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Pesticides and reduced-risk insecticides, native
bees and pantropical stingless bees: pitfalls
and perspectives
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Abstract

Although invertebrates generally have a low public profile, the honey bee, Apis mellifera L., is a flagship species whose popularity
likely derives from the products it provides and its perceived ecological services. Therefore, the raging debate regarding honey
bee decline has surpassed the realm of beekeepers, academia, industry and regulatory agencies and now also encompasses
non-governmental agencies, media, fiction writers and the general public. The early interest and concern about honey bee
colony collapse disorder (CCD) soon shifted to the bigger issue of pollinator decline, with a focus on the potential involvement
of pesticides in such a phenomenon. Pesticides were previously recognised as the potential culprits of the reported declines,
particularly the neonicotinoid insecticides owing to their widespread and peculiar use in agriculture. However, the evidence for
the potential pivotal role of these neonicotinoids in honey bee decline remains a matter of debate, with an increased recognition
of the multifactorial nature of the problem and the lack of a direct association between the noted decline and neonicotinoid
use. The focus on the decline of honey bee populations subsequently spread to other species, and bumblebees became another
matter of concern, particularly in Europe and the United States. Other bee species, ones that are particularly important in other
regions of the world, remain the object of little concern (unjustifiably so). Furthermore, the continuous focus on neonicotinoids
is also in need of revision, as the current evidence suggests that a broad spectrum of compounds deserve attention. Here we
address both shortcomings.
© 2015 Society of Chemical Industry
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1 PUBLIC PERCEPTION OF HONEY BEE
DECLINE AND PEST CONTROL
Invertebrates are generally not particularly liked or praised in
Western society, with a few exceptions, the European honey bee,
Apis mellifera L., being one of them.1,2 The reasons for this are
deeply ingrained and intuitive. ‘Bugs’ (i.e. insects) in general are
subject to dominionistic and negativistic views owing to the
perception that they are pests.1 This is exemplified by Aesop’s
view of ants as ‘thieves’ in his fables (Zeus and the Ant). However,
honey bees are the target of more naturalistic and utilitarian
views, extending even to aesthetics if their social characteristics
are considered.1,2 Again, Aesop comes to mind with his fable The
Bear and the Bees (Aesop’s Fables). Therefore, it comes as no surprise
that there is still a raging debate over honey bee decline that
has moved beyond beekeepers, academia, industry and regulatory
agencies, extending to non-governmental organisations (NGOs),
mass media, fiction writers and the general public.

The earlier suspicion that the involvement of pesticides was lead-
ing to the reported honey bee colony collapse disorder (CCD)
added further fuel to the debate, which shifted from the CCD phe-
nomenon (detected mainly in the United States between 2006 and
2008) to honey bee colony decline, particularly in the United States
and the European Union.3 – 5 Such a heated debate proved to be
invaluable in identifying knowledge gaps and led to the mobili-
sation of resources for scientific research focusing on the spread,
amplitude and causes of honey bee colony decline.6 – 8 The end

results of the ongoing effort to settle this debate show some points
of congruence, which include the following: (1) the recognition
of honey bee decline in different areas and countries, but not in
every area of every country; (2) the multifactorial nature of the
phenomenon; (3) the apparent lack of a primary, direct association
between honey bee decline and neonicotinoid use.9 – 13 This is not
to say that pesticides, particularly neonicotinoid insecticides, lack
importance in this debate, as they are most likely important com-
ponents in this scenario, potentiating colony decline in a period
where there is a high demand for pollination services.14,15

The concern surrounding the potential impact of pesticides, par-
ticularly insecticides, on the honey bee and its products and eco-
logical services is justifiable, not only because of the importance
of such products and services but also because of the increased
demand for pollinators in current agricultural production.15 – 17

High-yield agricultural systems and middle-to-high-income coun-
tries continue the heavy use of pesticides, with evidence of
overuse reflected in average pesticide amounts: above 2.0 kg ha−1
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in the United States, Canada and several European countries, and
over 10 kg ha−1 in countries such as Brazil and China, among
others.16 – 18 Among agricultural pesticides, insecticides are also
without a noticeable reduction in use, with some having an actual
increase in use, even under the intense adoption of genetically
modified crops.17,18 The challenge remains, as always, the effective
management of pest insects with minimal non-target impacts.

2 PESTICIDES, REDUCED-RISK INSECTICIDES
AND THE HONEY BEE
Pesticide use has remained the basis of crop protection for
decades. High efficacy against pest species and fast action,
besides competitive costs, leading to improved production qual-
ity and yield with attractive economic returns, are characteristics
commonly associated with pesticide use that favour its prevalence
as a pest management method.17,19,20 Nonetheless, there are still
recognised risks and controversies surrounding pesticides,21 – 23

in spite of the progressive change in attitudes and behaviour
regarding their use, prompting the search for new compounds
with better toxicological and ecotoxicological profiles.24,25 The
end-result is the current prevalence of a broader diversity of pesti-
cidal compounds, some of which are recognised as biopesticides
and/or reduced-risk pesticides.

Current pesticides exhibit greater potency against the target
pests, requiring lower field application rates and affording higher
levels of safety for non-target organisms.19,20,24,25 However, they
usually require more frequent applications owing to their lower
field persistence compared with older compounds, leading to
a higher rate of consumption, particularly for agricultural pro-
duction in middle-to-high-income countries.18,24,25 This scenario
has allowed the burgeoning of neologisms and pleonasms in
coining alternative references to pesticides, including some fal-
lacious ones, which vary greatly from country to country and
include ‘agricultural protectants’, ‘plant protection agents’, ‘phy-
tosanitary products’, ‘agrochemicals’, ‘agrotoxics’, ‘biological pes-
ticides’, ‘biopesticides’, ‘biorational pesticides’ and ‘reduced-risk
pesticides’, among others. This colourful semantic exuberance fre-
quently exhibits little scientific or technical value and, worst of all,
conveys subliminal and equivocated notions such as the intrinsi-
cally higher (or lower) level of safety of a pesticidal compound.

The myriad of pesticide groups currently available and the
present societal perceptions of pesticides create new regulatory
challenges, as new toxicological tests and endpoints seem nec-
essary. The honey bee provides an interesting paradox because
this species is needed throughout the world for basic toxicologi-
cal assessments aimed at pesticide registration for agricultural use,
but it is reported to be suffering from pesticide-influenced decline
in different countries, with calls for the restriction or even down-
right ban of some compounds, notably neonicotinoid insecticides
and particularly in Europe and the United States.26 – 28 Although
a few other insecticides are also considered, including the old
organophosphates, pyrethroids and fipronil,28 the general concern
is largely focused on neonicotinoid insecticides.14,26 – 28 The plant
systemicity of neonicotinoids and the broad scale of their use, with
high lethal and pronounced sublethal toxicity to honey bees, are
the key reasons for the concern and attention to this group of
insecticides, a group that still exhibits the potential for increased
use against agricultural arthropod pest species.

The recent expansion and incentives towards the development
and use of the so-called reduced-risk pesticides, particularly
biopesticides, are reactions to the environmental safety concerns

sparked by Western society, and the neonicotinoid risk to
honey bee decline illustrates this fact. The increased demand
for organically produced food items (i.e. where only natural insec-
ticides are allowed) also reinforces the demand for reduced-risk
(bio)pesticides, which are generally perceived as safer than
conventional pesticides. Curiously though, current levels of (con-
ventional) pesticide residues on foodstuffs do not appear to be
of significance to human health, and pesticide residues are also
frequently detected on organically produced food,29 but the
popularity of organically produced food items is a complex issue
surpassing the residue concern. The US Environmental Protection
Agency defines reduced-risk pesticides as those exhibiting at least
one trait of the following six advantageous traits over existing
pesticides: (1) low impact on human health; (2) low toxicity to
non-target organisms; (3) low potential for groundwater contam-
ination; (4) lower use rates; (5) low pest resistance potential; (6)
compatibility with integrated pest management (IPM).30 There-
fore, the concept is not particularly stringent and is likely to fit
the majority of insecticides developed and used since the 1970s,
even if they are not safe for non-target organisms, such as plant
pollinators.

The concept of biopesticides, which may also be considered
to be reduced-risk pesticides, is another potential pitfall playing
with public perception. Although some authors reserve the term
‘biopesticide’ for living organisms,31 the more frequently used con-
cept gives a broader definition of biopesticides (or biological pes-
ticides), encompassing all molecules of biological origin.32,33 The
problem with this is the common assumption that biopesticides
(or biological pesticides, or natural pesticides) pose a lower risk
than synthetic insecticides, which is aligned with public percep-
tion and the supporters of respectful production systems, such
as Global Good Agricultural Production (GlobalGAP) and the Inte-
grated Production (IP) initiative launched by the International
Organisation for Biological and Integrated Control (IOBC).34,35 The
deception lies in the fact that the stated assumption is not nec-
essarily true because the origin (either natural or synthetic) is
not a determinant of toxicity, which is a function of the chemi-
cal structure and the derived physicochemical properties of the
compound.36 – 38 In this context, biopesticides and/or reduced-risk
insecticides may exhibit significant lethal and/or sublethal toxicity
to the honey bee and other pollinator bees, even showing lethality
as high as that attributed to the neonicotinoids, a possibility that
is usually neglected in spite of some available evidence.39 – 42

3 NATIVE BEES: EXTENDED CONCERNS WITH
PESTICIDES
The significant decline in honey bee colonies observed in the
United States and in parts of Europe drew attention to wild pol-
linator communities and their importance.43 – 45 Wild pollinators
can perform equally well or even better than the honey bee as
pollinators in some crops and wild plants.43,44 Furthermore, wild
pollinators are important in maintaining plant diversity in natural
landscapes,45 but they are also potentially affected by pesticide
use, and, again, the primary concern has been with the neoni-
cotinoids and their potentially higher toxicity to wild bees.46 – 48

The honey bee is routinely used as a surrogate bee pollinator in
pesticide risk assessments, but recent meta-analysis indicates the
need for more comparative information between the honey bee
and non-Apis bees, and a tenfold range of variation in pesticide
sensitivity exists between both bee groups.46 Such concern and
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need have also been expressed in different global surveys and
studies,47,48 and some progress has been achieved.

Higher insecticide use compromises pollinator diversity, and dif-
ferences between the insecticide susceptibility of honey bees and
wild bees have been recognised.49,50 Neonicotinoids have again
been the focus of attention, but although there has been an
increase in studies with solitary bees and other wild bee pollina-
tors, bumblebees have been the centre of attention.50 – 52 Bumble-
bees prevail in the Northern Hemisphere, although some species
do exist in South America, and they have become increasingly
important in agriculture as pollinators of cultivated crops, such as
greenhouse tomatoes and strawberry.53 Bumblebee decline has
also been reported, and pesticide use is apparently an impor-
tant component of this decline, with accumulated evidence on
the bee’s vulnerability to neonicotinoids in particular.51,54,55 How-
ever, little information is available regarding the potential impact
of reduced-risk insecticides to wild bees and even to bumblebees,
but the few studies available indicate the potential for the substan-
tial impact of some such pesticidal compounds, which deserves
further attention.39 – 42

4 PESTICIDES AND BEES IN THE TROPICS:
BEYOND HONEY BEES AND BUMBLEBEES
The tropics deal with a scenario and challenges that are different
from the United States and Europe, although similar concerns
regarding honey bee decline and neonicotinoid use do exist. Brazil,
for instance, is the world’s second largest consumer of pesticides
in agriculture, with an average yearly consumption of 10 kg ha−1

and an intensive use of neonicotinoid insecticides.17,56 A call for the
injunctive suspension of the aerial application of insecticides was
issued in 2012 by the Brazilian Institute of the Environment and
Renewable Natural Resources (IBAMA), from the Brazilian Ministry
of the Environment, and was subsequently reviewed with a call for
additional studies on the honey bee (DOU No. 192 of 3 October
2012, Ofício Circular/12/CGASQ/DIQUA of November 2012 and
DOU No. 3 of 4 January 2013). An important shortcoming is that
no records of honey bee decline exist in Brazil or Latin America,
or elsewhere. There are a few exceptions, such as South Africa,
where nearly 30% of colony losses were registered as being due
to a social parasite, suggesting a different set of causes than those
experienced in the Northern Hemisphere.47,57

Another important issue to consider is that the honey bee
subspecies and hybrids prevailing in Europe and North Amer-
ica are distinct from those prevailing in the tropics, which
exhibit different habits and likely susceptibility to pesticides
and pathogens and seem distinct even among European honey
bee subspecies.58,59 In Latin America, European honey bees were
introduced and flourished for several years. The European sub-
species were subsequently replaced by hybrids from a Brazilian
honey bee breeding effort after the escape of some swarms of
the African honey bee subspecies A. mellifera scutellata. These
Africanised honey bees proved to be dominant, outcompeting
their European counterparts in Latin America and quickly spread-
ing throughout the region and becoming the prevailing honey
bee genotype in one of the most successful biological invasions
currently recorded. While some typical traits that are prevalent
in Africanised honey bees, such as a high level of aggressive-
ness, foraging behaviour, colony hygiene, etc., may minimise
their likelihood of decline as observed with European honey
bees in the United States and parts of Europe, it remains to be
assessed.

The large-scale agricultural use of pesticides and the resource
competition imposed by the Africanised honey bee are threats to
native bees in Neotropical America, potentially more important
than the decline of (Africanised) honey bees in the region,60 – 62 a
status that largely remains unconfirmed. It is not only the Neotrop-
ics, but the whole pantropical region that houses hundreds of
wild bee species that are vulnerable to agricultural pesticides.63,64

Among these wild bee species, the rather diverse and perenni-
ally active eusocial stingless bees (Apidae: Meliponini) encom-
pass a variety of pollinators that are very important for wild
and cultivated plant species where honey bees exhibit marginal
performance.63,65 The sparse information currently available indi-
cates that pantropical stingless bees are more susceptible to pesti-
cides than the honey bee,46,62 but such information is based mainly
on dose–response (acute) toxicity bioassays, with only recent and
scant information on the sublethal effects of pesticides.46,62 Again,
neonicotinoids, in addition to fipronil and a few older insecticides,
were the focus of attention, and no information is available regard-
ing the potential impact of the over 150 active ingredients of the
agricultural pesticides in use in the tropics today, with only basic
dose–mortality lethal acute bioassays in honey bees required for
use registration before marketing.66,67

The commercial importance of honey bee products is easy to
recognise, as is the potential economic impact of their decline,
even in the tropics. However, the concern about the ecosystem
services (namely pollination) provided by (Africanised) honey
bees in the tropics, mainly in Neotropical America, seems to be
disputable because wild stingless bees seem to be more impor-
tant for both wild and cultivated plants in the region60,61,63 and
are vulnerable not only to pesticide use owing to their apparent
high susceptibility but also to habitat destruction and compe-
tition from the invasive Africanised honey bee.42,46,60 – 65 Until
recently, a representative of the stingless bees was included in
the red list of endangered species of the International Union
for the Conservation of Nature and Natural Resources (IUCN
2013; http://www.iucnredlist.org, accessed 2 October 2013),
and it remains recognised as such by the Brazilian Ministry
of Environment (Normative Instruction No. 3, 27 May 2003;
http://www.mma.gov.br/biodiversidade/espécies-ameaçadas-de-
extinção/fauna-ameaçada). Attention to the group is therefore
necessary and long overdue.

5 CONCLUDING REMARKS
The apparent paradox of the colony decline of the main species
used worldwide as the surrogate pollinator species for basic toxi-
cological studies for the use registration of agriculture pesticides
is not difficult to understand in light of the knowledge gaps
that are likely created precisely by such regulatory requirements.6

The stated requirements are based on dose–mortality bioassays,
thus focusing on lethal acute effects of pesticides on a partic-
ular species – the honey bee. In doing so, two shortcomings
emerge: (1) the creation of knowledge gaps exploring sublethal
insecticide effects; (2) the non-provision of necessary stimuli
to pursue the potential indirect effects that are likely to take
place under pesticide exposure in a given environment focus-
ing on a single (model) species that is perceived as being of key
importance, as well as ignoring other potentially more impor-
tant species in certain scenarios. This second shortcoming also
deters initiatives of studies exploring higher levels of hierarchi-
cal impact, including impacts at the population and community
levels.
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The gaps in regulatory knowledge about bee–pesticide interac-
tions have been subjected to subsequent attention since the onset
of CCD in the United States and the realisation of the potential
extent of the honey bee colony decline in the United States and
parts of Europe. However, the attention remains focused on honey
bees, as observed in the main regulatory guidelines for risk assess-
ments on pollinators.68 – 75 Only the European Food Safety Author-
ity (EFSA) and the US Environmental Protection Agency (EPA), the
latter in a joint effort with Health Canada’s Pest Management
Regulatory Agency and the California Department of Pesticide
Regulation, refer to tiered assessments on other important pollina-
tors such as bumblebees and solitary bees.68,75 Nonetheless, sev-
eral of the existing gaps in knowledge regarding honey bees have
been scrutinised, and the level of knowledge has improved, allow-
ing some congruence in guiding the regulatory decision-making
process. Even the initial and extensive focus on a single group of
insecticides has improved, and attention has been shifting, encom-
passing other groups of insecticides, fungicides and pesticide mix-
tures, which seems paramount in the whole pollinator–pesticide
risk assessment scenario. Nonetheless, misleading semantics of
pesticide references and concepts, such as that of biopesticides
and reduced-risk pesticides, convey questionable public percep-
tions of the environmental safety of these compounds, potentially
discouraging studies exploring their environmental impact in gen-
eral and their potential impact on pollinators in particular. This
notion deserves revision.

The focus on honey bees also invites careful consideration, par-
ticularly where this species is invasive and its benefits (e.g. produc-
tion of honey, propolis, royal jelly, beeswax, etc.) are outweighed
by its potential threat to more important local pollinators. This
is potentially the case with tropical stingless bees, particularly in
Neotropical America. The potentially higher pesticide susceptibil-
ity and vulnerability of stingless bee species in the tropics should
not be neglected. Considerable effort has been exerted to meet
some of the shortcomings pointed out here, with increasing suc-
cess. However, several pitfalls and shortcomings remain to be
faced when configuring appealing research perspectives that are
potentially worth pursuing.
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