially more acutely 

toxic than other pyrethroids. Commonly used chemicals in this subgroup include 

deltamethrin, cypermethrin, and fenvalerate—these are the insecticides to which the majority 

of toxic signs and symptoms in the next section apply.43

Toxicology, Clinical Signs, and Symptoms—Pyrethroids exert their toxic effect by 

blocking the sodium channel at the level of the cell membrane. Most clinical reports of 

poisoning occur either through excessive skin contact or through ingestion or inhalation. The 

result is continued hyperpolarization, effectively inhibiting cell function. Some types of 

pyrethroids also work at other sites, including voltage-dependent chloride channels and γ-

aminobutyric acid–gated chloride channels. This appears to be one of the reasons for a 

variety of toxicity found among pyrethroid insecticides.42,43 Pyrethroids with a cyano group, 

also known as type II pyrethroids, constitute most cases of human poisoning.42,43 

Pyrethroids are well absorbed across the GI tract, but limited penetration occurs across the 

skin barrier, which can limit acute toxicity.42,44 Some pyrethroids have a high acute toxicity, 

usually after ingestion.42,45 Pyrethroids are metabolized by the liver and excreted in their 

metabolic forms.

Pyrethroids have adverse effects on the nervous system, GI tract, and skin. Specific signs 

and symptoms are found in Table 2. Similar to OPs, muscle fasciculation, weakness, an 

altered level of consciousness, and seizures can develop after exposures to some pyrethroids.
42–45 Of note, paresthesias, including burning, tingling, stinging, and eventually numbness, 

are characteristic of pyrethroid exposure.46,47 The paresthesias appear to be dose-dependent 

and occur at pyrethroid dosages lower than what would cause systemic toxicity, thereby 

acting as a warning of exposure. The paresthesias are self-limiting once exposure is 

eliminated.48

Laboratory Evaluation and Treatment—Pyrethroid toxicity is identified through 

clinical history and knowledge of exposure to the agent. There are no rapidly available 

diagnostic laboratory tests. Most pyrethroids are metabolized to 3-phenoxybenzoic acid, 

which can be recovered in the urine. CDC national surveys provide biomonitoring 

information on pyrethroid urinary metabolites and can act as comparison for background 

measures of exposure in the general population. However, in the clinical setting, results of 
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metabolite levels are usually obtained from specialty laboratories and are not immediately 

available; therefore, these results not useful in acute clinical management.

Paresthesias are generally self-limiting and resolve within 24 hours.46,48 If exposure is 

interrupted after the onset of paresthesias and other dermal findings, no additional treatment 

is necessary. Vitamin E oil or cream has been shown to improve the symptoms associated 

with the paresthesias.47 The mechanism is not completely clear; however, in experimental 

studies, vitamin E (α-tocopherol) blocked tetramethrin-modified sodium channels.49

Treatment of systemic pyrethroid poisoning is supportive, in general, and there are no 

specific antidotes. Because of the similar features of cholinesterase inhibitor poisoning, 

some patients have been treated erroneously with high atropine, sometimes with disastrous 

results.45 Efforts have been aimed at antagonizing the sodium current resulting from the 

pyrethroid blockade. Several medications have been tested in the animal model, but, to date, 

none have been considered effective antidotes for systemic pyrethroid poisoning in humans. 

For significant neurologic effects, patients should have standard decontamination, including 

GI tract decontamination, supportive respiratory care, seizure control with diazepam or 

lorazepam, and careful dosing of atropine for excessive salivation.42 Proper identification of 

the offending agent is imperative to distinguish these poisonings from OPs and often 

requires a high index of suspicion and a thorough exposure history.

Organochlorine Insecticide (Lindane)

The discussion of acute toxicity for organochlorines is focused on lindane, because most 

other organochlorine compounds have been banned for use in the United States. Other 

organochlorines, including DDT and some of the cyclodienes, including chlordane and 

dieldrin, are important compounds, because they can still persist in human and 

environmental samples. These chronic exposures are of continuing concern for 

developmental health effects, including immunotoxicity, endocrine disruption, and 

neurodevelopmental insults (see Chronic Health Effects of Pesticide Exposure).

Lindane, also known technically as the γ-isomer of hexachlorocyclohexane, is still approved 

in some states for control of lice and scabies. However, in a comparison of in vitro activity 

against lice with other pediculicides, it was the least effective.50 It is efficiently absorbed 

across the skin (approximately 9%) and even more so across abraded skin, such as with 

severe excoriations from scabies.51,52 Signs and symptoms are noted in Table 2. Treatment 

is supportive and includes decontamination and the control of seizures with lorazepam. 

There is no specific antidote. Lindane has been banned in California because of high levels 

found in the water supply.53

Neonicotinoids

Neonicotinoids are a new class of insecticides based on metabolic alterations of nicotine. 

They are used primarily in agriculture and are gaining widespread use for flea control on 

domestic animals. They act on the nicotinic N-acetylcholine receptors and selectively 

displace acetylcholine. They do have a relatively selective affinity for insects as opposed to 

mammals, although there have been a few reports of human poisoning.54–56 The most 
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commonly used neonicotinoid in the United States is imidacloprid. Information about 

toxicity and signs and symptoms can be found in Tables 1 and 2.

N-Phenylpyrazoles

Fipronil is the primary representative of this class and was developed in the mid-1990s. It is 

widely used in flea control on domestic pets. It is also used in ant and roach bait stations, 

agriculture crops, and lawn treatments. It acts by inhibiting γ-aminobutyric acid–gated 

chlorine channels. The inhibition will block chloride passage and result in hyperexcitability 

of the cell.57–59 Signs and symptoms are reported in Table 2.

HERBICIDES

Chlorophenoxy Herbicides

Chlorophenoxy herbicide compounds are often mixed with fertilizers and are used both in 

agriculture and on residential lawns. These compounds are well absorbed from the GI tract 

but are not well absorbed after inhalational or dermal exposure.60 Examples of commonly 

used chlorophenoxy herbicides are 2,4-D and 2,4,5-trichlorophenoxy acetic acid. The half-

lives of these compounds range between 13 and 39 hours. They are mostly excreted 

unchanged in the urine; excretion can be greatly enhanced in an alkaline environment.3,61,62 

More toxic substances that can be produced during the manufacture of these herbicides 

include dioxins, which were contaminants of the herbicide Agent Orange and were found in 

the Love Canal chemical dump site.63

Primary initial effects are on the skin and mucous membranes. Severe poisoning will result 

in metabolic acidosis and possibly renal failure.3,61,64 Specific symptoms are discussed in 

Tables 1 and 2. The compounds can be measured in the urine, although similar to pyrethroid 

insecticides, analyses are generally performed at specialty laboratories, so results are usually 

not immediately available to clinicians. Treatment is primarily supportive and may also 

include forced alkaline diuresis by adding sodium bicarbonate to the fluids and establishing 

a high urine pH and high urine flow.3,61,65

Phosphonate Herbicides (Glyphosate)

Glyphosate is a commonly used herbicide and is commercially available in many products. 

Glyphosate acts on the cell wall of plants, so, theoretically, it should have no effect on 

human cells, at least by way of its primary mechanism of action. Despite this, there are 

numerous reports in the medical literature of adverse events after human exposure, 

particularly unintentional ingestions. Patients have presented with signs and symptoms 

consistent with an aspiration pneumonia–like syndrome, and the offending agent may be the 

hydrocarbon solvent with which the glyphosate is mixed. Treatment is primarily supportive, 

and providers should be vigilant for aspiration pneumonia.

RODENTICIDES (LONG-ACTING ANTICOAGULANTS)

Most currently used rodenticides belong to the class of warfarin-type anticoagulants. Unlike 

warfarin, the superwarfarin agents, such as brodifacoum, have a much longer half-life. 
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Although they have traditionally been available as pellets that can be spread around or in a 

box that the rat can consume, the EPA has recently changed the type of products that are 

available to consumers. Since 2008, superwarfarins can only be sold as a child-resistant bait 

station instead of loose pellets.66

The mechanism of action is inhibition of the synthesis of vitamin K–dependent clotting 

factors. As such, the primary manifestations of toxicity are bleeding and easy bruisability. In 

severe cases, bleeding may be life-threatening. Clinicians who suspect that their patients 

may have ingested a superwarfarin should consider obtaining a prothrombin time (PT; also 

known as the international normalized ratio [INR]).3 However, several studies that have 

analyzed cohorts of exposed children have found very few subjects with an elevated PT 

(INR) or active bleeding. Therefore, in situations in which it is unclear whether a child 

ingested more than a few pellets, it is reasonable to simply observe the child.67–70 Most 

patients can be managed in the outpatient setting as long as the ingestion has been 

recognized early.71

Treatment is vitamin K and should be reserved for patients with elevated PT (INR) levels or 

active bleeding. With severe bleeding or shock, a transfusion of blood or plasma is indicated 

as well.3

CHRONIC HEALTH EFFECTS OF PESTICIDE EXPOSURE

The health implications of the nonacute, relatively low, but often repetitive and combined 

exposures encountered routinely by children are an ongoing focus of concern and inquiry for 

scientists, regulators, and parents.72,73 Pediatricians are well placed to provide guidance to 

parents about potential long-term or subtle health effects from pesticide residues on food, in 

water, or used in homes or schools and on exposure-reduction strategies. However, surveys 

suggest pediatricians often feel ill-prepared with training in this topic, underscoring the 

importance of improving educational opportunities for clinical providers.74–76

The associated health effects of chronic pesticide exposure in children vary, reflecting the 

diversity of toxicological properties of this broad group of differing chemicals. Some of the 

important end points of concern include an increased risk of cancer, abnormal 

neurodevelopment, asthma, perturbation of gestational growth, and endocrine-mimicking 

effects. Health effects of pesticides and the current relative strength of the evidence base are 

reviewed in subsequent sections for each of these health outcomes.

Childhood Cancer

All pesticides undergo in vitro and animal testing to determine their likelihood of causing 

cancer. The EPA maintains a list and classification of all active ingredients in pesticides and 

their potential for carcinogenicity. The method of identifying potential carcinogenicity has 

changed. Before 1996, pesticides were assigned a letter classification (eg, pesticides with the 

“C” classification were considered “possibly carcinogenic”). Subsequently, pesticides have 

been assigned a category such as “likely to be carcinogenic to humans,” “suggestive 

evidence of carcinogenic potential,” “inadequate evidence,” and “not likely.” These 

categories are not directly comparable, so both classifications (before 1996) and categories 
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(after 1996) continue to exist. The pesticides that are categorized as “possibly carcinogenic” 

or “likely to be carcinogenic to humans” are available from the EPA via an e-mailed report.
77 Included in this report are some well-known and widely used OPs, carbamates, 

pyrethroids, and fungicides. Within classes of pesticides, variation in carcinogenicity 

potential exists. Note that a pesticide, such as cypermethrin, that has “replaced” use of 

cancer-causing OPs has cancer-causing potential.

A substantial amount of observational epidemiological data demonstrate a link between 

pesticide exposure and childhood cancers.78–87 However, the evidence base includes studies 

that found no association between childhood cancers and pesticides or few associations that 

cannot be ruled out as a chance finding.88,89 Overall, the most comprehensive reviews of the 

existing literature implicate an association of pesticides with leukemia and brain tumors.78,79

Leukemia—In 1998, Zahm and Ward79 reviewed 18 studies assessing the relationship 

between pesticide exposure and leukemia; 13 studies found an elevated risk, and, for 6 of 

those studies, the association was statistically significant. The most frequently occurring 

associations among the studies were between pesticide exposure and acute lymphocytic 

leukemia.

A 2007 review by Infante-Rivard and Weichenthal78 summarized the 1998 review of Zahm 

and Ward and updated findings from recent studies. Although it was previously postulated 

that childhood exposure to agricultural products or proximity to an agricultural setting would 

present the highest risks, the most commonly associated pesticide exposure in childhood 

acute lymphocytic leukemia studies was household insecticide use. Cases were more likely 

to have had preconception exposure and/or exposures in utero in most studies. The main 

limitations with the studies in the 1998 review included crude exposure assessment, concern 

for recall bias, small numbers of exposed cases, and mixing of different leukemia types.78

In the updated review, 5 of 6 recent case-control studies found a statistically significant 

relationship between pesticide exposure and leukemia.84,85,90–92 In particular, 2 studies 

included the most detailed exposure assessment to date and reported findings related to a 

dose/exposure–response gradient.84,85 The primary risk factors were maternal exposure to 

pesticide between the periods of preconception through pregnancy. The largest of the 2 

studies had 491 cases and an equal number of controls, focused only on acute lymphocytic 

leukemia, included a measure of frequency of use, and considered genetic susceptibility. For 

maternal use of herbicides, plant insecticides, and pesticides for trees during pregnancy, the 

odds ratio (OR) was 1.84 (95% confidence interval [CI], 1.32–2.57), 1.97 (95% CI, 1.32–

2.94), and 1.70 (95% CI, 1.12–3.59), respectively. For parental use during the child’s 

postnatal life, OR was 1.41 (95% CI, 1.06–1.86), 1.82 (95% CI, 1.31–2.52), and 1.41 (95% 

CI, 1.01–1.97) after exposure to herbicides, plant insecticides, and pesticides for trees, 

respectively.84

To further explore associations between pesticides and leukemia, a group of authors 

conducted 2 meta-analyses. They provided similar and additional support to the associations 

described previously. One examined studies that included parental occupational exposure 

(prenatally and in early childhood) and leukemia in their offspring. Maternal occupational 
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exposure, but not paternal occupational exposure, was found to be associated with leukemia. 

The reported OR was 2.09 (95% CI, 1.51–2.88) for overall pesticide exposure, 2.38 (95% 

CI, 1.56–3.62) for insecticide exposure, and 3.62 (95% CI, 1.28–10.3) for herbicide 

exposure.93 The second meta-analysis assessed pesticide exposure in the home and garden 

setting. In this meta-analysis, 15 studies were included, and exposures during pregnancy to 

unspecified pesticides, insecticides, and herbicides were all associated with leukemia (OR, 

1.54 [95% CI, 1.13–2.11], 2.05 [95% CI, 1.80–2.32], and 1.61 [95% CI, 1.2–2.16], 

respectively).94

Brain Tumors—Zahm and Ward’s 1998 review included 16 case-control studies 

examining associations between brain tumors and pesticide exposures. Of these, 12 found an 

increased risk estimate of brain tumors after pesticide exposure; 7 of these findings reached 

statistical significance. Associated exposures were most often from parental use of pesticides 

in the home, in the garden, and on pets. Interpretation of these studies is difficult given the 

inadequate exposure assessments, small numbers because of a relatively rare childhood 

outcome, and a mixture of brain tumor types among cases.79

Since 1998, 10 additional studies have been published, all but one of which demonstrated an 

increased risk estimate of cancer with maternal and/or paternal exposure, although not all 

studies demonstrated statistical significance. Some of the more robust findings come from a 

case-control study with 321 cases of astrocytomas. The risk estimate from maternal 

occupational exposure to insecticides before or during pregnancy was 1.9 (95% CI, 1.1–3.3). 

The risk estimates for paternal exposure for insecticides, herbicides, and fungicides were 

1.5, 1.6, and 1.6, respectively. These risk estimates were just short of reaching statistical 

significance.87 In a cohort study of more than 200 000 patients, paternal exposure in any 

occupation and in agricultural/forestry preceding conception was associated with an 

increased risk of central nervous system tumors (relative risk [RR], 2.36 [95% CI, 1.27–

4.39] and RR, 2.12 [95% CI, 1.08–4.39], respectively).83 For all studies, it appears that 

prenatal exposure to insecticides, particularly in the household, as well as both maternal and 

paternal occupational exposure before conception through birth represent the most consistent 

risk factors.83,86,87,95–100

Ewing Sarcoma—Two case-control studies were performed to evaluate potential parental 

occupational exposures and the development of Ewing sarcoma (ES). One study of 196 

cases and matched controls found an association between ES in boys age 15 years or 

younger and household pesticide extermination (OR, 3.0; 95% CI, 1.1–9.2). There was no 

association between parental occupational exposure to pesticides and ES.101 A study in 

Australia compared 106 cases of either ES or peripheral primitive neuroectodermal tumor 

with 344 population-based controls. Exposures included prenatal exposure from conception 

through pregnancy and also included parental exposures through the time of the child’s 

diagnosis. Notable elevated risks were observed for mothers who worked on farms (OR, 2.3; 

95% CI, 0.5–12.0), mothers who handled pesticides (OR, 2.3; 95% CI, 0.6–8.5), patients 

who ever lived on a farm (OR, 2.0; 95% CI, 1.0–3.9), and farming fathers at the time of 

conception and/or pregnancy (OR, 3.5; 95% CI, 1.0–11.9).102 Of note in this study, all 95% 
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CIs include 1.0, so they did not reach statistical significance, although some ORs 

approached it.

In summary, there is some evidence of increased risk of developing several childhood 

cancers after preconception and/or prenatal exposure to pesticides. The strongest evidence 

appears to be for leukemia, which is a relatively more common type of childhood cancer 

than brain tumors. Maternal exposure to insecticides and paternal occupational exposure 

appear to carry the greatest risk.

Neurodevelopment/Neurobehavioral Effects

Many pesticides have well-described acute neurotoxicant properties that have been described 

previously in this report in relation to human poisoning episodes and acute toxic 

mechanisms. However, information on the potential neurodevelopmental toxicity arising 

from chronic, low-level exposure in gestational or postnatal life is inadequate or lacking for 

most pesticides in use. There is a growing available evidence base supporting an adverse 

effect on neurodevelopment from 2 classes of insecticides, the organochlorines (specifically 

DDT and its metabolite p,p′-dichlorodiphenyldichloroethylene [DDE]) and, most recently, 

OPs. Several recent reviews of the evidence base are now available.103–105

Although chronic neurologic sequelae after acute OP poisoning have been observed in 

multiple adult studies, the epidemiological data on children are limited.106,107 A recent 

neuropsychological evaluation of healthy school-aged children who had experienced 

hospitalization for acute OP poisoning before the age of 3 years found subtle but significant 

deficits in their ability to restrain and control their motor behaviors compared with both 

children who had no history of poisoning and children who had a history of early life 

poisoning with kerosene.108

Of greater public health concern is the potential neurotoxicity from routinely encountered 

chronic exposures. This is the subject of study in ongoing, large National Institutes of 

Health/EPA-sponsored prospective birth cohorts. Studies in 2 urban settings and a rural 

farmworker community have enrolled women during pregnancy with an objective 

assessment of exposure by the use of environmental measurements and biological 

monitoring.104,109,110 Follow-up assessment of neurodevelopment and neurobehavior in 

their children with the use of validated tools such as the Brazelton Neonatal Assessment 

Scales, the Bayley Scales of Infant Development, the Child Behavior Checklist, and IQ 

testing at comparable intervals is being conducted. To date, remarkably similar findings 

relating adverse neurodevelopmental and neurobehavioral outcomes associated with prenatal 

OP exposure have been made in these distinct cohort studies. For example, in 2 cohorts, the 

Brazelton Neonatal Behavioral Assessment Scale was administered in the first weeks of life. 

In both, deficits in the primitive reflex domain were noted with the other 6 of 7 Brazelton 

Neonatal Behavioral Assessment Scale domains not associated with prenatal OP exposure.
111,112 Two of the cohorts have published their Bayley Mental and Psychomotor 

Developmental Index results conducted during the toddler years (ages 2–3).113,114 

Significantly poorer mental development was associated with higher OP exposure in both, 

whereas one of the cohorts also observed OP-associated deficits in the motor scale at 3 years 

of age. Results of Child Behavior Checklist assessments are also available for 2 cohorts, 
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conducted at 2 years of age in one and 3 to 4 years of age in the other. Significantly 

increased scores representative of pervasive developmental disorder were associated with 

higher OP exposure in both.113,114 One cohort also had increased scores for inattention and 

attention-deficit/hyperactivity disorder subscales.114 All 3 cohorts have found decrements in 

IQ testing associated with higher prenatal exposures at the time of follow-up at 7 years of 

age.115–117

In one of the cohorts, postnatal exposure effects in the child have been investigated and 

reported. Interestingly, improved mental development based on Bayley’s Index at 12 and 24 

months of age is associated with higher contemporary child excretion of OP urinary 

metabolites. Explanations for this are debated but include theories that children with higher 

cognitive abilities may explore their environments more thoroughly and, as such, experience 

higher exposure.

Recently, a US-based cross-sectional analysis demonstrated that children with high urinary 

concentrations of OP metabolites were more likely to have a diagnosis of attention-deficit/

hyperactivity disorder. This study used data from a representative sample of 8- to 15-year-

old children collected as part of the NHANES conducted by the CDC.118

One study based in Ecuador has examined the relationship of OP exposure on 

neurodevelopment in school-aged children.119 Prenatal exposure (based on mother 

occupational history questionnaire) was associated with a decrease on the Stanford-Binet 

copying test among the study subjects at 7 years of age. Their concurrent exposure (on the 

basis of OP urinary metabolites) was associated with an increase in simple reaction time.

The toxicological mechanisms that underlie the adverse neurodevelopmental observations 

are also under investigation. Interestingly, noncholinergic mechanisms are being deciphered 

in animal models and in vitro studies, distinct from the well-described mechanism of acute 

OP toxicity (cholinesterase inhibition) and occurring at doses much lower than required to 

inhibit cholinesterase.120

Well-designed recent cohort studies and previous work including animal models suggest that 

OP exposures that are being experienced by US children may have adverse 

neurodevelopmental consequences. The plasticity of these effects and clinical implications 

are as yet unclear, although continued assessments as these cohorts age and enter school age 

are planned and may add clarity. The potential modification of these effects on the basis of 

genetic factors, specifically metabolic enzymes involved in pesticide detoxification 

pathways, are also being explored in these cohorts. For example, preliminary analyses 

indicate that children with a particular variant of the paraoxonase I gene, which is associated 

with lower levels of this OP-metabolizing enzyme, may be at higher risk of health 

consequences from OP exposure.121,122

Although DDT has not been used since the early 1970s, its persistence in the environment 

and fat solubility results in ongoing detection of the parent compound and breakdown 

product (DDE) in contemporary US populations.19 The potential adverse 

neurodevelopmental consequences of prenatal DDT (2 studies) and DDE (several studies) 

was studied in one of the recent cohorts described previously in this report, which was a 
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predominately Mexican American farmworker population. In this cohort, maternal serum 

DDT levels were negatively associated with mental development and psychomotor 

development at 12 and 24 months.123 Maternal serum DDE was associated with reduced 

psychomotor development at 6 months and mental development at 24 months. A review of 

the overall evidence base reveals that studies of in utero DDE exposure and 

neurodevelopment are mixed, with at least 2 studies showing decrements in psychomotor 

function. Both of the 2 studies that have evaluated effects of DDT exposure observed 

cognitive deficits.103

In summary, the existing and recently emerging evidence base suggests that organochlorine 

and OP exposure in early life, particularly prenatally, may have adverse consequences on 

child neurodevelopment.

Physical Developmental Effects

In addition to neurodevelopmental toxicity, there is also considerable concern of physical 

developmental toxicity to the embryo and fetus from pesticide exposure. These concerns 

arise from multiple epidemiological studies that have investigated their relationship to 

adverse pregnancy outcomes including intrauterine growth retardation, preterm birth, fetal 

death, and congenital anomalies. The available studies are heterogeneous in design, are 

conflicting in results, and often have an insufficient exposure assessment. Nonetheless, 

pesticides remain one of the most common environmental exposures of concern cited in 

relation to adverse pregnancy outcomes and have been the focus of recent reviews on the 

topic, which include weight of the evidence evaluations.124–126

Among studies that are able to address specific types of pesticide exposures, there are more 

data focused on the organochlorine and OP insecticides or phenoxy or triazine herbicides. 

These represent the currently or historically (eg, organochlorine) most heavily used 

pesticides. This review summarizes the highlights of the existing evidence base with a focus 

on studies that incorporate direct measures of exposure for individual study subjects.

Fetal Death and Birth Defects—A California-based case-control study found an 

increased risk of fetal death attributable to congenital anomalies when OP application 

occurred in the residential area of the mother during weeks 3 through 8 of pregnancy—

consistent with organogenesis.127 One other study found an elevated risk of spontaneous 

abortion associated with chlorophenoxy herbicides. However, as with some studies of birth 

defects discussed previously, this study also relied on self-report and less reliable means of 

exposure assessment.128 Results are not consistent, because other studies have not found 

association of parental exposure to OPs with spontaneous abortion or still-birth.129–131

Birth defects will be discussed first, followed by other adverse birth outcomes. The more 

common birth defects include orofacial clefts, limb defects, and neural tube defects, which 

are generally the defects studied in relationship to pesticide exposures. Although several 

studies have found associations of maternal or paternal exposures with a wide variety of 

birth defect categories, all of the studies used indirect measures of exposure and most were 

ecological study designs, making interpretation of the adverse birth outcome evidence base 

inadequate and unreliable.125
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A 1995 review article discussed the available evidence for associations between birth defects 

and potential pesticide exposure.132 Five studies were included that assessed various birth 

defects (central nervous system, oral cleft, limb defects) compared with maternal 

agricultural occupation. Four of those 5 reported an elevated RR or an OR ranging from 1.6 

to 5.0; however, only 2 were statistically significant.133–137 Of note, in these studies, there 

was not an assessment to any single pesticide; rather, the “exposure” was maternal 

occupation.

Six additional studies from this period evaluated maternal pesticide exposure at work and the 

development of birth defects. Of the 5 studies with an elevated OR or RR, ranging from 1.3 

to 7.5,138–142 3 were statistically significant. Unfortunately, some of these studies included 

small numbers of cases, and others were likely to have significant exposure 

misclassification. The conclusion of this review was that there are some indications of 

elevated risk but no clearly convincing evidence.143

Two studies from Minnesota have reported a relationship between physical defects in 

children and paternal occupation of pesticide applicator. The first study compared data from 

a birth registry between 1989 and 1992. A geographic section of Minnesota that had the 

highest agriculture activity and highest frequency of use of chlorophenoxy herbicides and 

fungicides was also found to have the highest rate of birth defects (30.0/1000). By 

comparison, the general population in this same region had a birth defect rate of 26.9/1000. 

Interestingly, there was a seasonal effect, with the highest frequency occurring in infants 

who were conceived in the spring, the same time as most herbicide and some fungicide 

application (OR, 1.36; CI, 1.10–1.69).144 The second study is a cross-sectional study that 

used a survey of licensed applicators and subsequently more in-depth interviews of either/

both the applicator and female partners of licensed applicators when possible. The study 

eventually included live births fathered by 536 applicators. The birth defect rate in this study 

was 31.3/1000, which is statistically significantly higher than what the previous study found 

for the general population. Again, there was a significant difference in season of conception 

(7.6% in spring versus 3.7% in other seasons).145

Studies of birth defects often include all types within the analysis because of insufficient 

numbers of individual defects to allow adequate power of statistical analyses. A meta-

analysis used 19 studies that had sufficient data to be included to estimate the effects of 

pesticides on orofacial clefting. Maternal occupational exposure to pesticides was associated 

with orofacial clefts (OR, 1.37; 95% CI, 1.04–1.81). There was a weaker association for 

paternal occupation (OR, 1.16; 95% CI, 0.94–1.44).146 Studies on 3 other birth defects—

cryptorchidism, hypospadias, and polythelia—will be discussed in the section on endocrine 

effects.

In summary, a small risk elevation is noted for birth defects and pesticide exposure, but the 

findings are not robust, and the data specific to pesticide subtypes are not adequate.

Adverse Birth Outcomes (Low Birth Weight, Decreased Gestational Age)—
DDT (and its major metabolite DDE) is the organochlorine that has been most extensively 

examined in relation to birth defects, fetal death, and fetal growth, with mixed findings. Fetal 
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exposures, as determined by maternal serum or umbilical cord blood levels, have been 

associated with preterm birth, decreased birth weight, and intrauterine growth retardation.
147–151 However, not all studies reported significant associations between exposure with 

infant birth weight or preterm birth, including a relatively recent study of Mexican American 

farmworking women in the United States with higher exposures in comparison with a 

similar group of a national sample of nonfarmworking Mexican American women.142,152 In 

the largest cohort study to date (a US cohort of births between 1959 and 1966), DDE 

concentrations in maternal serum during pregnancy demonstrated a dose–response 

relationship to risk of preterm delivery and delivering small for gestational age (SGA) 

infants.147

Exposure to pesticides is associated with risk of decreased birth weight. In a study 

conducted before recent regulatory actions that reduced their residential use, exposure to the 

OPs chlorpyrifos and diazinon were associated with decreased birth weight in a New York 

City cohort.110 In another New York City cohort, birth weight was reduced among mothers 

with higher OP exposure levels in pregnancy, but only among those with a genetic 

polymorphism of an OP detoxification enzyme (paraoxonase 1 or PON1).150 In a similar 

longitudinal pregnancy cohort conducted among Latina farmworkers in agricultural 

California, no association of maternal pregnancy exposure to OPs and birth weight was 

determined, but a reduction in gestational age was associated.153

An ecological study determined that women in a rural region of Iowa with increased levels 

of triazine, metolachlor, and cyanazine herbicides in the drinking water had an elevated risk 

of delivering an infant with intrauterine growth retardation compared with women in other 

parts of the state.154 A study based in France reported that atrazine levels in municipal 

drinking water throughout pregnancy were not associated with increased risk of delivering 

an SGA infant but that the risk of delivering an SGA infant increased when the third 

trimester occurred in whole or in part during the period of May through September, when 

atrazine levels typically peak.155

Summary: Physical Developmental Defects

In summary, the true extent and nature of pesticide exposure on adverse fetal growth and 

birth outcomes is unknown despite suggestive epidemiological studies that link some of the 

most widely used pesticides to reduced intrauterine growth, fetal death, preterm birth, and 

congenital anomalies. Very little is known about many pesticide types in current use, 

including synthetic pyrethroids and carbamate insecticides, rodenticides, and fungicides. 

Studies that examine the timing and extent of exposure to pesticides and exposure to 

pesticide mixtures with validated exposure assessment techniques including biological 

markers are needed. The potential for differential vulnerabilities because of genetic 

polymorphisms that influence the toxicological properties of these exposures must also be 

explored.

ENDOCRINE EFFECTS

An emerging concern, although less well studied in humans, is the potential effects that 

some chemicals including pesticides may have on the endocrine system. Some of the most 
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notable pesticides thought to have such effects are the organochlorine pesticides, such as 

DDT, endosulfan, methoxychlor, chlordecone, chlordane, and dieldrin. Other herbicides 

(atrazine, 2,4-D, and glyphosate) and fungicides (vinclozolin) also have some endocrine 

activity.156–159 The associations are very complex and are primarily based on in vitro and 

animal studies. Estrogen-mimicking properties tend to be the most commonly reported, 

although effects on androgen and thyroid hormones, among others, are also reported. 

Feminization has been noted in alligators found in lakes highly contaminated by 

organochlorine pesticides.160 Hayes et al161 have studied the effects of atrazine on 

amphibians and have noted a 10-fold decrease in testosterone from exposure to 25 ppb of 

atrazine in mature male frogs. The mechanism of the latter appears to be activation of the 

enzyme aromatase, which promotes conversion of testosterone to estrogen.162

The human epidemiology literature is limited on endocrine effects from pesticides. One 

report from Macedonia noted some degree of early pubertal findings, primarily premature 

thelarche, which was hypothesized to be related to organochlorine pesticide exposure.163 A 

study in 2000 with 48 patients, 18 of which had cryptorchidism, first raised the hypothesis 

about an association with organochlorine pesticides. An association between cryptorchidism 

and organochlorine pesticide levels has been hypothesized.164 Since then, additional case-

control studies have been conducted to examine the effects of organochlorines on endocrine-

related birth outcomes, cryptorchidism, hypospadias, and/or polythelia. Two focused on fetal 

exposures from maternal levels of DDE alone and development of cryptorchidism and 

hypospadias.165,166 Bhatia et al165 calculated an OR of 1.34 (95% CI, 0.51–3.48) for the 

association of cryptorchidism and DDE and 1.18 (95% CI, 0.46–3.02) for the association of 

hypospadias and DDE. Longnecker et al166 estimated an OR of 1.3 (95% CI, 0.6–2.4) for 

the association between DDE and cryptorchidism and an OR of 1.2 (95% CI, 0.6–2.4) the 

association between DDE and hypospadias. The modest association is felt to be inconclusive 

with the imprecision in risk estimates and suggests that a larger sample size may be needed. 

A third case-control study found inconclusive results on the effect of heptachlor and β-

hexachlorocyclohexane levels in pregnant women on cryptorchidism. For heptachlor, the OR 

was 1.2 (95% CI, 0.6–2.6), and for β-hexachlorocyclohexane, the OR was 1.6 (95% CI, 0.7–

3.6). The sample size in this study was 219 cases, compared with 564 controls.167

Two nested case-control studies have examined the possibility that multiple organochlorine 

compounds will have a cumulative effect on the development of urogenital abnormalities in 

boys.168,169 Fernandez et al168 reported that total xenoestrogens as well as detectable 

pesticide levels were associated with cryptorchidism and/or hypospadias. They found 

elevated ORs in the range of 2.19 for endosulfan to 3.38 for lindane. All 95% CIs were 

noted to be statistically significant. The study in Finland and Denmark reported a significant 

relationship between chlordane and cryptorchidism but no other relationships between 7 

other individual organochlorines. However, combined analysis of the 8 persistent pesticides 

did demonstrate a statistically significant increase in cryptorchidism in exposed boys.169

Testing chemicals is an important and necessary step for the EPA to determine potential 

long-term risks from pesticide during the registration or re-registration process. There has 

been progress in the development of appropriate biomarkers to evaluate chemicals for the 

presence of endocrine-disruption qualities. The ability to measure DDE and dioxins from 
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human milk has been developed.170 More recently, a biomarker for xenoestrogen mixtures 

was developed in Spain.171

In summary, there is compelling basic science evidence for endocrine-mimicking effects of 

several pesticide chemicals that is sound and scientifically plausible. Human data are slowly 

emerging but not yet conclusive.172

Asthma

Given the widespread use of pesticides and the high morbidity of asthma in children, 

questions have been raised regarding pesticides as triggers as well as risk factors for incident 

disease. Concern is raised by a mounting adult occupational literature associating pesticides 

with asthma or other measures of respiratory health. In addition, preliminary toxicological 

data provide mechanisms that link pesticides and asthma. An important limitation of most 

epidemiological studies to date is the lack of exposure specificity regarding pesticide 

chemicals or chemical classes. In addition, studies regarding children are few.

There is indirect evidence that pesticides skew the immune response toward the T helper 2 

(Th2) phenotype associated with atopic disease. The National Institutes of Health/EPA-

sponsored rural birth cohort described above regarding evaluation of neurodevelopmental 

effects has also observed that maternal agricultural work was associated with a 26% increase 

in proportion of Th2 cells in their 24-month-old infants’ blood samples.173 The percentage 

of Th2 cells was associated with both physician-diagnosed asthma and maternal report of 

wheeze in these infants. This population of largely Mexican American farmworkers was 

selected for study on the basis of the relatively high use of OP pesticides in this agricultural 

area.

Animal-based toxicological mechanistic models include OP-induced airway hyperreactivity 

via alteration in muscarinic receptor function in airway smooth muscle and oxidative stress 

induced by OP-related lipid peroxidation.174–177

The few epidemiological data on pesticides and respiratory health in children have mixed 

results. In a cohort of rural Iowan children, any pesticide use indoors or any outdoor use in 

the previous year was not significantly associated with asthma symptoms and prevalence.178 

Contrarily, a cross-sectional analysis of Lebanese children identified increased risk of 

chronic respiratory symptoms, including wheeze, among those with any pesticide exposure 

in the home, exposure related to parent’s occupation, and use outside the home. The highest 

risk was observed for children whose parents had occupational exposure to pesticides (OR, 

4.61; 95% CI, 2.06–10.29).179 However, given this study’s cross-sectional design, it is not 

possible to discern whether the pesticide exposure preceded the diagnosis of asthma.

Among exposures in the first year of life explored in a nested case-control study of the 

Southern California Children’s Health Study, both herbicides and pesticides/insecticides had 

a strong association with asthma diagnosis before 5 years of age (OR, 4.58 [95% CI, 1.36–

15.43] and OR, 2.39 [95% CI, 1.17–4.89], respectively).180

More published data are available regarding adult farmers and adult rural residents. These 

studies more consistently support a link between pesticides and respiratory symptoms or 
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chronic respiratory disease, such as asthma.181,182 For example, use of multiple individual 

pesticides was evaluated in relation to self-reported episodes of wheeze in the previous year 

in a large cohort of commercial pesticide applicators (adults) and farmers enrolled in the 

Agricultural Health Study.182 Among the pesticides classes, several OPs showed 

associations with wheeze, including several that demonstrated a dose–response trend. 

Chlorpyrifos, malathion, and parathion were positively associated with wheeze among the 

farmers; for the commercial applicators, the OPs chlorpyrifos, dichlorvos, and phorate were 

positively associated with wheeze. Among commercial applicators, the strongest OR was for 

applying chlorpyrifos on more than 40 days per year (OR, 2.40; 95% CI, 1.24–4.65). 

Elevated risk for wheeze related to herbicide use was almost exclusively associated with 

chlorimuron-ethyl (urea-derivative class).

Similar studies addressing the respiratory health implications for children for specific 

pesticide chemical types or groups are rare. However, for DDT, there is some emerging 

evidence for a link between metabolites of DDT and asthma risk.183,184 In a prospective 

cohort study of children in Spain, wheezing at 4 years of age increased with increasing 

levels of DDE at birth. The adjusted RR for the children with exposure in the highest 

quartile was 2.63 (95% CI, 1.19–4.69). The use of physician-diagnosed asthma (occurring in 

1.9% of children) instead of wheezing as the outcome variable also resulted in a positive 

association, although it was not statistically significant.184

In summary, the available data regarding chronic exposure to pesticides and children’s 

respiratory health remain limited. Studies that incorporate pesticide-specific exposure 

assessment and markers of biological mechanisms and consider the influence of timing of 

exposure across the life span are needed.

THE PESTICIDE LABEL

Pesticides for sale or use in the United States must be registered with the EPA, and this 

includes approval of the product label, which contains the EPA registration number. The 

pesticide label contains several types of information that may be important in understanding 

and preventing acute health consequences associated with their use.185

The product label identifies the active ingredient and provides the manufacturer’s contact 

information. The label does not specify the particular class of pesticide for the active 

ingredient, which may make it difficult for a physician to identify potential toxic effects. 

Information about “other” or “inert” ingredients, which may account for up to 99% of the 

product, is not required to be disclosed on the label. These constituents include chemicals 

with known toxicity. The physician treating a patient may request this from the 

manufacturer; however, delay in information may compromise optimal clinical care. The 

local or regional poison control center plays an important role as a resource for any 

suspected pesticide poisoning. The EPA is currently considering rule-making changes that 

would expand the disclosure of information on inert ingredients. One of the options under 

consideration includes labeling 100% of the ingredients.186
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The “directions for use” section on the label explains when, how, and where the pesticide 

may be applied. The label is considered the law; therefore, any use of the product in a 

manner inconsistent with the label is a violation of the Federal Insecticide, Fungicide, and 

Rodenticide Act (Pub L No. 80-104).187 Information on recommended storage of the 

product and disposal of the container is also printed on the label.

The label will contain a signal word and symbol to identify acute toxicity potential: 

“danger” along with the word poison and the skull and crossbones symbol signifies high 

acute toxicity; “warning” signifies moderate acute toxicity; and “caution” represents slight 

acute toxicity. There is a section for precautionary statements regarding the potential hazards 

to people or pets and the actions that can be taken to reduce these hazards, such as wearing 

gloves or other protective equipment. Basic first aid advice for responding to dermal, 

inhalational, and/or oral exposure is provided. Some labels contain a “note for physicians” 

that includes specific medical information. The label does not provide any information or 

warnings about the potential for chronic toxicity arising from normal use or misuse of the 

pesticide. An example of an interactive pesticide label can be found at the EPA Web site.188 

It includes “pop-up” features that define each of the components on the pesticide label.

STATE OF PESTICIDE KNOWLEDGE AMONG PEDIATRICIANS

Self-reported medical education and self-efficacy suggests pediatricians are not well 

prepared to identify pesticide exposure and illness, including taking a relevant environmental 

history or discussing pesticide risks with their patients.189–191 Even in agricultural areas of 

the Pacific Northwest, where pesticide use is heavy, a survey of health care providers who 

serve high volumes of agricultural farmworkers and their families found that 61% did not 

feel comfortable responding to patient/client questions regarding pesticides on the basis of 

their training, background, and experience.75 Among academic pediatricians with an interest 

in pediatric environmental health, pesticides were among the topics they felt least prepared 

to teach to their trainees.192 Given the widespread use of pesticides and concerns for child 

health, opportunities to increase pesticide competency in pediatric medical education are 

likely to prevent missed diagnoses and reduce exposure because of improved anticipatory 

guidance.

Clinicians must have a high index of suspicion to identify pesticide poisoning. Identification 

and treatment of acute pesticide poisoning requires familiarity with the toxic mechanisms 

and related signs and symptoms of the pesticide classes. For example, when evaluating a 

patient with status epilepticus or mental status changes, certain insecticides belong in the 

differential among the numerous and more common etiologies. Eliciting an environmental 

history will help decipher the relative importance of pesticides in further clinical decision-

making. The environmental history is a general tool for addressing potentially hazardous 

environmental exposures and is discussed in detail in the Pediatric Environmental Health 

manual from the AAP.193
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EFFORTS TO REDUCE PESTICIDE EXPOSURE

Dietary Considerations

Dietary modifications can help reduce pesticide exposure. As mentioned previously, 

consuming organic produce has shown a reduced amount of urinary pesticide levels in 

comparison with a conventional diet.22 Because many food-based pesticide residues occur 

on the surface of food crops, other practical approaches may be used to reduce exposures by 

washing produce, peeling off outer layers of leafy vegetables, and removing peels from 

fruits and vegetables. Trimming fat from meat and fat and skin from poultry and fish may 

reduce residues of persistent pesticides, such as the organochlorines, that concentrate in 

animal fat.

Efforts to address and reduce chronic pesticide exposure via the food supply in children have 

included regulatory approaches that consider the unique vulnerability of the developing child 

in policy decision-making. For example, the 1996 Food Quality Protection Act (Pub L No. 

104-170, Section 405) required that the EPA use an additional 10-fold margin of safety 

regarding limits of pesticide residues on food (unless there are data that show a less stringent 

residue level is safe for prenatal and postnatal development; for description, see http://

www.epa.gov/opp00001/factsheets/riskassess.htm).

Integrated Pest Management

In addition to food residues, use of pesticides in and around the home and other settings 

where children spend time (child care, school, and playgrounds and sports fields) is an 

important influence on the chronic and cumulative exposure to pesticides among US 

children. Most of the pest problems that occur indoors as well as control of lawn and garden 

pests can be addressed with least toxic approaches, including integrated pest management 

(IPM) techniques. IPM focuses on nontoxic and least toxic control methods to address pest 

problems have been promoted and adopted for residential, school, and agricultural settings 

(fact sheets available at http://www.epa.gov/opp00001/factsheets/ipm.htm).

“Integrated” refers to employment of complementary strategies of pest control, which may 

include mechanical devices; physical devices; genetic, biological, and cultural management; 

and chemical management. For example, to control cockroaches, a family could be 

counseled to keep garbage and trash in containers with well-fitted lids, eliminate plumbing 

leaks or other sources of moisture, store food in insect-proof containers, vacuum cracks and 

crevices, clean up spills immediately, and use the least-toxic insecticides, such as boric acid, 

in cracks and crevices or bait stations. The goal is to target the pest and limit the effect on 

other organisms and the environment. Although developed with a focus on agricultural 

insect pests, IPM programs and knowledge have extended to address weeds and pest control 

in residential settings and schools, commercial structures, lawn and turf, and community 

gardens.

Within agriculture, IPM has been recognized and promoted for decades; however, 

inadequate leadership, coordination, and management of US Department of Agriculture IPM 

programs were identified as impediments to adequate progress in a 2001 report.194 The 
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report provided the basis for an ongoing national roadmap effort to improve ongoing 

development of increased IPM in agriculture.

To protect children, IPM in schools has been recommended by the US Department of 

Agriculture, EPA, American Public Health Association, and National Parent Teacher 

Association. Many states and local municipalities have adopted programs and resources to 

encourage IPM in public places, in addition to homes and schools (see Table 3). IPM 

strategies seek to minimize insecticide use by applying strategies such as cleaning up food 

and water, sealing cracks and crevices, and using pesticides that are contained in baits or 

traps, which are far less likely to pose a health concern compared with any type of broadcast 

spray application. Avoiding combination products with pesticides and fertilizers (ie, “weed 

and feed” preparations) is advised for lawn maintenance, because these tend to result in 

overapplication of pesticides. Hand weeding is always a reasonable alternative to herbicides. 

However, if an herbicide is to be used, some (such as glyphosate) have better acute human 

toxicity profiles than others (such as 2,4-D). Even so, glyphosate is not without its risks. 

Most cases of moderate to severe toxicity have occurred after intentional (suicidal) 

ingestion.195 Using safe storage practices (in a locked cabinet or building) and not reusing 

pesticide containers are important components toward the prevention of acute poisonings 

after unintentional ingestion by small children. Reliable resources for useful information on 

pest-control alternatives and safe use of pesticides are available from the EPA and University 

of California-Davis (Table 3).

Spraying in the Community: Right to Know

Although there is no federal mandate for notification of pesticide use in communities, many 

states, locales, or schools have implemented requirements for posting warning signs or 

developing registries to alert individuals of planned pesticide application (see Table 3). 

These are designed to allow the public to make decisions to avoid exposures during 

application or soon after from residues. Other local policies that have been developed 

include restricting spray zones that create buffers from schools or other areas or restrict 

specific types of pesticide products in schools. Pediatricians can play a role in the promotion 

of development of model programs and practices in the communities and schools of their 

patients. For example, in some communities, pediatricians have participated in local 

organizations that have successfully advocated for no pesticide application in schools.

SUMMARY

Pesticides are a complex group of chemicals with a wide range of acute and chronic toxicity. 

Poison control centers report lower rates of more severe poisonings but continue to report 

similar total numbers of acute exposures among children. There is a growing body of 

literature that suggests that pesticides may induce chronic health complications in children, 

including neurodevelopmental or behavioral problems, birth defects, asthma, and cancer. 

Pediatricians are a trusted source of information for families and communities, although 

current training focused on pesticide toxicity and environmental health, in general, is 

limited. Pediatricians should be familiar with the common pesticide types, signs and 

symptoms of acute toxicity, and chronic health implications. Efforts should be made to limit 
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children’s exposure as much as possible and to ensure that products released to the 

marketplace have been appropriately tested for safety to protect fetuses, infants, and children 

from adverse effects.

ABBREVIATIONS

CDC Centers for Disease Control and Prevention

CI confidence interval

2,4-D 2,4-dichlorophenoxyacetic acid

DDE p,p′-dichlorodiphenyldichloroethylene

EPA Environmental Protection Agency

ES Ewing sarcoma

GI gastrointestinal

INR international normalized ratio

IPM integrated pest management

NPDS National Poison Data System

OP organophosphate

OR odds ratio

PT prothrombin time

RR relative risk

SGA small for gestational age

Th2 T helper 2
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TABLE 1

Major Pesticide Classes and Selected Examples

Pesticide Class Examples Toxicity Comment, Uses

Organochlorines DDT, endrin, aldrin, 
chlordane, lindane

• High toxicity • Many organochlorines 
now banned in the 
United States

• Lindane has been 
banned in California, 
elsewhere used for 
control of lice and 
scabies

• DDT and other 
organochlorines have 
long metabolic 
disposition and are 
stored in fatty tissues 
and can persist in the 
environment

Organophosphates Parathion, chlorpyrifos, 
dichlorvos, acephate, methyl-
parathion, malathion, phorate

• Most OPs are highly 
toxic

• Malathion is 
considered relatively 
less toxic than other 
OPs

• Parathion is banned 
for use in the United 
States

• Chlorpyrifos is no 
longer approved for 
residential use

• Most others are used 
for insect control in 
both agricultural and 
home settings

• Malathion is an 
approved treatment of 
head lice

N-Methyl carbamates Aldicarb, carbaryl, carbofuran, 
pirimicarb, propoxur

• Aldicarb and 
carbaryl are both 
highly toxic

• Other carbamates 
have a relatively 
moderate toxicity

• Insect control in 
agricultural and home 
settings

Pyrethrins and pyrethroids Permethrin, cyano-pyrethroids: 
deltamethrin, cypermethrin, 
fenvalerate

• Permethrin has 
relatively low 
toxicity

• Other pyrethroids 
have moderate 
toxicity

• Permethrin is a 
common pediculicide

• Most other 
pyrethroids are 
commonly used to 
control insects, often 
used in home and 
garden

Neonicotinoids Imidacloprid • Relatively newer 
class of insecticides

• Have relatively 
lower toxicity than 
OPs and carbamates

• Selective affinity 
toward insect nicotinic 
acetylcholine 
receptors compared 
with mammalian 
nicotinic acetylcholine 
receptors

• Often used as spot-on 
flea control for 
domestic animals
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Pesticide Class Examples Toxicity Comment, Uses

N-Phenylpyrazole insecticides Fipronil • Relatively newer 
class of insecticides

• Often used as spot-on 
flea control for 
domestic animals

• Yard treatments for 
insect control

Phosphonate herbicides Glyphosate • Because of primary 
mechanism of 
action, has relatively 
low toxicity from 
active ingredient.

• Toxicity often due to 
the accompanying 
organic solvent

• Acts on plant cell wall

• Commercially 
available in many 
products

Chlorophenoxy herbicides 2,4-D, 2,4,5-T • Moderate toxicity • Weed control

Dipyridyl herbicides Paraquat, diquat • Highly toxic • Infrequently used

• Paraquat toxicity often 
requires lung 
transplant

Long-acting anticoagulants Brodifacoum (superwarfarins) • Rodenticides

• Longer-acting than 
warfarin

• Recently eliminated 
packaging as loose 
pellets

2,4,5-T, 2,4,5-trichlorophenoxy acetic acid.
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TABLE 2

Clinical Signs and Symptoms

Class of Compounds Signs and Symptoms Special Notes, Laboratory Evaluations, 
Specific Treatments,
or Antidote

Organophosphate and carbamate 
insecticides

• Nonspecific early symptoms: 
headache, nausea, vomiting, 
abdominal pain, and dizziness

• Sometimes hypersecretion: 
sweating, salivation, lacrimation, 
rhinorrhea, diarrhea, and 
bronchorrhea

• Progressive symptoms: muscle 
fasciculation, muscle weakness, and 
respiratory symptoms 
(bronchospasm, cough, wheezing, 
and respiratory depression)

• Bradycardia is typical, although 
early in acute poisoning, 
tachycardia may be present

• Miosis

• Central nervous system: respiratory 
depression, lethargy, coma, and 
seizures

• Red blood cell and plasma 
cholinesterase levels

• Measure nonspecific 
metabolites for most OPs

• Specific metabolites can be 
measured for chlorpyrifos 
and parathion

• Atropine is primary antidote

• Pralidoxime is also an 
antidote for OP and acts as a 
cholinesterase reactivator

• Because carbamates 
generally produce a 
reversible cholinesterase 
inhibition, pralidoxime is not 
indicated in these poisonings

Pyrethroids • Dermal: skin irritation and 
paresthesia

• Nonspecific symptoms including 
headache, fatigue, vomiting, 
diarrhea, and irritability

• Similar findings found in OPs, 
including hypersecretion, muscle 
fasciculation, pulmonary symptoms 
and seizures

• At times have been mistaken 
for acute OP or carbamate 
poisoning and treated with 
atropine with potentially 
adverse or disastrous results

• Symptomatic treatment

• Vitamin E oil for dermal 
symptoms

Neonicotinoids • Disorientation, agitation—severe 
enough to require sedation, 
drowsiness, dizziness, weakness, 
and, in some situations, loss of 
consciousness

• Vomiting, sore throat, abdominal 
pain

• Ulcerations in upper GI tract

• Supportive care

Fipronil (N-phenylpyrazole insecticides) • Nausea and vomiting

• Aphthous ulcers

• Altered mental status and coma

• Seizures

• Supportive care

• No available antidote

• No available diagnostic test

Organochlorines • Central nervous system: mental 
status changes and seizures

• Paresthesia, tremor, ataxia, and 
hyperreflexia

• Control acute seizures with 
lorazepam

Glyphosate (phosphonate herbicides) • Nausea and vomiting

• Aspiration pneumonia type 
syndrome

• Supportive care
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Class of Compounds Signs and Symptoms Special Notes, Laboratory Evaluations, 
Specific Treatments,
or Antidote

• Hypotension, altered mental status, 
and oliguria in severe cases

• Aspiration pneumonia type 
syndrome

• Pulmonary effects may in fact be 
secondary to organic solvent

Chlorophenoxy herbicides • Skin and mucous membrane 
irritation

• Vomiting, diarrhea, headache, 
confusion

• Metabolic acidosis is the hallmark

• Renal failure, hyperkalemia, and 
hypocalcemia

• Consider forced alkaline 
diuresis with sodium 
bicarbonate in IV fluids

Long-acting anticoagulants (rodenticides) • Bleeding: gums, nose, and other 
mucous membrane sites

• Bruising

• Consider PT (INR) or 
observation

• Vitamin K indicated for 
bleeding (IV vitamin K) or 
for elevated PT (INR) (oral 
vitamin K)

IV, intravenous.
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TABLE 3

Pesticide and Child Health Resources for the Pediatrician

Management of Acute Pesticide Poisoning

Recognition and 
Management of 
Pesticide Poisonings

Print: fifth (1999) is available in Spanish, English

(6th edition available 2013)

Regional Poison 
Control Centers

http://www.epa.gov/pesticides/safety/healthcare/handbook/handbook.htm

1-800-222-1222

Chronic Exposure Information/Specialty Consultation

The National 
Pesticide Medical 
Monitoring Program 
(NPMMP)

Cooperative agreement between Oregon 
State University and the EPA

npmmp@oregonstate.edu

NPMMP provides informational assistance 
by e-mail in the assessment of human 
exposure to pesticides

or by fax at 541-737-9047

Pediatric 
Environmental Health 
Specialty Units 
(PEHSUs)

Coordinated by the Association of 
Occupational and Environmental Clinics to 
provide regional academically based free 
consultation for health care providers

http://www.aoec.org/PEHSU.htm

Toll-free telephone number 888-347-AOEC (2632)

Resources for Safer Approaches to Pest Control

EPA Consumer information documents http://www.epa.gov/oppfead1/Publications/Cit_Guide/citguide.pdf

Citizens Guide to Pest 
Control and Pesticide 
Safety

• Household pest control

• Alternatives to chemical 
pesticides

• How to choose pesticides

• How to use, store, and dispose 
of them safely

• How to prevent pesticide 
poisoning

• How to choose a pest-control 
company

Controlling pests Recommended safest approaches and 
examples of programs

http://www.epa.gov/pesticides/controlling/index.htm

The University of 
California Integrative 
Pest Management 
Program

Information on IPM approaches for common 
home and garden pests

http://www.ipm.ucdavis.edu

Other Resources

National research 
programs addressing 
children’s health and 
pesticides

NIEHS/EPA Centers for Children’s 
Environmental Health & Disease Prevention 
Research

www.niehs.nih.gov/research/supported/centers/prevention

EPA
The National Children’s Study www.nationalchildrensstudy.gov/Pages/default.aspx

Pesticide product labels www.epa.gov/pesticides/regulating/labels/product-labels.htm#projects

The National Library 
of Medicine “Tox 
Town”

Section on pesticides that includes a 
comprehensive and well-organized list of 
Web link resources on pesticides

http://toxtown.nlm.nih.gov/text_version/chemicals.php?id=23
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NIEHS, National Institute of Environmental Health Sciences.

Pediatrics. Author manuscript; available in PMC 2018 February 15.


	Abstract
	INTRODUCTION
	CHILDREN’S EXPOSURE: VULNERABILITY, MECHANISMS, AND SOURCES OF EXPOSURE
	Children’s Unique Vulnerabilities
	Residential Factors
	Biomonitoring Data for Exposure Assessment
	Exposures From the Food Supply
	Agriculturally Related Exposures
	Exposures From Drinking Water

	NATIONAL DATA ON ACUTE EXPOSURE, MORBIDITY, AND MORTALITY
	ACUTE TOXICITY MECHANISMS AND CLINICAL MANIFESTATIONS
	OP and Carbamate Insecticides
	Toxicity, Clinical Signs, and Symptoms
	Laboratory Evaluation and Treatment

	Pyrethrins and Pyrethroid Insecticides
	Toxicology, Clinical Signs, and Symptoms
	Laboratory Evaluation and Treatment

	Organochlorine Insecticide (Lindane)
	Neonicotinoids
	N-Phenylpyrazoles

	HERBICIDES
	Chlorophenoxy Herbicides
	Phosphonate Herbicides (Glyphosate)

	RODENTICIDES (LONG-ACTING ANTICOAGULANTS)
	CHRONIC HEALTH EFFECTS OF PESTICIDE EXPOSURE
	Childhood Cancer
	Leukemia
	Brain Tumors
	Ewing Sarcoma

	Neurodevelopment/Neurobehavioral Effects
	Physical Developmental Effects
	Fetal Death and Birth Defects
	Adverse Birth Outcomes (Low Birth Weight, Decreased Gestational Age)

	Summary: Physical Developmental Defects

	ENDOCRINE EFFECTS
	Asthma

	THE PESTICIDE LABEL
	STATE OF PESTICIDE KNOWLEDGE AMONG PEDIATRICIANS
	EFFORTS TO REDUCE PESTICIDE EXPOSURE
	Dietary Considerations
	Integrated Pest Management
	Spraying in the Community: Right to Know

	SUMMARY
	Appendix
	References
	TABLE 1
	TABLE 2
	TABLE 3

