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1. Introduction

Increase in food production is the prime-most objective of all countries, as world population
is expected to grow to nearly 10 billion by 2050. Based on evidence, world population is
increasing by an estimated 97 million per year (Saravi and Shokrzadeh, 2011). The Food and
Agricultural Organization (FAO) of the United Nations has in-fact issued a sobering forecast
that world food production needs to increase by 70%, in order to keep pace with the demand
of growing population. However, increase in food production is faced with the ever-growing
challenges especially the new area that can be increased for cultivation purposes is very limited
(Saravi and Shokrzadeh, 2011). The increasing world population has therefore put a tremen‐
dous amount of pressure on the existing agricultural system so that food needs can be met
from the same current resources like land, water etc. In the process of increasing crop pro‐
duction, herbicides, insecticides, fungicides, nematicides, fertilizers and soil amendments are
now being used in higher quantities than in the past. These chemicals have mainly come into
the picture since the introduction of synthetic insecticides in 1940, when organochlorine (OCl)
insecticides were first used for pest management. Before this introduction, most weeds, pests,
insects and diseases were controlled using sustainable practices such as cultural, mechanical,
and physical control strategies.

Pesticides have now become an integral part of our modern life and are used to protect
agricultural land, stored grain, flower gardens as well as to eradicate the pests transmitting
dangerous infectious diseases. It has been estimated that globally nearly $38 billion are spent
on pesticides each year (Pan-Germany, 2012). Manufacturers and researchers are designing
new formulations of pesticides to meet the global demand. Ideally, the applied pesticides
should only be toxic to the target organisms, should be biodegradable and eco-friendly to some
extent (Rosell et al., 2008). Unfortunately, this is rarely the case as most of the pesticides are
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non-specific and may kill the organisms that are harmless or useful to the ecosystem. In general,
it has been estimated that only about 0.1% of the pesticides reach the target organisms and the
remaining bulk contaminates the surrounding environment (Carriger et al., 2006). The
repeated use of persistent and non-biodegradable pesticides has polluted various components
of water, air and soil ecosystem. Pesticides have also entered into the food chain and have
bioaccumulated in the higher tropic level. More recently, several human acute and chronic
illnesses have been associated with pesticides exposure (Mostafalou and Abdollahi, 2012).
Below, we have detailed the effect of pesticides on target and non-target organisms including
earthworms, predators, pollinators, humans, fishes, amphibians, and birds. Additionally,
impact of pesticides on soil, water and air ecosystems is also discussed. Furthermore, an eco-
friendly practice (Integrated Pest Management (IPM) approach) has been detailed as a strategy
that could minimize the use of pesticides.

2. Effects of pesticides on target organisms

Over the past era there has been an increase in the development of pesticides to target a broad
spectrum of pests. The increased quantity and frequency of pesticide applications have posed
a major challenge to the targeted pests causing them to either disperse to new environment
and/or adapt to the novel conditions (Meyers and Bull, 2002; Cothran et al., 2013). The
adaptation of the pest to the new environment could be attributed to the several mechanisms
such as gene mutation, change in population growth rates, and increase in number of gener‐
ations etc. This has ultimately resulted in increased incidence of pest resurgence and appear‐
ance of pest species that are resistant to pesticides.

2.1. Pesticide resistance

“Resistance may be defined as a heritable change in the sensitivity of a pest population that is
reflected in the repeated failure of a product to achieve the expected level of control when used
according to the label recommendation for that pest species” (IRAC, 2013). Resistant individ‐
uals tend to be rare in a normal population, but indiscriminate use of chemicals can eliminate
normal susceptible populations and thereby providing the resistant individuals a selective
advantage in the presence of a pesticide. Resistant individuals continue to multiply in the
absence of competition and eventually become the dominant portion of the population over
generations. As majority of the individuals of a population are resistant, the insecticide is no
longer effective thus causing the appearance or development of insecticide resistance.

Resistance is the most serious bottleneck in the successful use of pesticides these days. The
intensive use of pesticides has led to the development of resistance in many targeted pest
species  around the  globe (Tabashnik et  al.,  2009).  Number  of  resistant  insects  and mite
species had risen to 600 by the end of 1990, and increased to over 700 by the end of 2001.
This trend is likely to be continued in 21st  century as well. Resistance has been found in
different insecticides groups e.g., 291 species have developed cyclodiene resistance, followed
by  DDT  (263  species),  organophosphates  (260  species),  carbamates  (85  species),  pyreth‐
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roids  (48  species),  fumigants  (12  species),  and other  (40  species)  (Dhaliwal  et  al.,  2006).
Important crop pests,  parasites of livestock, common urban pests and disease vectors in
some  cases  have  developed  resistance  to  such  an  extent  that  their  control  has  become
exceedingly challenging (Van Leeuwen et  al.,  2010;  Gondhalekar  et  al.,  2011).  However,
many  factors  such  as  genetics,  biology/ecology  and  control  operations  influence  the
development of pesticide resistance (Georghiou and Taylor, 1977).

Insecticide bioassays using whole insects continue to be one of the most widely used ap‐
proaches for detecting resistance (Brown and Brogdon, 1987; Gondhalekar et al., 2013) despite
some associated drawbacks. In the past two decades, however, several new methods employ‐
ing advanced biochemical and molecular techniques, and combination of insecticide bioassays
have been developed for detecting insecticide resistance (Symondson and Hemingway, 1997;
Scharf et al., 1999; Zhou et al., 2002). Some examples of these techniques are enzyme electro‐
phoresis, enzyme assays, immuno-assays, allele-specific polymerase chain reaction (PCR) etc.

2.2. Pest resurgence

Pest resurgence is defined as the rapid reappearance of a pest population in injurious numbers
following pesticide application. Use of persistent and broad spectrum pesticides that kills the
beneficial natural enemies is thought to be the leading cause of pest resurgence. However,
resurgence is known to occur due to several reasons, for example, increase in feeding and
reproductive rates of insect pests, due to application of sub-lethal doses of pesticides, and
sometimes elimination of a primary pest provides favorable conditions for the secondary pests
to become primary/key pests (Dhaliwal et al., 2006). There are many pesticide-induced pest
outbreaks reported in walnut (Juglans regia) (Bartlett and Ewart, 1951), hemlock (Conium
maculatum) (McClure, 1977), soybeans (Glycine max) (Shepard et al., 1977), and cotton
(Gossypium hirsutum) (Bottrell and Rummel, 1978). Among these, brown plant hopper (BPH)
(Nilaparvata lugens (Stal)) in rice (Oryza sativa L.) cultivation has gained a major importance in
Asian countries (Chelliah and Heinrichs, 1984). In general, natural BPH populations were kept
under check by natural enemies including mirid bugs, ladybird beetles, spiders and various
pathogens. However, pesticides have not only destroyed the natural enemies (Fabellar and
Heinrichs, 1986), but have influenced the fecundity of BPH females (Wang et al., 2010) further
enhancing their resurgence. Additionally, the resurgence of bed bug, Cimex lectularius (Davies
et al., 2012) and cotton bollworm Helicoverpa armigera (Mironidis et al., 2013) have been reported
due to insecticide resistance and indiscriminate use of pesticides.

3. Effects of pesticides on non-target organisms

The effect of pesticides on non-target organisms has been a source of worldwide attention and
concern for decades. Adverse effects of applied pesticides on non-target arthropods have been
widely reported (Ware, 1980). Unfortunately, natural insect enemies e.g., parasitoids and
predators are most susceptible to insecticides and are severely affected (Aveling, 1977;
Vickerman, 1988). The destruction of natural enemies can exacerbate pest problems as they
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play an important role in regulating pest population levels. Usually, if natural enemies are
absent, additional insecticide sprays are required to control the target pest. In some cases,
natural enemies that normally keep minor pests under check are also affected and this can
result in secondary pest outbreaks. Along with natural enemies, population of soil arthropods
is also drastically disturbed because of indiscriminate pesticide application in agricultural
systems. Soil invertebrates including nematodes, springtails, mites, micro-arthropods,
earthworms, spiders, insects and other small organisms make up the soil food web and enable
decomposition of organic compounds such as leaves, manure, plant residues etc. They are
essential for the maintenance of soil structure, transformation and mineralization of organic
matter. Pesticide effects on above mentioned soil arthropods therefore negatively impact
several links in the food web. The following are the examples of non-target organisms that are
adversely impacted by pesticides.

3.1. Earthworms

Earthworms represent the greatest proportion of terrestrial invertebrates (>80%) (Yasmin and
D’Souza, 2010) and play a significant role in improving soil fertility by decomposing the
organic matter into humus. Earthworms also play a major role in improving and maintaining
soil structure, by creating channels in soil that enable the process of soil aeration and drainage.
However, their diversity, density and biomass are strongly influenced by soil management.
They are considered as an important indicator of soil quality in agricultural ecosystems
(Paoletti, 1999). Earthworms are affected by various agricultural practices and indiscriminate
use of pesticides is one of the leading practices affecting them (Pelosi et al., 2013).

Pesticide applications can cause decline in earthworm populations. For example, carbamate
insecticides are very toxic to earthworms and some organophosphates have been shown to
reduce earthworm populations (Edwards, 1987). Similarly, a field study conducted in South
Africa has also reported that earthworms were influenced detrimentally due to chronic and
intermittent exposures to chlorpyrifos and azinphos methyl, respectively (Reinecke and
Reinecke, 2007). Various scientific studies reported that pesticides influence earthworm
growth, reproduction (cocoon production, number of hatchlings per cocoon, and incubation
period) in a dose-dependent manner (Yasmin and D’Souza, 2010). Earthworms exposed to
different kind of pesticides showed rupturing of cuticle, oozing out of coelomic fluid, swelling,
and paling of body that led to softening of body tissues (Solaimalai et al., 2004). Similarly a
study carried out in France showed that the combination of insecticides and fungicides at
different concentrations caused neurotoxic effects in earthworms (Schreck et al., 2008).
Increased exposure period and higher dose of insecticides can also cause physiological damage
(cellular dysfunction and protein catabolism) to earthworms (Schreck et al., 2008).

3.2. Predators

Predators are organisms that live by preying on other organisms and they play a very crucial
role in keeping pest populations under control. Predators (beneficial organisms) are also an
important part of the “biological control” approach which is one component of the integrated
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pest management strategy discussed later. In some of the examples cited below, pesticides
were the main cause for decline in predator population:

• In brinjal (Solanum melongena L.) ecosystem, spraying with cypermethrin and imidacloprid
caused higher mortality of coccinellids, braconid wasps and predatory spiders compared
to when sprayed with bio-pesticides and neem (Azadirachta indica) based insecticides
(Ghananand et al., 2011).

• Species diversity, richness and evenness of collembola, and numbers of spiders were found
to be lower in chlorpyrifos treated plots compared with control, in grassland pastures in UK
(Fountain et al., 2007).

• Studies  were  carried out  to  investigate  the  effects  of  chemicals  on soil  arthropods  in
agricultural  area near Everglades National Park,  USA. It  was found that higher num‐
ber of arthropods (including predators such as coccinelids and spiders) were present in
non-sprayed fields compared to fields sprayed with insecticides and herbicides (Ama‐
lin et al., 2009).

• In foliar application, all the systemic neonicotinoids such as imidacloprid, clothianidin,
admire, thiamethoxam and acetamiprid were found highly toxic to natural enemies in
comparison with spirotetramat, buprofezin and fipronil (Kumar et al., 2012).

Additionally, pesticides can also affect predator behavior and their life-history parameters
including growth rate, development time and other reproductive functions. For example, in
the eastern USA, glyphosate-based herbicides affected behavior and survival of spiders and
ground beetles, apart from affecting arthropod community dynamics that can also influence
biological control in an agroecosystem (Evans et al., 2010). Similarly, dimethoate was shown
to significantly decrease the body size, haemocyte counts and reduction of morphometric
parameters on carabid beetle (Pterostichus melas italicus), in Calabria, Italy (Giglio et al., 2011).

3.3. Pollinators

Pollinators are biotic agents that play a very important role in pollination process. Some of the
recognized pollinators are different species of bees, bumble bees (Bombus spp.), honey bees
(Apis spp.), fruit flies, some beetles, and birds (e.g., hummingbirds, honeyeaters, and sunbirds
etc.). Pollinators can be used as bioindicators of ecosystemic processes (process by which
physical, chemical, biological events help connecting organisms with their environment) in
many ways as their activities are affected by environmental stress caused by parasites,
competitors, diseases, predators, pesticides and habitat modifications (Kevan, 1999). However,
using pesticides causes direct loss of insect pollinators and indirect loss to crops because of the
lack of adequate populations of pollinators (Fishel, 2011).

Pesticide application also affects various activities of pollinators including foraging behaviour,
colony mortality and pollen collecting efficiency. Most of our current knowledge about effects
of pesticides on change in pollinator behaviour has come from various bee studies as they
comprise 80% of the insect pollinator population. For instance, many laboratory studies have
demonstrated the lethal and sub-lethal effects of neonicotinoid insecticides (imidacloprid,
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acetamiprid, clothianidin, thiamethoxam, thiacloprid, dinotefuran and nitenpyram) on
foraging behavior, learning and memory abilities of bees (Blacquie`re et al., 2012). Worker bee
(female bees that lack full reproductive capacity and play many other roles in bee colony)
mortality, decreased pollen collecting efficiency and eventually colony collapse occur due to
pesticides (neonicotinoid and pyrethroid) application (Gill et al., 2012). In addition to this, non-
lethal exposure of honey bees to neonicotinoid insecticide (thiamethoxam) causes high
mortality due to homing failure at a level that could put a risk of colony collapse (Henry et al.,
2012). Sub-lethal doses of imidacloprid (the most commonly used pesticide worldwide)
affected longevity and foraging in honey bees (A. mellifera). Nosema ceranae (Nosema invades
the intestinal tracts of adult bees causing colony collapse disorder (CCD) and nosema disease/
nosemosis, which consequently lead to decrease in honey production). Microsporidial
infections increased significantly in gut of bees from imidacloprid treated hives. It has been
anticipated that interactions between pathogens and imidacloprid pesticide could be a main
reason for worldwide honey bee colony mortality, including CCD (Pettis et al., 2012; Wu et al.,
2012). There are also reports that imidacloprid reduced brood production due to decline in the
fecundity of bumble bees (B. terrestris) (Laycock et al., 2012; Whitehorn et al., 2012). On the
other hand, little work has been done on the impact of pesticides on wild pollinators. For
example, a field study carried out in Italy on an agricultural field found lower bumblebee and
butterfly species richness associated with pesticide application. They also found that bees
(insect pollinators) were at higher risk from pesticide use (Brittain et al., 2010).

3.4. Humans

The deleterious effects of pesticides on human health have started to grow due to their toxicity
and persistence in environment and ability to enter into the food chain. Pesticides can enter
the human body by direct contact with chemicals, through food especially fruits and vegeta‐
bles, contaminated water or polluted air. Both acute and chronic diseases can result from
pesticide exposure and these are summarized below:

3.4.1. Acute illness

Acute illness generally appears a short time after contact or exposure to the pesticide. Pesticide
drift from agricultural fields, exposure to pesticides during application and intentional or
unintentional poisoning generally leads to the acute illness in humans (Dawson et al., 2010;
Lee et al., 2011b). Several symptoms such as headaches, body aches, skin rashes, poor concen‐
tration, nausea, dizziness, impaired vision, cramps, panic attacks and in severe cases coma and
death could occur due to pesticide poisoning (Pan-Germany, 2012). The severity of these risks
is normally associated with toxicity and quantity of the agents used, mode of action, mode of
application, length and frequency of contact with pesticides and person that is exposed during
application (Richter, 2002). About 3 million cases are reported worldwide every year that occur
due to acute pesticides poisoning. Out of these 3 million pesticide poisoning cases, 2 million
are suicide attempts and the rest of these are occupational or accidental poisoning cases (Singh
and Mandal, 2013). Suicide attempts due to acute pesticide poisoning are mainly the result of
widespread availability of pesticides in rural areas (Richter, 2002; Dawson et al., 2010). Several
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strategies have been proposed to reduce the incidences that occur due to acute pesticide
poisoning such as restricting the availability of pesticides, substituting the pesticide with a less
toxic but with an equally effective alternative and by promoting use of personal protection
equipment (Murray and Taylor, 2000; Konradsen et al., 2003). Strict laws regulating pesticide
sales along with preventive health programs and community development efforts are needed
to enforce such strategies.

3.4.2. Chronic illness

Continued exposure to sub-lethal quantities of pesticides for a prolonged period of time (years
to decades), results in chronic illness in humans (Pan-Germany, 2012). Symptoms are not
immediately apparent and manifest at a later stage. Agricultural workers are at a higher risk
to get affected, however general population is also affected especially due to contaminated
food and water or pesticides drift from the fields (Pan-Germany, 2012). Incidences of chronic
diseases have started to grow as pesticides have become an increasing part of our ecosystem.
There is mounting evidence that establish a link between pesticides exposure and the inci‐
dences of human chronic diseases affecting nervous, reproductive, renal, cardiovascular, and
respiratory systems (Mostafalou and Abdollahi, 2012). The list of chronic diseases that are
linked to prolonged pesticide exposure by various studies is summarized in Table 1.

Diseases References

Cancer (Childhood and adult brain cancer; Renal cell cancer;

lymphocytic leukaemia (CLL); Prostate Cancer)

Lee et al., 2005; Shim et al., 2009; Heck et al., 2010; Xu et

al., 2010; Band et al., 2011; Cocco et al., 2013

Neuro degenerative diseases including Parkinson disease,

Alzheimer disease

Elbaz et al., 2009; Hayden et al., 2010;Tanner et al., 2011

Cardio-vascular disease including artery disease Abdullah et al., 2011; Andersen et al., 2012

Diabetes (Type 2 Diabetes) Son et al., 2010; Lee et al., 2011a

Reproductive disorders Petrelli and Mantovani, 2002; Greenlee et al., 2003

Birth defects Winchester et al., 2009; Mesnage et al., 2010

Hormonal imbalances including infertility and breast pain Xavier et al., 2004

Respiratory diseases (Asthma, Chronic obstructive

pulmonary disease (COPD))

Chakraborty et al., 2009; Hoppin et al., 2009

Table 1. The List of chronic diseases that are linked to the exposure to pesticides

Several mechanisms have been illustrated that link development of chronic diseases with
pesticide exposure. Direct interaction of pesticides with genetic material resulting in DNA
damages and chromosomal aberration is considered to be one of the primary mechanisms that
lead to the chronic diseases such as cancer etc (Mostafalou and Abdollahi, 2012). In this context,
several studies report an increase in frequency of chromosomal aberration, sister chromatid
exchange, and breakage in DNA strand in pesticide applicators who worked in agricultural
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fields (Grover et al., 2003; Santovito et al., 2012). Similar to this, pesticides are also known to
induce epigenetic changes (heritable changes without any alteration in DNA sequences)
through DNA methylation, histone modifications and expression of non-coding RNAs. For
example, neurotoxic pesticide paraquat has been implicated to induce the Parkinson's disease
(PD) through epigenetic changes by promoting histone acetylation (Song et al., 2010). Pesti‐
cides may also induce oxidative stress by increasing reactive oxygen species (ROS) through
altering levels of antioxidant enzymes such as superoxide dismutase, glutathione reductase
and catalase (Agrawal and Sharma, 2010). Several health problems such as Parkinson disease,
disruption of glucose homeostasis have been linked with pesticides induced oxidative stress
(Mostafalou and Abdollahi, 2012).

4. Pesticides and soil environment

A major fraction of the pesticides that are used for agriculture and other purposes accumulates
in the soil. The indiscriminate and repeated use of pesticides further aggravates this soil
accumulation problem. Several factors such as soil properties and soil micro-flora determine
the fate of applied pesticides, owing to which it undergoes a variety of degradation, transport,
and adsorption/desorption processes (Weber et al., 2004; Laabs et al., 2007; Hussain et al.,
2009). The degraded pesticides interact with the soil and with its indigenous microorganisms,
thus altering its microbial diversity, biochemical reactions and enzymatic activity (Hussain et
al., 2009; Munoz-Leoz et al., 2011). A summary of the effects of pesticides on its various
components are given below:

1. Pesticides that reach the soil can alter the soil microbial diversity and microbial biomass.
Any alteration in the activities of soil microorganisms due to applied pesticides eventually
leads to the disturbance in soil ecosystem and loss of soil fertility (Handa et al., 1999).
Numerous studies have been undertaken which highlight these adverse impacts of
pesticides on soil microorganisms and soil respiration (Dutta et al., 2010; Sofo et al.,
2012). In addition to this, exogenous applications of pesticides could also influence the
function of beneficial root-colonizing microbes such as bacteria and arbuscular mycor‐
rhiza (AM), fungi and algae in soil by influencing their growth, colonization and metabolic
activities etc (Debenest et al., 2010; Menendez et al., 2010; Tien and Chen, 2012).

The pesticides that reach the soil can interact with soil microflora in several ways:

a. It can adversely affect the growth, microbial diversity or microbial biomass of the soil
microflora. For example, sulfonylurea herbicides- metsulfuron methyl, chlorsulfuron and
thifensulfuron methyl were reported to reduce the growth of the fluorescent bacteria
Pseudomonas strains that were isolated from an agricultural soil (Boldt and Jacobson,
1998). The Pseudomonas spp. is known to play an important ecological role in the soil
habitat (Boldt and Jacobson, 1998), and hence its reduction can adversely affect soil
fertility. Similarly, benomyl, captan and chlorothalonil were reported to suppress the peak
soil respiration (an indicator of microbial biomass) in an unamended soil by 30–50% (Chen
et al., 2001b).
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b. Pesticide application may also inhibit or kill certain group of microorganisms and
outnumber other groups by releasing them from the competition (Hussain et al., 2009).
For example, increase in bacterial biomass by 76% was reported in response to endosulfan
application and that reduced the fungal biomass by 47% (Xie et al., 2011).

c. Applied pesticide may also act as a source of energy to some of the microbial group which
may lead to increase in their growth and disturbances in the soil ecosystem. For example,
bacterial isolates collected from wastewater irrigated agricultural soil showed the
capability to utilize chlorpyriphos as a carbon source for their growth (Bhagobaty and
Malik, 2010).

d. Pesticides can alter and/or reduce the functional structure and functional diversity of
microorganisms, but increase the microbial biomass (Lupwayi et al., 2009). In contrast,
application of pesticides can also reduce the microbial biomass while increasing the
functional diversity of microbial community. For example, methamidophos and urea
decreased the microbial biomass and increased the functional diversity of soil as deter‐
mined by microbial biomass and community level physiological profiles (Wang et al.,
2006).

2. Pesticides may also adversely affect the soils vital biochemical reactions including
nitrogen fixation, nitrification, and ammonification by activating/deactivating specific soil
microorganisms and/or enzymes (Hussain et al., 2009; Munoz-Leoz et al., 2011). The
synergistic and additive interactions between pesticides, micro-organisms and soil
properties ultimately govern increase or decrease in rate of soil biochemical reactions. For
example, populations of the Azospirillum spp. bacteria and the rate of ammonification was
reported to increase at a particular pesticide concentration (i.e 2.5 to 5.0 kg ha-1) in both
laterite and vertisol soils planted to groundnut (Arachis hypogaea L.). But the tested
pesticides exerted antagonistic interactions on the population of Azospirillum spp. and
ammonification at higher concentrations (7.5 and 10.0 kg ha-1) (Srinivasulu et al., 2012a).

3. Pesticides have also been reported to influence mineralization of soil organic matter,
which is a key soil property that determines the soil quality and productivity. For example,
a significant reduction in soil organic matter was found after the application of four
herbicides (atrazine, primeextra, paraquat, and glyphosate) (Sebiomo et al., 2011).
However, soil organic matter then increased after continuous application from the second
to the sixth week of herbicide treatment.

4. Pesticides that reach the soil may also disturb local metabolism or can alter the soil
enzymatic activity (Gonod et al., 2006; Floch et al., 2011). Soil in general contains an
enzymatic pool which comprises of free enzymes, immobilized extracellular enzymes and
enzymes excreted by (or within) microorganisms that are indicator of biological equili‐
brium including soil fertility and quality (Mayanglambam et al., 2005; Hussain et al.,
2009). Degradation of both pesticides and natural substances in soil is catalyzed by this
enzymatic pool (Floch et al., 2011; Kizilkaya et al., 2012). Due to this, measuring the change
in enzymatic activity has now been classified as a biological indicator to identify the
impact of chemical substances including pesticides on soil biological functions (Garcia et
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al., 1997; Romero et al., 2010). In fact, it has generally been assumed that measuring the

change in enzyme activity is an earlier indicator of soil degradation as compared to the

chemical or physical parameters (Dick et al., 1994). Several studies have already been

undertaken which indicate both increase and decrease in activities of soil enzymes such

as hydrolases, oxidoreductases, and dehydrogenase (Ismail et al., 1998; Megharaj et al.,

1999). A description of pesticides interactions with soil enzymes has been summarized in

Table 2.

Enzyme (Function in

soil)

Examples of the pesticides

applied
Comments

Nitrogenase (An enzyme

used by organisms to fix

atmospheric nitrogen

gas).

Carbendazim, Imazetapir,

Thiram, Captan, 2,4-D,

Quinalphos, Monocrotophos,

Endosulfan, γ-HCH,

Butachlors

Pesticide reduced or inhibited the nitrogenase activity in

laboratory or field conditions (Chalam et al., 1996;

Martinez-Toledo et al., 1998; Niewiadomska, 2004;

Niewiadomska and Klama, 2005; Prasad et al., 2011)/

Pesticides stimulated the nitrogenase activity (Patnaik et

al., 1995)

Phosphatase (hydrolyzes

organic P compounds to

inorganic P)

2,4-D, Nitrapyrin,

Monocrotophos,

Chlorpyrifos, Mancozeb and

Carbendazim

Inhibited (Tu, 1981); Activity increased, but higher

concentration or increasing incubation period has

inhibitory effects (Madhuri and Rangaswamy, 2002;

Srinivasulu et al., 2012b)

Urease (catalyzes the

hydrolysis of urea into CO2

and NH3 and is a key

component in the

nitrogen cycle in soils)

Isoproturon, Benomyl,

Captan, Diazinon, Profenofos

Increase in urease activity (Chen et al., 2001a; Nowak et

al., 2004), Pesticide reduced/inhibited urease activity

(Abdel-Mallek et al., 1994; Ingram et al., 2005)

Dehydrogenase (DHA):

(an oxidoreductase

enzyme that catalyzes the

removal of hydrogen)

Azadirachtin, Acetamiprid,

Quinalphos,Glyphosate

Positive/stimulatory influence on the DHA (Singh and

Kumar, 2008; Kizilkaya et al., 2012)/Initially inhibited but

later on activity was restored (Andrea et al., 2000;

Mayanglambam et al., 2005)

Invertase (hydrolyzes

sucrose to fructose and

glucose)

Atrazine, Carbaryl, Paraquat Inhibited invertase activity (Gianfreda et al., 1995; Sannino

and Gianfreda, 2001)

β-glucosidase (hydrolyzes

disaccharides in soil to

form β-glucose)

Metalaxyl, Ridomil gold plus

copper

Enzyme activity increased and then decreased (Sukul,

2006) or inhibited (Demanou et al., 2004)

Cellulase (hydrolyzes

cellulose to D-glucose)

Benlate, Captan, Brominal Inhibited enzyme activity (Arinze and Yubedee, 2000;

Omar and Abdel-Sater, 2001)
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Enzyme (Function in

soil)

Examples of the pesticides

applied
Comments

Arylsulphatase (an

enzyme that hydrolyzes

aryl sulfates)

Cinosulfuron, Prosulfuron,

Thifensulfuron methyl,

Triasulfuron

Decreased enzyme activity (Sofo et al., 2012)

Table 2. A summary of the effects of pesticides on different soil enzymes

Several environmental factors control the bioavailability, degradation and effect of pesticides
on soil microorganisms in addition to the persistence, concentration and toxicity of the applied
pesticides. These include soil texture, presence of organic matter, vegetation and cultural
practices (Murage et al., 2007). For instance, a mixture of compost and straw was found to have
the capability of bio-degrading different mixtures of fungicides that are usually applied in
vineyards when tested under laboratory conditions (Coppola et al., 2011). Similarly, persis‐
tence of the herbicide imazapyr was reported to be different in three Argentinean soils (Tandil,
Anguil, and Cerro Azul sites) and its half-life was negatively associated with soil pH, iron and
aluminum content, and positively related with clay content (Gianelli et al., 2013). Additionally,
level of soil moisture is also one of the most important factors that regulates pesticide bioa‐
vailability and degradation, as water acts as solvent for pesticide movement and diffusion,
and is essential for microbial functioning (Pal and Tah, 2012). For example, degradation of
herbicide saflufenacil was found to be faster at field capacity for Nada, Crowley and Gilbert
soils as compared to the saturated soil conditions (Camargo et al., 2013).

It is important to monitor the response of soil microbial communities and various enzymatic
activities to pesticide exposure in order to reduce their deleterious effects. A combination of
both cultivation-dependent (e.g., community-level physiological profiling (CLPP), measuring
overall rates of microbial activity) and cultivation-independent (e.g., DNA sequence informa‐
tion, proteomics of environmental samples) methods can be applied to measure and interpret
the effects of pesticide exposure (Imfeld and Vuilleumier, 2012). With the advent of efficient
new sequencing techniques and metagenomics, the scope of deploying cultivation independ‐
ent methods for measuring bacterial diversity and function in soil ecosystem has been further
increased. Metagenomics approach has been applied already to measure microbial diversity
for a range of soil systems including contaminated sites (Ono et al., 2007) and land managed
with different cultural practices (Souza et al., 2013). Such high-tech approaches hold the key
for future methods to measure the mode of adaptation ecosystem to different pesticides and
in development of new methods to better manage pesticide applications.

A careful screening of pesticide effects on soil microflora should be done in laboratory before
their field applications. This is because pesticides tend to accumulate in soil due to repeated
applications over time and can pose adverse effects on soil microflora even though they are
applied at recommended doses (Ahemad et al., 2009). For instance, Ahemad and Khan (2011)
reported the highest toxicity to plant growth promoting characteristics of the Bradyrhi zobi‐
um sp. when its strain MRM6 was grown with three times the recommended field rates of
glyphosate, imidacloprid and hexaconazole. Similarly, Dunfield et al. (2000) assessed the
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effects of the fungicides captan and thiram at rates of 0.25-2 g a.i. kg–1 on the survival and
phenotypic characteristics of bacteria Rhizobium leguminosarum bv. viceae, strain C1. They found
that even though both captan and thiram significantly reduced the numbers of rhizobia
recovered from seed and altered the FAME (fatty acid methyl ester) and biological profiles of
recovered rhizobia, it was only the highest concentrations of captan that affected nodulation
and plant growth. Similarly, herbicide mesotrione affected soil microbial communities, but the
effects were only detected at doses far exceeding the recommended field rates (Crouzet et al.,
2010). Overall, it is crucial to comprehend the role of pesticides in perturbing soil environment,
so that the risk of pesticide contamination and its consequent adverse impacts on soil envi‐
ronment can be evaluated.

5. Pesticides in water and air ecosystem

Pesticide residues in water are a major concern as they pose a serious threat to biological
communities including humans. There are different ways by which pesticides can get into
water such as accidental spillage, industrial effluent, surface run off and transport from
pesticide treated soils, washing of spray equipments after spray operation, drift into ponds,
lakes, streams and river water, aerial spray to control water-inhibiting pests (Carter and
Heather, 1995; Singh and Mandal, 2013). Pesticides generally move from fields to various water
reservoirs by runoff or in drainage induced by rain or irrigation (Larson et al., 2010). Similarly,
the presence of pesticides in air can be caused by number of factors including spray drift,
volatilization from the treated surfaces, and aerial application of pesticides. Extent of drift
depends on: droplet size and wind speed. The rate of volatilization is dependent on time after
pesticide treatment, the surface on which the pesticide settles, the ambient temperature,
humidity and wind speed and the vapor pressure of the ingredients (Kips, 1985). The volatility
or semi-volatility nature of the pesticide compounds similarly constitutes an important risk of
atmospheric pollution of large cities (Trajkovska et al., 2009). For instance, organophosphorus
(OP) pesticides were identified from environmental samples of air and surface following
agricultural spray applications in California and Washington (USA) (Armstrong et al., 2013).
In Italian forests, indiscriminate use of pesticides and its active metabolites has led to the
contamination of water bodies and ambient air, possibly affecting the health of aquatic biota
fishes, amphibians and birds (Trevisan et al., 1993). The following section describes the effect
of pesticides on fishes, amphibians and birds.

5.1. Fishes

Fishes are an important part of marine ecosystem as they interact closely with physical,
biological and chemical environment. Fishes provide food source for other animals such as sea
birds and marine mammals and thus fishes form an integral part of the marine food web. A
lot of research has been carried out to examine the impact of pesticides on decline in fish
population (Scholz et al., 2012). Pesticides have been directly linked to causing fish mortality
worldwide. For example, 27 freshwater fish species are found to be affected by “plant protec‐
tion products” (PPP) in Europe (Ibrahim et al., 2013). Another pesticide pentachlorophenol
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(NaPCP) is reported to cause large numbers of fish mortality in the rice fields of Surinam
(Vermeer et al., 1970). Pesticides not only impact the fish but also food webs related to them.
The persistent pesticides (organochlorine pesticides and polychlorinated biphenyls) have
already been found in the major Arctic Ocean food webs (Hargrave et al., 1992). A survey was
conducted to examine the influence of pesticides on aquatic community in West Bengal, India.
Many body tissues of the fish such as gills, alimentary canal, liver and brain of carp and catfish
were found drastically damaged by pesticides. It was reported that such level of pesticides in
fish could harm the fish consumers as well (Konar, 2011).

Several examples are available where pesticides impacted the vital fish organs and behavior.
Organophosphate pesticide “Abate” has the potential to alter the vitellogenesis (the process
whereby yolky eggs are produced) of catfish (Heteropneustes fossilis (Bloch.)), which can
severely affect catfish farming (Kumari, 2012). Another major effect of toxic contaminants is
on olfaction in fishes since it can affect activities such as mating, locating food, avoiding
predators, discriminating kin and homing etc (Tierney et al., 2010). Simultaneous exposure of
trematode parasite (Telogaster opisthorchis), freshwater fish (Galaxias anomalus) and snails to
high glyphosate concentrations significantly reduced their survival and development. Within
24 hrs of exposure to higher glyphosate concentrations, 100% mortality of individuals was
found (Kelly et al., 2010).

The impact of pesticides within an aquatic environment is influenced by their water solubility
and uptake ability within an organism (Pereira et al., 2013). For example, Clomazone, a popular
herbicide, is particularly water soluble; a property that increases its likelihood of contaminat‐
ing surface and groundwater. The hydrophilic (water-loving) or lipophobic (fat-hating) nature
of this pesticide makes it less available in the fatty tissues of an organism (Pereira et al., 2013).
Further to this, the toxicity of chemical (e.g., endosulfan in this case) in juvenile rainbow trout
(Oncorhynchus mykiss) was affected by alkalinity, temperature of water and size of the fish
(Capkin et al., 2006).

Pesticides in natural water within the acceptable concentration range can still pose harmful
effects. Kock-Schulmeyer et al. (2012) found that even if the pesticide levels found in Llobregat
River basin of Spain were within the European Union Environmental Quality Standards, they
still accounted for a low to high ecotoxicological risk for aquatic organisms, especially algae
and macro-invertebrates. Proper measures should be taken while disposing of expired
pesticides, so that their discharge into the water bodies does not danger the aquatic life. This
is because the alteration in water pH by expired insecticides can lead to acute toxicity of
different fish (Satyavani et al., 2011).

5.2. Amphibians

Amphibians are ectothermic, tetrapod vertebrates of class Amphibia. They inhabit a wide
variety  of  habitats,  with  most  species  living  within  fossorial,  arboreal,  terrestrial,  and
freshwater aquatic ecosystems. The global decline in the amphibian population has become
an  environmental  concern  worldwide.  Many  amphibian  species  are  on  the  brink  of
extinction with 7.4% listed as critically endangered, and at least 43.2% experiencing some
sort of population decrease (Stuart et al.,  2004).  There could be multitude of reasons for
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decline in amphibian species diversity, but pesticides appear to be playing an important
role.  Global  warming  and  climate  change  are  leading  to  more  variable  and  warmer
temperatures which may have increased the impact  of  pesticides on amphibian popula‐
tions (Relyea, 2003; Johnson et al., 2013).

Many studies showed that amphibians are susceptible to environmental contaminants due to
their permeable skin, dual aquatic-terrestrial cycle and relatively rudimentary immune system
(Kerby et al., 2010). Several studies showing the impact of pesticides on amphibians are being
mentioned here. It has been reported that the world’s most commonly used herbicide (Round‐
up (Glyphosate)) may have far reaching effects on non-target amphibians (Relyea, 2012).
Roundup, a globally used herbicide caused high mortality of larval tadpoles (3 different species
in North America) and juvenile frogs under natural conditions in an outdoor pond mesocosm
(Relyea, 2005a). Most of the evidence supported the toxic effects of pesticides on juvenile
European common frogs (Rana temporaria) in an agricultural field that was over sprayed.
Mortality of frogs ranged from 100% after 1 hour to 40% after 7 days at the recommended
concentrations of pesticides (Bruhl et al., 2013). It was found that population of the wood frog
(Lithobates sylyaticus) near an agricultural area was more resistant to common insecticide
(chlorpyrifos), but not to the common herbicide (Roundup). However, no evidence was
reported that resistance carried a performance cost when facing competition and the fear of
predation (Cothran et al., 2013).

Further to this, pesticides indirectly affect amphibian populations by influencing growth of
aquatic communities such as fungi, zooplankton, and phytoplankton as they are one of their
prime energy resources. Malathion is the most commonly used broad-spectrum insecticide in
United States. It is legal to spray malathion over aquatic habitats to control mosquitoes (Family:
Culicidae), that vector malaria and West Nile Virus. A study found that even low concentration
of malathion caused direct and indirect effects on aquatic communities (Relyea, 2012). For
example, indirect effect of malathion led to decrease in zooplankton diversity, that led to
increase in phytoplankton, a decrease in periphyton, and finally decrease in growth of frog
tadpoles (Relyea and Hoverman, 2008). Moreover, it was found that repeated applications of
low doses had largest impacts than single high dose application of malathion on an aquatic
system (Relyea and Diecks, 2008). A comprehensive study was conducted to examine the effect
of globally used pesticides including insecticides (carbaryl, malathion, and herbicides (glyph‐
osate, 2, 4-D)) on aquatic communities (algae, 25 animal species). Species richness reduced
differentially, 15% with carbaryl, 30% with malathion, and 22% with roundup, whereas 0%
with 2, 4-D. It was found that Roundup completely eliminated two species of tadpoles and led
to 70% decline in tadpole species (Relyea, 2005b). Another study demonstrated that frogs (Rana
pipiens) living in agricultural area, where they experienced higher exposure to chemicals were
smaller in size and weight than frogs living in area exposed to low-levels of chemicals. It
suggests that frogs living in agricultural areas might have more vulnerability to infections and
diseases due to their smaller size and alternation in their immune system (decrease in number
of splenocytes and phagocytic activity) (Christin et al., 2013).
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5.3. Birds

Birds are a diverse group, and apart from their distinct songs and calls, showy displays and
bright colors adding enjoyment to lives of humans, they play a very critical role in food chains
and webs in our ecosystems. Birds are also called “aerial acrobats” consuming different kinds
of insects such as mosquitoes, European corn borer moth (Ostrinia nubilalis), Japanese beetles
(Popillia japonica), and many other insect species that are considered as some of the most serious
agricultural and health pests. Birds are important biotic components of an ecosystem and help
in maintaining a natural equilibrium of insect populations by predating on them. In absence
of birds, outbreaks of insect pest populations would become more common, ultimately leading
to increased pesticide use. Pesticides exposure by different means such as direct ingestion of
pesticide granules and treated seeds, treated crops, direct exposure to sprays, contaminated
water, or feeding on contaminated prey, and baits cause birds mortality (Fishel, 2011; Guerrero
et al., 2012). In USA, almost 50 pesticides are known for killing song birds, game birds, seabirds,
shorebirds, and raptors (BLI, 2004).

Pesticides have a potential to alter behavior and reproduction of birds. Some of the examples
cited here, using different synthetic chemicals including carbamates, organochlorines, and
organophosphates can cause a decline in the populations of raptorial birds by altering their
feeding behavior and reproduction (Mitra et al., 2011). A large area in the world is under rice
and therefore cultivation and volume of pesticides applied in rice field is quite significant.
Many different kinds of organochlorines, cholinesterase-inhibiting insecticides including
carbofuran, monocrotophos, phorate, diazinon, fenthion, phosphamidon, methyl parathion
and azinphos-methyl along with fungicides, herbicides and molluscicides are being used in
rice fields. Some of these chemicals are highly toxic to birds causing mortality and some
chemicals even have the potential to affect their reproductive systems (Parsons et al., 2010).
Indirect effects of pesticides, through food chain have been proposed as a possible factor in
decline of farmland bird species. Insecticides applied in breeding season can affect breeding
performance of corn bunting (Miliaria calandra) and yellowhammer (Emberiza citrinella)
(Boatman et al., 2004).

Pesticides, especially insecticides such as carbamates and organophosphates have the potential
to cause bird mortality due to their high toxicity (Hunter, 1995). Further to this, insecticides
and fungicides pose a most prominent threat to ground-nesting farmland birds as compared
to other agricultural practices. The decline of US grassland birds is attributed to acute pesticide
toxicity and not agricultural intensification as previously thought (Mineau and Whiteside,
2013). An estimate suggests that 672 million birds are directly exposed to pesticides every year
on farmlands, and 10% of these birds die due to acute toxic effects of pesticides (Williams,
1997). A study was conducted in rice fields of Surinam to examine the effects of pesticides,
pentachlorophenol (NaPCP) on birds. NaPCP was sprayed for the purpose of killing Poma‐
cea snails. Large numbers of dead sick/dead egrets, herons and jacana birds were found during
the period of pesticide application. Pentachlorophenol and endrin levels in these birds
suggested that ingestion of contaminated food was the probable cause of sickness and
mortality (Vermeer et al., 1970).

Pesticides: Environmental Impacts and Management Strategies
http://dx.doi.org/10.5772/57399

201



6. Pesticides and biomagnification

The increase in concentration of pesticides due to its persistent and non-biodegradable nature
in the tissues of organisms at each successive level of food chain is known as biomagnification.
Due to this phenomenon, organisms at the higher levels of food chain experience greater harm
as compared to those at lower levels. Several studies have been undertaken that demonstrate
enhanced amount of toxic compounds with increase in trophic levels. For example, out of 36
species collected from three lakes of northeastern Louisiana (USA) that were found to contain
residues of 13 organochlorines, tertiary consumers such as green-backed heron (Butorides
striatus), and snakes etc., contained the highest residues as compared to secondary consumers
(bluegill (Lepomis macrochirus), blacktail shiner (Notopis venustus)) (Niethammer et al., 1984).
Similarly, significantly higher concentrations of dichlorodiphenyltrichloroethane (4,4′-DDE)
were found in the top consumer fish in Lake Ziway, catflish (Clarias gariepinus) than in lower
consumers, Nile tilapia (Oreochromis niloticus), tilapia (Tilapia zillii) and goldfish (Carassius
auratus) (Deribe et al., 2013). Some of the adverse effects of pesticides on non-target organisms
such as fish, amphibians and humans discussed in the above section have also occurred as a
result of biomagnifications of the toxic compounds. For example, reproductive failure and
population decline in the fish-eating birds (e.g., gulls, terns, herons etc.) was observed as a
result of DDE induced eggshell thinning (Grasman et al., 1998). The extent of biomagnifications
increases with increase in persistence and lipophilic (fat-loving) characteristics of the particular
pesticide. As a result of this, organochlorines are known to have higher biomaginification rate
and are more persistent in a wider range of organisms as compared to organophsphates (Favari
et al., 2002). It is important to do the risk assessments associated with the pesticides on the
basis of their bioaccumulation and biomagnifications before considering them for agricultural
purposes.

7. Strategies for pesticide management

There are a relatively few pesticide resistance management tactics that have been proposed
risk-free and have a reasonable chance of success under a variety of different circumstances.
Headmost among these are: monitoring of pest population in field before any pesticide
application, alteration of pesticides with different modes of action, restricting number of
applications over time and space, creating or exploiting refugia, avoiding unnecessary
persistence, targeting pesticide applications against the most vulnerable stages of pest life
cycle, using synergists which can enhance the toxicity of given pesticides by inhibiting the
detoxification mechanisms. The most difficult challenge in managing resistance is not the
unavailability of appropriate methods but ensuring their adoption by growers and pest control
operators (Denholm et al., 1998; Dhaliwal et al., 2006).

Pest resurgence is a dose-dependent process and there are ways to tackle this problem using
correct dosage of effective and recommended pesticides. Resurgence problem occurs due to a
number of reasons. One of them is due to farmers’ tendency to apply low-dose insecticides
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due to economic constraints that lead to inadequate and ineffective control of pests. Pest
resurgence also occurs due to reduced biological control (most common with insects), reduced
competition (most common with weeds; monocots vs. dicots), direct stimulation of pest (due
to sub-lethal dose), and improved crop growth.

In the current scenario, optimized use of pesticides is important to reduce environmental
contamination while increasing their effectiveness against target pest. This way we can reduce
pesticide resistance as well as pest resurgence problems. This has led to the consideration of
rational use of pesticides, and the physiological and ecological selectivity of pesticides.
Physiological selectivity is characterized by differential toxicity between taxa for a given
insecticide. However, ecological selectivity refers to the modification of operational procedure
in order to reduce unnecessary destruction to non-target organisms (Dent, 2000). Farmers
should focus to use insecticides that are more toxic to target species than their natural enemies
which could help to reduce resurgence to some extent (Dhaliwal et al., 2006).

One should consider adopting an Integrated Pest Management (IPM) approach for controlling
pests, as these practices are designed to have minimal environment disturbance. The aim of
IPM is not only to reduce indiscriminate pesticide use but also to substitute hazardous
chemicals with safe chemistries. IPM is a process of achieving long-term, environmentally safe
pest control using wide variety of technology and other potential pest management practices.
According to National Academy of Science, “IPM refers to an ecological approach in pest
management in which all available necessary techniques are consolidated in a unified program
so that populations can be managed in such a manner that economic damage is avoided and
adverse side effects are minimized” (NAS, 1969). In European arable systems, applied multi-
disciplinary research and farmer incentives to encourage the adoption of innovative IPM
strategies are essential for development of sustainable maize-based cropping systems. These
IPM strategies can contribute immensely to address the European strategic commitment to the
environmentally sustainable use of pesticides (Vasileiadis et al., 2011). The added cost and time
to do an IPM approach is sometimes a difficult task for growers, but government and extension
services can help in convincing and encouraging growers to go for IPM strategy for eco-
friendly and long term pest control. We have already discussed earlier that continuous use of
pesticides leads to pesticide resistance and pest resurgence problem. To avoid these issues we
can always go for other potential management options that include cultural and physical
control, host plant resistance, biocontrol, and the use of biopesticides etc.

7.1. Cultural control

Historically, cultural control methods were the farmer’s most important tool of preventing
crop losses. Cultural control for pest management has been adopted by growers throughout
the world for a long time due to its environmentally friendly nature and minimal costs (Gill
et al., 2013). Cultural control practices are regular farm operations, which are used to destroy
the pests or to prevent them from causing plant damage. Several methods of cultural control
have been practiced, such as crop rotation, sanitation, soil solarization, timed planting and
harvest, use of resistant varieties, certified seeds, allelopathy, intercropping or “companion
planting”, use of farmyard manure, and living and organic mulches (Altieri et al., 1978; Dent,
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2000; Dhaliwal et al., 2006). Soil solarization (McSorley and Gill, 2010; Gill and McSorley,
2011b) and organic mulches (Gill and McSorley, 2011a) alone and their integration (Gill and
McSorley, 2010) were reported as economical and eco-friendly technique for controlling soil-
surface arthropods (various insects, and nematodes) (Gill et al., 2010; Gill et al., 2011) and
weeds (Gill et al., 2009; Gill and McSorley, 2011b). More effective cultural control can be
achieved by synchronizing existing practices with life cycles of pests. This way the weakest
link in their life cycle is subjected to adverse climatic conditions.

Large insect populations are killed automatically by farmers when they expose them to adverse
climatic conditions through agricultural practices like weeding, ploughing, and hoeing.
Ploughing of agricultural field allows turnover of the upper layer of soil while burying the
weeds and residues from last year. For example, in South Africa, about 70% of overwintering
populations of spotted stalk borer (Chilo partellus) and maize stalk borer (Busseola fusca) in grain
sorghum (Sorghum bicolor L.) and maize (Zea mays L.) fields were destroyed by slashing the
plants. Ploughing and discing of plant residues after slashing further destroyed 24% popula‐
tion on grain sorghum and 19% on maize (Kfir, 1990). Planting dates (Goyal and Kanta,
2005a), and barrier crops (teosinte (Zea spp.) and pearl millet (Pennisetum glaucum (L.)) (Goyal
and Kanta, 2005b) were found to be effective against maize stem borer (Chilo partellus) in India.
The brown seaweeds Spatoglossum asperum and Sargassum swartzii can be used as manure to
protect plants (tomato (Solanum lycopersicum L.) in this case) from root rotting fungi, (Macro‐
phomina phaseolina, Rhizoctonia solani and Fusarium solani) and root-knot nematode (Meloidogyne
javanica) and for providing necessary nutrients to plants (Sultana et al., 2012). In India, rodents
are pests in agriculture, horticulture, forestry, animal husbandry as well as in human dwellings
and rural and urban storage facilities. Cultural methods, such as clean cultivation, proper soil
tillage and crop scheduling, barriers, repellents and proofing that reduce the rodent harbour‐
age, food sources and immigration may have long lasting effects (Parshad, 1999).

7.2. Physical and mechanical control

Managing pest populations using devices which affect them physically or alter their physical
environment is called physical control. Exposure to sun rays, steaming, moisture management
especially for stored grain pests, and light traps for attracting various kinds of moths, beetles
and other pests are different methods used in physical control. For example steaming woolen
winter clothes help in eliminating population of the woolly bear moth, Antherenus vorax
(waterhouse) (Dhaliwal et al., 2006). Hot water treatment of plant storage products like corns,
and bulbs helps to kill many concealed pests such as eelworms and bulb flies. Superheating
of empty grain storage godowns to a temperature of 50ºC for 10-12 hours helps killing
hibernating stored grain pests. Exposure of cotton seeds to sun’s heat in thin layers for 2-3 days
during summer helps in killing diapausing larvae of pink bollworm (Pectinophora gossypiella
Saunders) (Dhaliwal et al., 2006).

Mechanical control refers to suppression of pest population by manual devices. It includes
various practices such as hand picking, trapping and suction devices, clipping, pruning and
crushing of infested shoots and floral parts, and exclusion by screens and barriers to keep away
house flies (Musca domestica), mosquitoes and other pests. In south-eastern Australia, the
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common starling (Sturnus vulgaris) is an established invasive avian pest that is now making
incursions into Western Australia which is currently free of this species. Trapping with live-
lure birds is suggested to be the most cost-effective and widely implemented starling control
technique (Campbell et al., 2012). Numerous wildlife species such as coyotes (Canis latrans
Say), squirrels (Sciuridae family), and birds are known pests of California agriculture in the
United States. For these pests, different non-lethal control options including habitat modifi‐
cation, exclusionary devices, and baiting are generally preferred (Baldwin et al., 2013).
Mechanical weed control is mainly associated with tillage practices which are performed with
special tools such as harrows, hoes, and brushes in growing crops. Increased knowledge about
side effects of herbicides has further driven the interest in adoption of mechanical weed control
thus increasing the prevalence of organic farming (Rueda-Ayala et al., 2010; Jat et al., 2011).
Trapping using yellow colored sticky traps is an effective way for controlling tephritid flies
(Dhaliwal et al., 2006).

7.3. Host plant resistance

Host plant resistance (HPR) is the genetic ability of the plant to improve its survival and
reproduction by a range of adaptations as compared to the other cultivars when exposed to
the same level of pest infestation. HPR offers the most effective, economical and eco-friendly
method of pest control (Sharma and Ortiz, 2002), and is considered to be a key element of the
IPM strategy. Due to this, identifying and developing HPR has always been a major thrust
area of plant breeding, and a number of breeding programs aiming to develop pest resistant
crops have been deployed in almost all the cultivated crop species. For example, identification
and/or development of resistant varieties in maize against European corn borer (Ostrinia
nubilalis (Hubner)) (Dhaliwal et al., 2006) , brassica against cabbage butterfly (Pieris brassicae
Linn.) (Chahil and Kular, 2013), wheat (Triticum aestivum L.) and rye (Secale cereale L.) against
Fusarium diseases (Miedaner, 1997) Brassica sp. against Sclerotinia disease (Garg et al., 2008),
and in rice against bacterial blight (Khush et al., 1989). Additionally, availability and access to
various germplasm collections have increased the scope of widening the gene-pool of culti‐
vated crops and further identifying and developing HPR. Wild species are especially known
to possess a rich repository of genes against various defense traits as they have evolved under
different geographic locations. Considerable progress has been made where identification and/
or transfer of resistance gene from wild to cultivated species against various pest species has
been achieved such as in potato (Solanum tuberosum L.) against late blight (Phytophthora
infestans) from ten wild Solanum sp. (Colon and Budding, 1988), wheat against powdery mildew
(Erysiphe graminis) from wild emmer wheat (Triticum dicoccoides) (Reader and Miller, 1991) and
mustard (Brassica juncea) against Sclerotinia sclerotiorum from Erucastrum cardaminoides (Garg
et al., 2010).

7.3.1. Use of biotechnology and molecular approaches for developing resistant genotype

The advent of new biotechnological and molecular approaches has opened the way to develop
resistant genotype that could not only reduce the pesticides application, but it also has a
potential to be a part of IPM. Development of resistant genotypes in classical breeding is met
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with several challenges such as it is time consuming, desired traits are linked with the
undesirable traits (linkage drag) and most importantly lack of resistant genotypes in the gene
pool. On the other hand, use of biotechnology in crop improvement ensures the development
of pest-resistant genotypes in a comparatively short period of time and minimizes the effects
of linkage drag. One of the classic examples where biotechnology was successfully deployed
to develop resistant genotype is by the synthesis of transgenic plants which involves modifying
plant traits by inserting foreign DNA from a different species (De la Pena et al., 1987). A number
of different crops including cotton, rice, mustard, and maize have been modified up to now
to engineer the genotypes against various biotic stresses (Ahmad et al., 2012). One of the most
successful examples of synthesis of transgenic genotype against pest resistance is in cotton
where the gene coding for Bt toxin from the bacterium Bacillus thuringiensis (Bt) was inserted
leading cotton genotypes to produce Bt toxin in its tissue (Pray et al., 2002; Wu et al., 2008).
The lepidopteran larvae that fed on the transgenic plants were killed due to Bt toxin eventually
decreasing the amount of pesticide applied to the field. Examples of transgenic crops that have
been developed with a potential to reduce pesticides use are abound and few of them include
potato lines against potato tuber moth (Phthorimaea operculella) expressing Cry1Ab (Kumar et
al., 2010), rice against yellow stem borer (Scirpophaga incertulas) expressing potato proteinase
inhibitor 2 (Bhutani et al., 2006) and oilseed rape lines resistant to various fungal attack over-
expressing tomato chitinase gene (Grison et al., 1996).

Another strategy where biotechnology and molecular approaches have been deployed to
combat biotic stresses involves the use of RNA interference (RNAi) technique. This technique
primarily uses transgenic plants expressing double stranded RNA (dsRNA) and that reduces
the messenger RNA (mRNA) levels (with a high specificity and fidelity) of a crucial gene in
the target pest upon feeding (Price and Gatehouse, 2008; Kos et al., 2009). This ultimately
interferes with the development and survival of the target pest. RNAi has emerged as a
powerful functional genomics approach and it has been used to engineer several crops against
number of insect-pests. For example, RNAi technique was used in tobacco genotype that
targeted the gene “integrase splicing factor” in root knot nematode, Meloidogyne incognita
nematode eventually leading to the decrease in the number of nematodes 6-7 weeks post
inoculation (Yadav et al., 2006). When such an advanced and effective approach is combined
with IPM, it has a great potential to decrease chemical use in agricultural and other ecosystems.

7.4. Biological control

The process of using natural enemies of particular pests to reduce their populations to such a
level where economic losses are either eliminated or suppressed is called biological control.
Traditionally the most important biocontrol agents are parasitoids, predators and pathogens.
Biological control involves three major techniques, viz., introduction, conservation, and
augmentation of natural enemies. Biocontrol agents include vertebrates, nemathelminthes
(flatworms, and roundworms), arthropods (spiders, mites, and insects), pathogens like
viruses, bacteria, protozoa, fungi and rickettsiae all of which play a dynamic role in natural
regulation of insect and mite populations (Dhaliwal et al., 2006). In 1762, the Indian Mynah,
Acridotheres tristis (Linnaeus), was introduced to control red locust in Mauritius. First signifi‐
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cant success in controlling a pest was achieved on the suggestion of C. V. Riley of California
(USA) in 1888. The Vedalia beetle (Rodolia cardinalis (Mulsant)), was introduced from Australia
into California (USA) for the control of cottony-cushion scale (Icerya purchasi maskell) on citrus
plants. This scale insect had been accidentally introduced earlier from Australia (Dhaliwal et
al., 2006).

Biological control of weeds has been very successful worldwide. There are about 41 species of
weeds which have been successfully controlled using insects and pathogens as biocontrol
agents.  Also,  3 weed species have been controlled using native fungi as mycoherbicides
(Mcfadyen, 2000). A total of 12 insects were released in Australia against prickly pear (Opun‐
tia stricta), out of these, Dactylopius opuntiae and Cactoblastis cactorum were responsible for the
successful control of prickly pear weed (Julien and Griffiths, 1998). In the past decade, Austral‐
ia has released 43 species of arthropods and pathogens in 19 different projects for successful
biological control of many exotic weeds. Effective biological control was achieved in several
projects and outstanding success was achieved in the control of rubber vine (Cryptostegia
grandiflora), and bridal creeper (Asparagus asparagoides) (Palmer et al., 2010).

Examples of biological control are available for other organisms like helminthes, nematodes,
fungi, bacteria etc. A nematophagous fungus (Monacrosporium thaumasium) was found to be
effective in controlling cyathostomin, one of the most important helminthes in tropical region
of southeastern Brazil (Tavela et al., 2011). Trichoderma species are free-living fungi that have
been used to control a broad range of plant pathogenic fungi, viruses, bacteria and nematodes
especially root-knot nematodes (Meloidogyne javanica and M. incognita) (Sharon et al., 2011).

7.4.1. Biorational pesticides

Biorational pesticides/ biopesticides are considered as third-generation pesticides that are
rapidly gaining popularity. The word biorational is derived from two words, “biological” and
“rational”, which means pesticides of natural origin that have limited or no adverse effects on
the environment or beneficial organisms. Biopesticides encompass a broad array of microbial
pesticides, plant pesticides and biochemical pesticides which are derived from micro-organ‐
isms and other natural sources, and processes involving the genetic incorporation of DNA into
agricultural commodities. The most commonly used biopesticides include biofungicides (e.g.,
Trichoderma spp.), bioherbicides (Phytopthora spp.), bioinsecticides (spore forming bacteria,
Bacillus thuringiensis, and B. popilliae, Actinomycetes), naturally occurring fungi (Beauveria
bassiana), microscopic roundworms (Entomopathogenic nematodes), Spinosad, insect hor‐
mones and insect growth regulators (Gupta and Dikshit, 2010; Singh et al., 2013).

Applications of microbial insecticide, Chromobacterium subtsugae for suppression of pecan
weevil (Curculio caryae (Horn)), and combination of eucalyptus extract and microbial insecti‐
cide, Isaria fumosorosea (Wize) for control of black pecan aphid (Melanocallis caryaefoliae (Davis))
were found promising as alternative insecticides (Shapiro-Ilan et al., 2013). Entomopathogenic
nematodes (EPNs) belonging to the families Heterorhabditidae and Steinernematidae are
potentially used in South Africa as biocontrol agents against vine mealybug (Planococcus
ficus (Signoret)) (le Vieux and Malan, 2013). Spinosad was found effective in controlling
Colorado potato beetle (Leptinotarsa decemlineata) in Iran, and is recommended for use in IPM
program for Colorado potato beetle (Soltani and Agricultural, 2011). In China, entomopatho‐

Pesticides: Environmental Impacts and Management Strategies
http://dx.doi.org/10.5772/57399

207



genic fungus (Beauveria bassiana) has shown great potential for the management of some bark
beetle species including red turpentine beetle (RTB) (Dendroctonus valens LeConte), a destruc‐
tive invasive pest (Zhang et al., 2011).

The allelopathic properties of plants can be exploited successfully as a tool for weed and
pathogen reduction. In a rice field, application of allelopathic plant material @ 1-2 tonne/ha
reduced weed diversity by 70% and increased yield by 20%. Numerous growth inhibitors
identified from these allelopathic plants are responsible for their allelopathic properties and
may be a useful source for the future development of bio-herbicides and pesticides (Xuan et al.,
2005). A combination of coleopteran-active toxin, Bacillus thuringiensis Cry3Aa protoxin and
protease inhibitors, especially a potato carboxypeptidase inhibitor, have efficiency in prevent‐
ing damage to stored products and grains by stored grain coleopteran pests (Oppert et al., 2011).

7.5. Chemical control

Sometimes cultural and other agro-technical practices are not sufficient to keep pest population
below economic injury level (lowest pest population density that will cause economic crop
damage). Therefore, the chemical control agents are resorted to both as preventive and curative
measures to minimize the insect pest damage. A good pesticide should be potent against pests,
should not endanger the health of humans and non-target organisms, and should ultimately
break down into harmless compounds so that it does not persist in environment. Both relative
and specific toxicities of the pesticide need to be estimated in order to determine its potency.

It is very important to know spray droplet size and density chemical dosage, application
timing, which can provide adequate pest control. There is also a need for research into the
development of suitable packaging and disposal procedures, as well as refining of the
application equipment. All of these shall rationalize the use of pesticides, so that they can be
used in an acceptable way.

Very strict laws should be enacted to protect wildlife and other non-target organisms.
Following directions on the pesticide label can prevent injury to non-target organisms.
However, when these directions are not followed, benefits from pesticides can be outweighed
by the harm and risk associated with pesticides (Fishel, 2011). During pesticide application,
things that need to be considered are timing of insecticide application, dosage and persistence,
and selective placement of insecticides as discussed below.

7.5.1. Timing of pesticide application

The timing of pesticide application is an important factor to consider before doing any pesticide
application. Appropriate application time can ensure not only maximum impact on the target
organisms but also least impact on beneficial organisms. Pesticide application timing mainly
depends on availability of weather window, time at which pests can be best controlled, and
when least damage will be caused to non-target organisms and environment. Flowering period
in crops and middle of the day are the times when bees are more prone to insecticides. Hence,
insecticide application should not happen at those times to avoid decline in bee populations.
Time of insecticide application should coincide with the most vulnerable stage of insect life
cycle. Monitoring of insects in the field is thus extremely important for knowing the stage of
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insect pest in the field. Monitoring systems are available for most of the insect pests, but spray
regime or experiments need to be carried out to determine the most appropriate time for
insecticide application for insects for which monitoring systems are not available (Hull and
Starner, 1983; Richter and Fuxa, 1984).

Time of the day and season of the year are also important to consider when making pesticide
applications. The early morning and evening hours are often the best times for pesticide
application because windy conditions are more likely to occur around midday when the
temperature warms near the ground level. This causes hot air to rise quickly and mix rapidly
with the cooler air above it, favoring drift. During stable conditions, a layer of warm air can
stay overhead and not promote mixing with colder air that stays below and closer to the
ground. Inversions tend to dissipate during the middle of the day when wind currents mix
the air layers. It is very important that applicators recognize thermal inversions and do not
spray under those conditions. A temperature or thermal inversion is a condition that occurs
naturally and exists when the air at ground level is cooler than the temperature of the air above
it. Wind speed is the most important weather factor influencing drift. High wind speeds will
move droplets downwind and deposit them off the target. On the other hand, dead calm
conditions are never recommended due to likelihood of temperature inversions (Fishel and
Ferrell, 2013). Drifting of pesticides increases the possibility of injury to pollinators, humans,
domestic animals and wildlife. It is recommended not to spray in wind speed above 2.5 miles/
second which otherwise can cause excessive drift and eventually contamination of adjacent
areas (Matthews, 1981). Pesticide application should not be made just before rain because
pesticides can be washed off by the rain without any impact on the target pest.

7.5.2. Dosage and persistence

Pesticide dose should be sufficient but no greater than the level required for best results. The
pesticide manufacturer sets the dose to ensure an acceptable level of control, producing
acceptable residue levels, and maximizing returns per unit of formulated insecticide. Persistent
pesticides have their benefit of longer persistence on the target and therefore requires less
frequent spraying compared to non- persistent pesticides. But care should be taken while using
persistent pesticides since these might diminish benefits from natural enemies even at lower
doses. If an insecticide is persistent in nature, chances of insecticide residues being harmful to
natural enemies are greatly increased (Dent, 2000).

7.5.3. Selective placement

Distribution of pesticides in the field should be such that maximum target cover is achieved.
Usually only about 1% of the applied pesticides is able to reach its target, while a large amount
of it is wasted. Understanding the pest biology and behavior is critical as it can provide
information on pest’s habitat, fecundity, feeding etc., which can be important considerations
before applying pesticides. Most of the pesticides are applied in liquid form and thus the
droplet size is very important in determining their effectiveness. Small droplets provide better
coverage and greater likelihood of coming in contact with the target compared to larger
droplets that can bounce off the plant surface very easily. The disadvantage with smaller and
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bigger droplets is the increased chance of drift and therefore a balance has to be considered
between smaller droplets to obtain the maximum effectiveness and reduced drift.

In situations where crops are grown on beds covered with plastic mulch, pesticides should be
injected into soil at the time the plastic is laid or injected afterward through drip irrigation
system to achieve maximum pesticide effectiveness. For termite (Order: Isoptera) treatments,
sometimes perimeter application of insecticides is required around structures/buildings.
Additionally, liquids that form foams following injections can be injected into small spaces
that are or might be inhabited by termites or other small creatures.

8. Conclusion

Although, pesticides were used initially to benefit human life through increase in agricultural
productivity and by controlling infectious disease, their adverse effects have overweighed the
benefits associated with their use. The above discussion clearly highlights the severe conse‐
quences of indiscriminate pesticide use on different environmental components. Some of the
adverse effects associated with pesticide application have emerged in the form of increase in
resistant pest population, decline in on beneficial organisms such as predators, pollinators and
earthworms, change in soil microbial diversity, and contamination of water and air ecosystem.
The persistent nature of pesticides has impacted our ecosystem to such an extent that pesticides
have entered into various food chains and into the higher trophic levels such as that of humans
and other large mammals. Some of the acute and chronic human illnesses have now emerged
as a consequence of intake of polluted water, air or food.

This is the time that necessitates the proper use of pesticides to protect our environment and
eventually health hazards associated with it. Alternative pest control strategies such as IPM
that deploys a combination of different control measures such as cultural control, use of
resistant genotype, physical and mechanical control, and rational use of pesticide could reduce
the number and amount of pesticide applications. Further, advanced approaches such as
biotechnology and nanotechnology could facilitate in developing resistant genotype or
pesticides with fewer adverse effects. Community development and various extension
programs that could educate and encourage farmers to adopt the innovative IPM strategies
hold the key to reduce the deleterious impact of pesticides on our environment.
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