Petascale Tcl with NAMD, VMD, and Swift/T

James C. Phillips
Beckman Institute
University of lllinois at
Urbana-Champaign
Urbana, IL 61801, USA
jim@ks.uiuc.edu

Timothy G. Armstrong Justin M. Wozniak

Department of Computer

Science Science Division
University of Chicago Argonne National Laboratory
Chicago, IL 60637, USA Argonne, IL 60439, USA
tga@uchicago.edu wozniak@mcs.anl.gov
ABSTRACT

Tcl is the original embeddable dynamic language. Intro-
duced in 1990, Tcl has been the foundation of the script-
ing interface of the popular biomolecular visualization and
analysis program VMD since 1995 and was extended to the
parallel molecular dynamics program NAMD in 1999. The
two programs together have over 200,000 users who have
enjoyed for nearly two decades the stability and flexibility
provided by Tcl. VMD users can implement or extend par-
allel trajectory analysis and movie rendering on thousands
of nodes of Blue Waters. NAMD users can implement or ex-
tend simulation protocols and multiple-copy algorithms that
execute unmodified on any supercomputer without the need
to recompile NAMD. We now demonstrate the integration
of the Swift/T high-performance parallel scripting language
to enable high-level data flow programming in NAMD and
VMD. This integration is achieved without modifying or re-
compiling either program since the Turbine execution engine
is itself based on Tcl and is dynamically loaded by the in-
terpreter, as is the platform-specific MPI library on which
it depends.

Categories and Subject Descriptors

1.6.8 [Simulation and Modeling]: Types of Simulation—
Parallel; 1.3.7 [Computer Graphics|: Three-Dimensional
Graphics and Realism; D.1.3 [Concurrent Programming]:
Parallel programming

General Terms

Algorithms, Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HPTCDL November 16-21, 2014, New Orleans, Louisiana, USA
Copyright 2014 ACM 978-1-4799-5500-8/14 ...$15.00.

John E. Stone
Beckman Institute
University of lllinois at
Urbana-Champaign
Urbana, IL 61801, USA
johns@ks.uiuc.edu

Mathematics and Computer

Kirby L. Vandivort
Beckman Institute
University of lllinois at
Urbana-Champaign
Urbana, IL 61801, USA
kvandivo@ks.uiuc.edu

Michael Wilde
Mathematics and Computer
Science Division
Argonne National Laboratory
Argonne, IL 60439, USA
wilde@anl.gov

Klaus Schulten
Department of Physics
University of lllinois at

Urbana-Champaign
Urbana, IL 61801, USA
kschulte@ks.uiuc.edu

Keywords

Scripting, molecular simulation, molecular visualization, par-
allel rendering, GPU, many-core

1. INTRODUCTION

State-of-art molecular dynamics (MD) simulations pro-
vide researchers with access to atomic structural details and
nanosecond timescales that are inaccessible to experimen-
tal methods alone. The combination of high-quality struc-
ture information, petascale computing, and MD simulation
provides researchers with a powerful “computational micro-
scope” that provides detailed views of the inner workings
of large biomolecular complexes in the cell. The nature of
MD simulation work leads researchers to develop customized
tools that solve the unique computational problems arising
in their scientific pursuits. The diversity of tasks involved
in preparing, simulating, analyzing, and visualizing state-of-
the-art molecular dynamics simulations poses a significant
challenge to researchers, requiring software tools to be ex-
tensible, performant, and easy to use. Dynamic languages
are ideal for the software tool development performed by
many molecular scientists, because they are easy for scien-
tists to learn; provide full access to filesystems, network-
ing, and external programs; and can be linked directly with
custom-written performance-critical subroutines written in
conventional compiled languages such as C++ and GPU and
heterogeneous computing languages such as CUDA [29, 17]
and OpenCL [26]. The embedding of dynamic languages
into parallel applications poses special challenges in terms
of access to script source code, limited system call imple-
mentations on some supercomputer operating systems, and
I/O scalability issues that can arise when using dynamic
languages at scale, associated with runtime loading of new
scripts or subroutines, dynamic link libraries, and so forth.

The molecular graphics program VMD [6] has incorpo-
rated a built-in Tcl interpreter since 1995 and added op-
tional Python support in 2000. VMD originally used Tcl
simply as an interactive text-based command and command
scripting engine, but has since grown to depend much more
on Tcl as a language particularly in the context of perform-
ing large-scale parallel trajectory analysis and visualization

tasks on petascale computers. VMD has recently been ex-
tended with Tcl bindings for parallel programming that en-
able scientists to easily adapt their existing analysis and
visualization scripts and tools to throughput-oriented data-
parallel execution on clusters and petascale computers [27,
32, 28].

NAMD |[20] is a highly scalable parallel MD engine that is
heavily used for simulations of large biomolecular complexes
such as the HIV-1 capsid [42], running on state-of-the-art
petascale computers with hundreds of thousands of CPU
cores and tens of thousands of GPUs [22]. NAMD has in-
corporated a Tcl interpreter since 1999, enabling researchers
to develop custom simulation protocols that involve user-
defined force equations, replica exchange, protocol, and au-
tomation of other simulation tasks.

Swift/T is a dataflow language designed to enable easy
composition of independent software tools and procedures
into large-scale, throughput-oriented parallel workflows that
can be executed on workstations, HPC clusters, and super-
computers [40]. Swift/T scales efficiently up to hundreds of
thousands of CPU cores through a combination of runtime
and compiler techniques [2]. NAMD and VMD have recently
been successfully coupled to the Swift/T throughput com-
puting system. Standard NAMD and VMD binaries can be
launched across the nodes of a parallel computer and effi-
ciently execute Swift/T dataflow programs with functions
implemented in the embedded Tcl scripting language.

The NAMD integration with Swift/T has been used to
demonstrate n : m multiplexing of n replicas across a smaller
arbitrary number m of NAMD processes, a capability that
is complex to implement with normal NAMD scripting but
that can be expressed naturally in under 100 lines of Swift/T
code. Multiple-copy molecular dynamics sampling techniques
that have dynamically varying breadth of work can be dif-
ficult to adapt to traditional supercomputing platforms and
batch queuing systems. Adaptive Multilevel Splitting [1]
and other NAMD replica exchange and multiple-copy algo-
rithms can be enhanced to exploit unique features of cloud
platforms, such as dynamic runtime resizing of parallel job
node counts. When expressed as Swift/T dataflow pro-
grams, these algorithms can be executed on arbitrary node
counts, with nodes joining or leaving the calculation based
on both the internal demands of the sampling algorithm and
the dynamic pricing of compute resources in the cloud.

Another contribution Swift/T provides for molecular mod-
eling is the ability to incorporate a multitude of independent
programs into large workflows. While NAMD and VMD
can function independently and both have their own built-
in mechanisms for parallel execution, Swift/T provides an
alternative means for simulation protocols, such as molec-
ular dynamics flexible fitting (MDFF) [33, 34], that cur-
rently require execution of both NAMD and VMD. The use
of Swift/T can completely replace filesystem-based commu-
nication between disparate tools with direct access to in-
memory data through existing Tcl bindings and inter-node
communication performed by Swift/T.

2. BACKGROUND

Dynamic languages are well suited to act as the primary
programming interface for molecular modeling software be-
cause of their inherent flexibility, ease of use, and not re-
quiring complex and potentially time-consuming offline com-
pilation phases. In exchange for their many virtues, dy-

namic languages often leave performance as a secondary con-
cern, addressed in combination with traditional compiled
languages, runtime code generation, just-in-time compila-
tion (JIT), and similar approaches.

The performance-critical kernels involved in molecular mod-
eling applications tend to be highly structured, heavily opti-
mized, and rarely modified, lending themselves to traditional
compiled languages such as C++, often with judicious use
of hand-coded CPU vector intrinsics or assembly language,
and in many cases CUDA or OpenCL kernels that target
GPUs or other accelerators [11, 29, 21, 5, 30, 26, 28]. This
observation leads naturally to programs that use traditional
compiled languages for performance-critical data structures
and kernels, but that use higher-level dynamic languages
for the orchestration of complex molecular modeling tasks.
Table 1 shows the decomposition of VMD and the VMD
plugins into lines of code (LoC) associated with traditional
compiled languages such as C/C++, CUDA, OpenCL, and
assembly intrinsics and with dynamic languages such as Tcl
and Python. While the details of this decomposition are
unique to VMD, it shares much in common with other com-
putational workbench environments that make heavy use of
dynamic languages for plugins or other software components
that users may want to modify, customize, or use as the basis
for building derivative software.

3. VMD SCRIPTING INTERFACES

VMD [6] is a popular molecular visualization and analysis
tool that incorporates user-extensible Tcl and Python script-
ing and many plugin modules that assist with common sim-
ulation preparation, visualization, and analysis tasks. Al-
though VMD was designed from the outset to operate on
large biomolecular complexes, the 10- to 100-million atom
simulations that are performed on petascale computers rep-
resent a significant leap in size that exceeds the comput-
ing and visualization performance growth for a single work-
station or compute node. The recent growth in simulation
size has required many new algorithms and techniques to be
developed, leading VMD to employ parallel algorithms on
many-core processors and GPUs, thereby accelerating key
visualization and analysis tasks [29, 27]. The VMD script-
ing interface has also been extended with parallel program-
ming primitives to allow parallel molecular modeling tools
to be developed and run by VMD users on petascale com-
puters [27, 32, 28].

VMD was originally developed with a hard-coded com-
mand interpreter; but by 1995, it was replaced by an em-
bedded Tcl interpreter that gave the program a far more
powerful scripting engine and much greater user extensi-
bility [6]. The embedded Tcl interpreter became the ba-
sis for development of many VMD scripts and plugins, in-
cluding some particularly sophisticated tools for multiple-
sequence and multiple-structure alignment and analysis [25]
and for development of molecular dynamics force field pa-
rameters [15]. In 2000, VMD was refactored to incorporate
support for Python and to support other languages through
subclassing of the top-level TextInterp class. The addi-
tion of Python support has enabled a number of Python-
based VMD plugins and analysis tools to be developed [16]
and enabled VMD to be seamlessly embedded in HiMach, a
Python-based MapReduce style trajectory analysis frame-
work [35]. Recently, further subclassing of the TextIn-
terp class allowed Matheny et al. to embed a Lua inter-

Table 1: Language breakdown of core VMD source
code and VMD plugins in terms of lines of code
(LoC).

Language VMD Core | VMD Plugins
LoC LoC

C/C++ 206 K 211K

CUDA 16 K

OpenCL 2K

Assembly / intrinsics 2K

Tel 38K 252K

Python 8K 3K

preter in VMD, enabling it to be used within the ExSciTecH
distributed-computing client [14].

3.1 Parallel Scripting in VMD

VMD incorporates many plugins that automate complex
or computationally demanding analysis and visualization
tasks; particularly those that involve processing of simula-
tion trajectories comprising tens of terabytes of data [31,
27]. VMD implements several easy-to-use commands that
provide high level parallel programming abstractions that
are well suited to development of visualization and analysis
tools used by molecular scientists. VMD provides built-in
commands for querying node counts and ranks, barrier syn-
chronization (e.g. parallel barrier), collective operations
(e.g. parallel allgather, parallel allreduce), and an
easy to use work scheduler (parallel for).

The VMD parallel computing commands are provided in
all VMD builds, thereby enabling visualization and analysis
tools to use them irrespective of whether or not VMD was
compiled with MPI support. Beyond being simple wrap-
pers for lower-level shared memory multithreading and dis-
tributed memory message passing operations, the implemen-
tations in VMD also provide error checking to assist applica-
tion scientists that are new to parallel programming and its
associated challenges. The work scheduler in VMD uses fast
atomic counter machine instructions, multithreading, and
asynchronous communication to achieve good performance
for a variety of throughput oriented analysis and visualiza-
tion tasks with thousands of nodes, and enables the use of
GPU accelerated kernels [27, 32, 28].

3.2 Parallel Analysis and Rendering in VMD

The VMD TIMELINE trajectory analysis plugin provides
an easy-to-use graphical interface for analyzing MD trajec-
tories, calculating associated time-varying quantities, and
highlighting rare or otherwise important events using both
the VMD 3-D structure display and a heatmap-style 2-D
matrix [27]. TIMELINE is designed to help identify and as-
sess trajectory events by performing analysis calculations for
each component of a molecular system and for every frame
of a simulation trajectory. The resulting TIMELINE plot
provides a “whole-trajectory” and a “whole-structure” view
of the calculated property. The TIMELINE plot is directly
linked to the VMD 3-D structure display. When the user
“scrubs” the mouse cursor on the TIMELINE plot, the asso-
ciated 3-D molecular structures are highlighted, and their
configurations and motions are shown at the times of the

corresponding events. Since TIMELINE analyses typically
involve very large datasets, the analyses it performs are
tasks that are well suited to large-scale, batch-mode data-
parallel computational approaches. All the graphical inter-
faces and high-level orchestration of TIMELINE analyses are
implemented with Tcl scripts that make use of both the
VMD parallel scripting commands described above and fast
data-parallel GPU algorithms, e.g. for tasks such as cal-
culation of solvent-accessible surface area [27] and MDFF
cross-correlation quality-of-fit metrics [28].

VMD includes various tools for rendering movies, and
it supports a variety of high-quality ray tracing and ad-
vanced lighting techniques that can pose significant com-
putational demands, leading to the use of parallel render-
ing [27, 32]. The existing parallel rendering tools are built
using the parallel scripting interfaces in VMD; an extremely
simplified pair of parallel rendering procedures is shown in
Appendix A.

4. NAMD TCL SCRIPTING INTERFACE

Since we can never anticipate the needs of all NAMD
users, it is imperative to enable ad hoc innovation by biomed-
ical researchers. To allow user-driven innovations to transfer
between platforms as smoothly as built-in NAMD features,
users are encouraged to employ the Tcl scripting language
to extend and modify NAMD. NAMD supports scripting for
simulation option parsing, high-level methods such as an-
nealing protocols, steering or restraints of small numbers of
atoms (TclForces), and boundary-type forces applied to any
atom in the system (TclBC). Since NAMD users are famil-
iar with Tcl because of its incorporation in VMD, even non-
programmers can use their basic skills to extend NAMD. A
tutorial on “User-Defined Forces in NAMD” provides assis-
tance.

4.1 Use of Tclin NAMD

Scripts in NAMD run the same on all platforms and pro-
cessor counts; the flexibility and power of Tcl scripting in
NAMD are sufficient that the current replica exchange fea-
ture is written entirely in Tcl. Increased sizes of machines
and simulations require continued innovation to ensure that
scripts retain performance and scalability.

The NAMD simulation configuration is a human-readable
text file, given as an argument on the NAMD command line,
specifying simulation input files, output files, control param-
eters, and protocols. The configuration file was originally
parsed by C++ code, but since most lines in the configura-
tion file are of the form “name walue”, it was observed that
this could be mapped readily to the Tcl syntax “command
argument” to enable the use of Tcl in the configuration file
while maintaining backwards compatibility.

A typical way of parsing a NAMD configuration file in
Tcl would be to define a separate Tcl command for ev-
ery NAMD parameter, possibly using a few generic C++
functions, with parameter-specific user data passed to Tcl
when adding the command to the Tcl interpreter. How-
ever, NAMD configuration file syntax supported up to that
time was case-insensitive and included both format vari-
ants such as name=value and end-of-line comments such as
name value #comment, which are all violations of Tcl syn-
tax. A solution was achieved via the Tcl unknown com-
mand, which is called by the Tcl interpreter whenever an
unrecognized command is encountered. By replacing the

default Tcl unknown command with one that called the orig-
inal C++4+ NAMD configuration file line-parsing function,
complete backwards compatibility was achieved while pro-
viding the user with the complete power and flexibility of the
Tcl interpreter. Other supported features include multiple
configuration files on the command line and --name value
command-line arguments.

Another valuable feature of Tcl configuration file parsing
in NAMD is the ability to transparently subsume the config-
uration syntax of outside modules into the NAMD configura-
tion file by simply encasing the module configuration text in
braces or quotes, depending on the desired level of variable
substitution by the Tcl interpreter. This syntax-embedding
capability was first used for the NAMD ‘free energy of con-
formational change’ module and is currently used by the
‘collective variables’ module, which provides a comprehen-
sive utility for biasing and monitoring the conformation of
a biomolecule during a simulation.

While enabling Tcl parsing of the NAMD configuration
file provided a significant usability benefit, it was then de-
sirable to allow feedback from the full parallel NAMD sim-
ulation into Tcl. Only a single Tcl interpreter, on the rank-
zero process, was desired, presenting a challenge because
NAMD is written in message-driven Charm++. A solu-
tion was found in which the Charm-++ parallel runtime is
launched as usual across all nodes but, after initialization,
the Charm++ scheduler (an event loop to process incom-
ing messages and dispatch work) is terminated on rank zero
and the Tcl interpreter is created and begins parsing the
configuration file(s) and command-line arguments as input.
The first run or minimize command encountered (or, fail-
ing that, at the end of input) sends a message to (its own)
rank zero to trigger simulation startup and then re-launches
the Charm++ scheduler to process that and future mes-
sages. After startup the simulation timesteps begin; and,
on completing the final specified step, Charm++ quiescence
detection is invoked with a callback function that exits the
scheduler on rank zero, thus returning to the original Tcl
interpreter command invocation for further processing.

Between run commands the NAMD configuration file Tcl
code can modify a selection of simulation parameters (only
those for which the reinitialization of related data structures
and cached values is either implemented or unnecessary),
write atomic positions/velocities to output files, and reini-
tialize atomic positions/velocities from files. The tempera-
ture, pressure, and various energies of the simulation are also
available, enabling user-written annealing and other types of
protocols.

Two Tcl-based mechanisms can be used to apply portable
user-defined forces to the atoms in a NAMD simulation. The
first, TclForces, is implemented as a user-written function
callback on the master Tcl interpreter on rank zero during
each timestep. The user must specify at the start of the sim-
ulation the (ideally small) set of atoms for which positions
are required, but the callback function may apply forces to
any atom in the simulation. In order to apply independent
forces to potentially all atoms in the simulation, the TclBC
(Tcl Boundary Conditions) interface is provided. A TclBC
callback is invoked for each timestep simultaneously on Tcl
interpreters on every core (i.e., thread) on which atoms are
present, and may iterate exactly once through all atoms on
the core, adding forces and energy based on the (variable)
position and (fixed) charge/mass/species of the atom. It has

been suggested to extend the TclBC interface with reduc-
tion and broadcast operations to allow the implementation
of more general calculations but the need for such a capa-
bility has not yet arisen.

4.2 Multiple-Copy Simulation in NAMD

Although NAMD is capable of scaling only the largest
biomolecular simulations to entire petascale machines [22],
for the typical smaller simulations such machines may still
be efficiently employed to achieve sampling equivalent to a
much longer simulation by using multiple-copy algorithms
(MCAs) [7]. MCAs link large numbers of otherwise inde-
pendent simulations of a single biomolecular system (called
replicas) by periodically exchanging temperature or other
control parameters between pairs of replicas, typically be-
tween neighbors in a 1-D or 2-D grid. The exchanges are
performed (or not) based on Metropolis criteria to ensure
a proper sampling ensemble. This most common class of
multiple-copy methods is referred to as replica exchange.

The first implementation of replica exchange in NAMD
was done in 2006 and released in NAMD 2.6. This imple-
mentation employed a master-worker control structure and
was implemented entirely in Tcl, with the master script re-
quiring no NAMD-specific commands and hence able to ex-
ecute in either tclsh or the NAMD Tcl interpreter (or, in
theory, any other Tcl interpreter such as the one in VMD).
The user was required to customize a spawn_namd.tcl file to
launch NAMD runs for each of a list of NAMD configura-
tion files that were generated by the namd_replica_server
module. The configuration files differed only by the value the
replica_id variable was set to, and otherwise contained the
host name and port number on which the master Tcl server
would listen for connections along with a generic script to
open a socket to the master server and then enter a loop of
listening for commands from the master, evaluating the re-
ceived command, and sending the result back to the master.

The namd_replica_server module exported three func-
tions: start_replicas, replica_eval, and replica_push.
The replica_eval function would transmit a given Tcl script
to all replicas and then wait for responses from all replicas
through a socket handler function that stored the response
in a Tcl array as replica_data($replica_id.$field). The
replica_push function would use the same mechanism to
set a Tcl variable on each replica to the corresponding field
value in the Tcl array replica_data($replica_id.$field).
These functions enabled a block-synchronous programming
style that was sufficient to implement replica exchange.

The sockets-based master-worker implementation worked
well on traditional clusters, but IBM Blue Gene and Cray
XT machines originally lacked a sockets implementation on
the compute-node operating system, and hence a similar
communication pattern was implemented via the file sys-
tem. A major drawback was the inefficiency of the fully
block-synchronous programming model, requiring all repli-
cas to reach the synchronization point when each individual
exchange decision required energies from only a single neigh-
boring replica. Trajectory and restart file output was simi-
larly synchronized, a worst-case scenario for parallel filesys-
tem performance. The greatest impediment from a user per-
spective was the need to adapt the spawn_namd.tcl scripts to
each particular queueing system, partitioning the assigned
node list into separate launches. Moreover, while sending
data through TCP sockets or the filesystem was acceptable

for infrequent communication of a few control parameters,
more intensive communication required access to the high-
speed network of the machine.

Seeking to avoid the effort and complication of modifying
NAMD to support multiple independent simulations inter-
nally within the Charm++ programming model, we looked
with envy on the MPI_Comm_split() function that would
allow any MPI program to be trivially run on a subset of
MPI_COMM_WORLD via a local communicator, while also al-
lowing communication between replicas by a set of cross-
communicators between equivalent local ranks. It was for-
tunately realized that the MPI-based Charm++ machine
layer could be easily modified in exactly this way, allowing
unmodified Charm++ programs to operate independently
within the local communicator of each partition, with std-
out optionally redirected to a separate file per partition.

It was then a simple matter to add to the NAMD master
Tecl interpreter on rank zero of each partition the simple
commands replicaSend, replicaRecv, replicaSendrecv,
replicaBarrier, numReplicas, and myReplica, each imple-
mented via and mirroring the semantics of the correspond-
ing MPI functions operating on the inter-partition rank-zero
cross communicator. In addition to enabling use of the high-
speed network, eliminating synchronization and bottlenecks
of the master-worker model, and dramatically simplifying
parallel job launching, this solution had the added advan-
tage of exploiting the likely familiarity of advanced NAMD
users with basic MPI programming concepts. Upon its ini-
tial availability in NAMD 2.9 the MPI-based replica im-
plementation was extended from temperature exchange for
parallel tempering to bias exchange for conformational free
energy umbrella sampling and lambda exchange for alchem-
ical free energy perturbation, with the latter two supporting
arbitrary neighbor layouts in two or more dimensions.

The NAMD 2.9 MPI-based replica implementation had
two main weaknesses. First, it was limited to the MPI-
based Charm++ machine layer. Specialized machine lay-
ers have been developed to provide improved performance
for Charm++ message-driven programs by bypassing MPI
and instead accessing the underlying low-level communica-
tion interfaces of ethernet, InfiniBand, Cray Gemini, IBM
Blue Gene, and other networks. These layers provide the
greatest benefit for so-called SMP builds utilizing multiple
threads and shared memory within a process and a dedi-
cated communication thread for inter-process communica-
tion. SMP builds are essential for both reducing per-core
memory requirements and for efficiently supporting acceler-
ator offloading for GPUs and Xeon Phi.

The second weakness of MPI-based replicas is that the
blocking MPI functions could be called only when NAMD
was otherwise idle. Therefore inter-replica communication
on every timestep would never be efficient. Such frequent
communication could be used to couple collective variable or
TclForces biases continuously between replicas. Implement-
ing a Charm++ message-driven programming style inside
NAMD via MPI calls was impossible, so the choice was made
to add support for partitions and inter-partition communi-
cation to the Charm++ low-level run-time system (LRTS),
an intermediate internal API on which the MPI and other
recent machine layers such as Cray Gemini are based. As
with MPI-based replicas, partitions are defined at the pro-
cess level and threads within the same process cannot be
shared between partitions.

The existing MPI-style replicaSend/Recv Tcl commands
in NAMD were then re-implemented on the new Charm-+-+
partitioning interfaces, allowing NAMD 2.9 replica-exchange
scripts to run unmodified in NAMD 2.10 but more efficiently
on more platforms. Also added to NAMD 2.10 were the com-
mands replicaAtomSend and replicaAtomRecv that, rather
than transferring arbitrary Tcl strings between replicas, send
the full positions and velocities of all atoms directly between
the distributed-memory data structures of NAMD, utilizing
the full bandwidth available between all corresponding pairs
of processors in the communicating partitions rather than
funneling data through the rank-zero processes.

The remaining defect in the NAMD 2.10 replica imple-
mentation is the lack of load balancing across Charm-++
partitions. This could be addressed with great effort and
increased complexity by abandoning the partition concept
and instead implementing replicas directly in NAMD; but
since replicas remain a relatively rare mode of simulation
this effort would be difficult to justify, and bugs would be
likely introduced that did not manifest in single-copy runs.
For nearly identical replicas the observed load imbalance
is typically minor and results from simulation differences
such as temperature, divergent load balancing due to minor
timing differences, and hardware differences such as irregu-
lar toroidal network topologies [22]. The impact on perfor-
mance is that the overall simulation rate is limited to that
of the slowest replica/partition. The potential solution is to
break the one-to-one replica-partition correspondence and
instead multiplex replicas dynamically onto a smaller num-
ber of partitions, hoping that the decreased performance
divergence losses compensate for the increased scaling losses
due to each partition running on a larger number of pro-
cessors. To manage the complexity of this multiplexing ap-
proach, we now turn to Swift/T.

S. SWIFT/T INTEGRATION

Swift/T is a new implementation of the Swift program-
ming language [36] for high-performance computing. The
new implementation operates on an MPI-based runtime and
fully distributes the dataflow primitives that enable progress
in the Swift model [39]. This enables extremely high task
rates, running at 1.5 billion tasks/second on 512K cores of
Blue Waters [2]. This rate makes it possible to consider
using Swift to drive work to individual GPU warps over dis-
tributed memory [9]. Swift/T operates by translating (with
optimization [2]) the user-written Swift script into a format
that uses a carefully tuned C-language MPI-based runtime;
this format is a Tcl script.

Top-level dataflow script
exchange.swift

Swift/T runtime

[SWIG-generated Tcl wrappers]
[MD1.c JL MD2.cpp JL viz.cpp J

Figure 1: Typical Swift/T software integration pat-
tern: Swift/T script coordinates user native code
via Tcl interfaces over distributed infrastructure.

Swift/T normally interacts with external user code as
shown in Figure 1. In a typical Swift/T use case, the user
has existing codes written in C/C++/Fortran that must be
composed into a parallel application. These native code li-
braries are exposed through bindings generated by SWIG [3]
for Tcl or Python. Swift/T can then call this functionality
and pass data in and out of the scripting language interface.
As the Swift/T dataflow script progresses, these wrappers
are called across the set of available processors and load bal-
anced internally by ADLB [13, 40].

ADLB is designed as a minimal, high-performance master-
worker system for MPI applications. Multiple ranks (~1%)
serve as masters, which distribute work to the remaining
worker ranks. We extended ADLB for the Swift/T effort
to support work-stealing among masters in the Scioto [4]
model, in addition to adding data storage primitives to sup-
port the Swift dataflow model. A key extension, ADLB_Dput ()
(data-dependent put), extends the ADLB_Put () task submis-
sion call by making the task dependent on a data write; the
task will not be released to the work queue until all its data
dependencies are met.

Swift/T tasks may execute anywhere in the system unless
constrained by the user. ADLB-level task properties are
exposed at the Swift/T level, providing a rich feature set.
Tasks may be assigned to a particular rank using hard or
soft constraints, where soft-targeted tasks are prioritized by
the target but allowed to be stolen by idle masters. Tasks
may also be assigned a type, and workers can restrict work
requests to given types, or any type. Tasks may be assigned
a priority value relative to other tasks on the master (no
attempt is made to achieve global prioritization).

Task-task communication in Swift/T is performed in a
functional manner by connecting task outputs to task in-
puts using Swift data types including int (64-bit), float
(64-bit), string, blob, and possibly nested arrays, structs
and typedefs of these types. A blob is a binary byte ar-
ray, represented in Tcl as a [list pointer length]l. The
Swift/T distribution comes with a Tcl library (blobutils)
to facilitate blob management and transmission to and from
SWIG-wrapped (strongly typed) native code functions.

Data movement is implemented by our extensions to the
ADLB API, augmenting its task-oriented Put /Get calls, with
Store/Retrieve and containers (for data structures). This
essentially creates an MPI-based tuple space for dataflow
processing (and can be used outside Swift). The ADLB
data store is automatically garbage-collected by using refer-
ence counting.

The rich Tcl features of NAMD allow a powerful, new
programming model that leverages the dynamic execution
capabilities of Tcl. In this model, the Swift/T script is com-
piled to generate a Tcl program. This program is launched
by NAMD, that is, using NAMD as a Tcl interpreter, as
illustrated in Figure 2. NAMD thus launches the Swift/T
program across its processes. As the Swift script progresses,
it can access data and perform arbitrary operations in the
NAMD context by calling up to the NAMD Tcl interpreter.
This is performed with the Tcl uplevel command, which is
like eval in many scripting languages (Perl, Python, Bash)
but operates in a user-specified, calling stack frame, and
returns a result. Thus, arbitrary NAMD features are avail-
able to Swift/T, creating a highly dynamic programming
paradigm.

(NAMD (C++)
[Tcl Evaluation (uplevel-eval)

Top-level dataflow script
exchange.swift

bk
Swift/T runtime

Figure 2: NAMD/Swift software integration:
NAMD Tecl interpreter invokes Swift/T, exposing
NAMD data via Tcl uplevel, eval features.

5.1 Swift/T Integration with NAMD

Swift /T programs may be executed by using NAMD built
on the single-node-only shared-memory “multicore” Charm-++
machine layer. This is achieved by virtue of the Swift/T Tur-
bine engine Tcl module dynamically loading libtclturbine.so,
which forces dynamic loading of the MPI library on which
Turbine itself was build. Since NAMD multicore binaries do
not use MPI, there is no potential for conflict, and standard
downloaded NAMD binaries can be used so long as Turbine
is built with a compatible underlying Tcl version.

The NAMD binary is launched with mpiexec, specify-
ing via the -n argument one rank more than the desired
number of NAMD worker ranks. The NAMD/Charm++
+p argument is used to specify the number of threads per
NAMD process (e.g., the number of cores per node for a
multi-node run with one worker per node). The last rank
NAMD process will function as the Swift/T master, which
is single-threaded, so a wrapper script may be used to limit
this process to a single core, while a worker process running
on the same node would run on one fewer cores. While the
load imbalance due to this single slower worker would limit
the overall performance of the Charm++ partition-based
NAMD replica exchange implementation, its impact on the
throughput-based and dynamically load-balanced Swift im-
plementation should be negligible.

Execution of a NAMD /Swift program begins with uniform
initialization, in which all NAMD ranks independently load
the same NAMD configuration file specifying the molecu-
lar system and simulation parameters that cannot be al-
tered in NAMD once the simulation has begun. Then the
namdswift.tcl file is loaded, which sets Tcl variables for the
various replica-exchange parameters, defines min and max
math operations using definitions copied from the Tcl dis-
tribution init.tcl file (which NAMD does not otherwise re-
quire), sources the Turbine library pkglndex.tcl file to make
the dynamically loaded turbine package available to the in-
terpreter, initializes the NAMD random number generator
seed based on the environment variable (e.g., PMI_RANK) con-
taining the MPI rank, defines NAMD Tecl callbacks used to
access simulation energies, and defines the NAMD leaf func-
tions that will be called by the Swift program.

The definition of NAMD/Swift leaf functions is aided by
the Tcl wrapper commands shown in Appendix B. The
swift_proc and swift_return Tcl commands take the place
of the Tcl built-in proc and return commands that are nor-
mally used to define new functions. As shown by their use in
defining the run_t leaf function in Appendix C, swift_proc

allows the definition of typed input and output arguments
using the type nomenclature of the Swift programming lan-
guage. Each invocation of the swift_proc command defines
a pair of functions to interface with the Turbine engine. The
first is a rule function, which is called by Swift to define when
a particular function invocation is first runnable. The second
is a body function, which is called on a worker rank when
all input arguments are available and which may consume
significant runtime. The Swift body function is generated by
wrapping the Tcl function body passed to swift_proc with
code to first access the input parameters and store them
in local Tcl variables corresponding to the input argument
names, and then, when either swift_return is called or the
end of the function body is reached, to store the values of
the output parameters to the Swift runtime.

Swift /T code for implementing replica exchange in NAMD
is shown in Appendix D. Various system modules are im-
ported, and trivial leaf functions are defined for evaluating
Tcl commands to return string, integer, and floating point
values to Swift. (Note that the Tcl set command, when
called with a variable name but no value, returns the cur-
rent value of the variable, and hence the Swift expression
tcl_eval("set wvarname") returns the string value of the
Tcl variable varname to the Swift program.) The run_t
leaf function defined in Tcl in Appendix C is declared with
matching argument types as corresponding to the run_t Tcl
command in the namdswift package.

The actual Swift/T main function is more compact and
transparent than the equivalent NAMD /Tcl replica exchange
implementation shown in Appendix E, but note that the
code in the body of the run_t Swift leaf function must also
be considered. In addition, the leaf function body is in a
different source file and the programmer must contend with
both Tcl and Swift syntax and semantics. The contribu-
tion of Swift/T to the ease of parallel algorithm program-
ming is that while the code is written in a easily understood
block-synchronous style, it is executed in a fully dynamic
and data-driven workflow manner. The price of this clarity
is that in the Swift model any variable or array element may
be written to only once; hence, the exchange frame index f
is the first dimension index on many arrays, and, in theory,
state data proportional to the length of the run must be
maintained by the Swift runtime.

While the NAMD/Tcl replica exchange implementation
was able to operate while exchanging only control parame-
ters between replicas permanently attached to a partition,
the Swift/T runtime can schedule any leaf function on any
worker rank, and therefore the entire dynamic state of ev-
ery replica simulation (i.e., atomic positions and velocities
but not the common molecular topology and force field def-
initions) must be loaded at the beginning of the run_t leaf
function and saved on its completion. The atomic state is
saved to and read from the filesystem via the existing NAMD
output and reinitatoms commands (see Appendix C) while
only the file names are passed through the Swift runtime.
Storing potentially large atomic data on the filesystem re-
duces the memory usage of the Swift runtime and works well
for testing on a single machine with a fast local filesystem,
in particular on a high-bandwidth, low-latency solid-state
disk.

NAMD multicore binaries utilizing MPI only for Swift
runtime communication as described above are limited to,
at most, a process, and hence a single node, per replica. In

order to utilize multiple nodes per replica for higher per-
formance, a mechanism for NAMD inter-node communi-
cation must be devised that is compatible with the Swift
runtime’s use of MPI. We turn again to modification of
the Charm++ MPI machine layer, now with the LRTS-
based partition mechanism, using MPI_Comm_split to again
create cross-communicators among corresponding ranks of
Charm++ partitions. On each rank a pointer to the cross-
communicator is stored and made available at startup in the
NAMD Tecl interpreter as the 64-bit integer variable TUR-
BINE_ADLB_COMM. The existence of this variable directs the
Swift runtime to operate in library mode, using the existing
MPI communicator rather than MPI_COMM_WORLD and not
calling MPI_Init/Finalize. Library mode further enables
Swift to be invoked repeatedly in a single NAMD parallel
execution. Moreover, the NAMD myReplica Tcl command
can be used to reliably initialize the random number gen-
erators without attempting to parse environment variables,
or the default initialization can be safely used as the default
wall-clock time seed is modulated based on the Charm-++
partition index.

We tested the tightly-integrated MPI NAMD /Swift replica
exchange implementation on up to 512 nodes of the Blue
Waters supercomputer at the University of Illinois. Each
Charm++ partition was one to four nodes of 32 ranks each,
and one to four replicas were run per partition, with one
partition used for the Swift runtime master. The atomic
state files used to facilitate Swift task mobility were writ-
ten to the Lustre-based scratch filesystem, using a separate
directory for each replica to distribute load on and reduce
contention for the Lustre metadata servers.

Significant performance variation was observed between
runs for both the Swift and native NAMD/Tcl implemen-
tations. For fairness the Charm-++ MPI machine layer was
used for both, even though partitions are now available for
the higher-performance Cray Gemini Charm-++ machine
layer. The best performance was typically from the native
implementation, although the Swift implementation did oc-
casionally outperform it. Our primary observation is that
although Swift is by design quite tolerant of performance
variation among workers, our current use of the filesystem
for data exchange results in a massive and insurmountable
exposure to storage server contention both from other repli-
cas and from other jobs running on the machine. The Lus-
ter filesystems on Blue Waters are currently also the most
failure-prone components of the system, so our pattern of
intensive filesystem access would likely destabilize the ma-
chine for other users if employed for extended production
runs.

The obvious next direction for NAMD /Swift development
is to move from storing and accessing transient data on
the filesystem to instead using the Swift blob raw binary
datatype. In order to support extended runs, the Swift
runtime will need to be capable of forgetting data elements
that are no longer needed, likely under programmer control.
With filesystem constraints removed we will be able to ob-
serve the performance advantages of the Swift programming
model.

The second direction will be to make Swift compatible
with the Charm-++ native machine layers that will improve
the performance of individual NAMD partitions. This can
be accomplished either through the evolving capability of
Charm++ to interoperate with MPI programs or by modify-

ing Swift to communicate between ranks using the Charm++
inter-partition communication functions rather than MPI.

Many Swift/T features, existing or planned, could be ap-
plied to enhance replica exchange algorithms in NAMD.
The implicit concurrency of dataflow programming makes
it particularly well-suited to dynamic infrastructures such
as clouds, and fault-tolerant for next-generation HPC ma-
chines that may allow applications to manage fault recovery.
Swift/T is built on MPI, which limits what we can currently
do to support elasticity and fault tolerance, but MPI fea-
ture enhancements are expected in this area. Swift/ T offers
an automated checkpointing system that could be used for
restart, as well as programming error diagnosis and possi-
bly user-directed branching of ensemble progress. Combin-
ing checkpoint records with priorities could be used to de-
velop a “catch-up” mechanism [37] to ameliorate delays due
to unexpectedly slow replicas on heterogeneous computers.
Most important, we intend that the Swift/T model enables
and motivates novel algorithm development in highly asyn-
chronous ensemble algorithms for molecular dynamics: these
will make the best use of emerging exascale machines.

5.2 Swift/T Integration with VMD

Swift /T has been integrated with VMD in a manner di-
rectly analogous to the NAMD shared-memory “multicore”
integration described above, with mpiexec used to launch a
standard VMD across nodes. A wrapper script may be used
to redirect input from /dev/null and output to a separate
file per rank. If multiple VMD ranks are launched per node,
then special environment variables must be set to force each
VMD rank to limit its CPU usage to a specified number of
CPU cores per rank and to prevent inadvertent sharing of
GPUs by multiple VMD ranks.

We have adapted previously developed VMD parallel anal-
ysis scripts for solvent accessible surface area (SASA) [27]
and cross-correlation quality-of-fit score calculation [28] to
operate with Swift/T. The adaptations to Swift/T were triv-
ial to implement since the original implementations based
on the VMD parallel for construct each called a worker
subroutine on a range of iterations, which could be directly
wrapped as a Swift leaf function and called in a Swift for-
each loop.

The Swift versions are, however, more complex than the
existing VMD parallel commands since they require the use
of the Swift language in addition to Tcl to implement even
a trivial work distribution scheme. The comparative advan-
tages of integrating VMD with Swift can be demonstrated
only on more complex workflows that do not lend well to
a bulk synchronous programming style and in cases that
require execution of other programs where Swift could elim-
inate filesystem-based communication in favor of direct mes-
sage passing.

Launching the existing MPI-based parallel version of VMD,
modified as NAMD/Charm+++ above to set the TUR-
BINE_ADLB_COMM Tecl variable to a pointer to the MPI
communicator on startup, will cause Swift to operate in li-
brary mode, allowing repeated invocations of multiple Swift
programs. The VMD parallel for control structure could
then be implemented as a generic Swift foreach loop, pro-
viding an equally functional substitute and a path to imple-
menting more complex control structures.

5.3 Swift/T Integration with Other Software

Swift /T has been integrated with many other applications
in molecular dynamics including Rosetta [8], DOCKG6 [10],
and LAMMPS [23]. Additionally, many Swift/T applica-
tions exist in other domains, including materials science [38],
power grid modeling [39], and visualization [41].

Swift/T can be integrated with applications in multiple
ways. To integrate with Rosetta and DOCKG6, we used a
technique called main-wrapping. In this model, we simply
rename the C or C++ main() function and recompile the
application as a library (shared or static). We then use
SWIG to generate the Tcl binding to this function, and call
it in the normal way from Swift/T. This allows the Swift
script to operate much like a shell script, passing an array
of strings to each application invocation, but with Swift/T
concurrency semantics. LAMMPS is naturally built as a
C++ library; its main() routine is minimal. We simply
applied SWIG to the LAMMPS header, exposing the full
LAMMPS API to the Swift programmer.

In a materials science application based on DISCUS [24],
our collaborator applied F2PY [19] to generate Python bind-
ings for key DISCUS features. Swift/T provides an optional
built-in Python 2.7 interpreter if configured to do so. Thus,
Swift /T can easily call the DISCUS Python package. The
goal of this application was to produce a crystal structure
model based on X-ray scattering experimental data via in-
verse modeling. A genetic algorithm was developed in about
200 lines of Swift to run concurrent DISCUS simulations as
population members, converging toward a good approxima-
tion of the crystal structure that fit the experimental data.

Our power grid application was an extension of previ-
ous work [12] on power grid modeling and scheduling for a
“smart grid” sensitive to weather, renewable energy sources,
and predicted load. The prior work produced a schedule for
the grid. Our Swift-based application applied SWIG to the
C++ header of the same codebase, but ran it in a differ-
ent mode to check the schedule against a large quantity of
scenarios for risk analysis—an ideal Swift problem.

Our visualization application was based on OSUFlow [18],
a flow-line visualization package. This application task is a
call to OSUFlow as an MPI library. Thus, we applied the
Swift/T feature that can produce a variable-sized MPI sub-
communicator via MPI_Comm_create_group(). The OSU-
Flow call of interest was wrapped for Tcl via SWIG, and a
small amount of Tcl glue code obtains the subcommunicator
from Swift/T and passes it to the library for task usage.

6. CONCLUSIONS

We have discussed the merits of dynamic languages in the
context of petascale molecular modeling workloads, high-
lighting their ease of use by application scientists and de-
scribing the orchestration of large-scale NAMD replica simu-
lations and VMD analysis workflows with Tcl and the Swift/T
dataflow programming language. Several examples of par-
allel scripting have been provided in the appendices, and
we have made the complete source code for these and other
scripgs available.’ The Swift source code is also freely avail-
able.

Mttp://www.ks.uiuc.edu/Research/swift/
*http://swift-lang.org

APPENDIX
A. VMD PARALLEL MOVIE EXAMPLE

proc render_one_frame { frameno userdata } {
retrieve user data rendering workers
set formatstr [lindex $userdata 0]
set dir [1index $userdata 1]
set renderer [lindex $userdata 2]

Set frame, triggering user-defined movie
callbacks to update the molecular scene
prior to rendering of the frame

set ::MovieMaker::userframe $frameno

Regenerate molecular geometry if not up to date
display update

generate output filename, and render the frame
set fname [format $formatstr $frameno]
render $renderer dirfname

}

proc render_movie { dir formatstr framecount renderer } {
set userdata {}
lappend userdata $formatstr
lappend userdata $dir
lappend userdata $renderer

set lastframe [expr $framecount - 1]
parallel for O $lastframe render_one_frame $userdata

B. SWIFT/T LEAF FUNCTION WRAPPER

proc swift_proc { typed_outputs name typed_inputs body } {
foreach i [lsearch -exact -all $typed_outputs int] {
if { $i % 2 == 0 } { lset typed_outputs $i integer }
}
foreach i [lsearch -exact -all $typed_inputs int] {
if { $i % 2 == 0 } { lset typed_inputs $i integer }
}
set body_args {}
set output_code
foreach { type arg } $typed_outputs {
lappend body_args __swift_proc_output_$arg
set output_code "${output_code}\
store_$type \$__swift_proc_output_$arg \$$arg;

}
set input_code \
" set __swift_proc_typed_outputs [list $typed_outputs];"
foreach { type arg } $typed_inputs {
lappend body_args $arg
set input_code \
"${input_code} set $arg \[retrieve_$type \$$arg \1;"

set rulel {rule $inputs [concat }
set rule2 "[uplevel namespace current]::"
set rule3 {_body $outputs $inputs] type $turbine::WORK}
set rule $rulei$rule2$name$rule3
set fullbody "$input_code$body\n$output_code"
puts [list proc $name { outputs inputs } $rulel
puts [list proc ${name}_body $body_args $fullbody]
uplevel [list proc $name { outputs inputs } $rulel
uplevel [list proc ${name}_body $body_args $fullbody]

}

proc swift_return { args } {
upvar __swift_proc_typed_outputs typed_outputs
foreach { type arg } $typed_outputs val $args {
upvar __swift_proc_output_$arg __swift_proc_output_local
store_$type $__swift_proc_output_local $val
}
return -code return

}

C. WRAPPED LEAF FUNCTION FOR NAMD

namespace eval namdswift {

swift_proc {string o float POTENTIAL} run_t \
{string i int r int f int n float NEWTEMP float OLDTEMP} {
global replica_index output_index output_root \
saved_array steps_per_run
set o $output_root.$r.$f
stdout $o.log
puts "Replica $replica_index running $i for $n steps to $o"
firsttimestep [expr ($f-1)*$steps_per_run]
reinitatoms $i
rescalevels [expr sqrt(1.0*$NEWTEMP/$OLDTEMP)]
langevinTemp $NEWTEMP
t:run $n
output $o
save_array ;# stores energies in saved_array
swift_return $o $saved_array(POTENTIAL)
error "this should never happen"

o

D. REPLICA EXCHANGE IN SWIFT/T

import io;
import sys;
import math;
import random;

(string o) tcl_eval(string s) "turbine" "0.0" [
"set <<o>> [uplevel #0 <<s>>]"
1;

(int o) tcl_eval_int(string s) "turbine" "0.0" [
"set <<o>> [uplevel #0 <<s>>]"
1;

(float o) tcl_eval_float(string s) "turbine" "0.0" [
"set <<o>> [uplevel #0 <<s>>]"
1;

(string o, float POTENTIAL) run_t
(string i, int r, int f, int n, float NEWTEMP, float OLDTEMP)
"namdswift" "0.1" "run_t";

main
{
string ifile = tcl_eval("set ifile");
int num_replicas = tcl_eval_int("set num_replicas");
int num_runs = tcl_eval_int("set num_runs");
int steps_per_run = tcl_eval_int("set steps_per_run");
float min_temp = tcl_eval_float("set min_temp");
float max_temp = tcl_eval_float("set max_temp");
printf ("Running %d replicas from %f to %f for %d runs",
num_replicas, min_temp, max_temp, num_runs);
float TEMPERATURE[int];
string states[int] [int];
int sources[int] [int];
float POTENTIAL[int][int];
foreach i in [0:num_replicas-1] {
TEMPERATURE[i] = min_temp * exp(
log(max_temp/min_temp)*(itof (i)/itof (num_replicas-1)));
states[1] [i], POTENTIAL[1][i] =
run_t(ifile, i, 1, steps_per_run, TEMPERATURE[i], 300);
}
foreach f in [2:num_runs] {
if (fhh2 ==1) {
sources[f] [0] = 0;
}
if ((num_replicas+£)%%2 == 1) {
sources [f] [num_replicas-1] = num_replicas-1;
}
foreach i in [f/2+1:num_replicas-1:2] {
BOLTZMAN = 0.001987191;
dbeta =

((1.0/TEMPERATURE([i-1]) - (1.0/TEMPERATURE[il])) / BOLTZMAN;

float delta = dbeta *
(POTENTIAL[f-1][i] - POTENTIAL[f-1][i-11);
boolean doswap = (delta < 0.0) || (exp(-delta) > random());
printf("frame %d reps %d %d swap %s\n", f, i-1, i, doswap);
if (doswap) {
sources[f] [i] =
sources [f] [i-1]
} else {
sources [f] [i] = i;

i-1;
=i

sources[f] [i-1] = i-1;
¥
}
foreach i in [0:num_replicas-1] {
int isrc = sources[f][i];
states[f][i], POTENTIAL[f][i] =
run_t(states[f-1] [isrc], i, f, steps_per_run,
TEMPERATURE[i], TEMPERATURE[isrc]);

E. REPLICA EXCHANGE IN TCL

The following Tcl-only NAMD replica exchange code corre-
sponds to the “foreach £ in [2:num_runs]” loop in the Swift/T
version above and executes on all Charm++ partitions in parallel.

while {$i_run < $num_runs} {

run $steps_per_run
save_array
incr i_step $steps_per_run
set TEMP $saved_array(TEMP)
set POTENTIAL $saved_array(POTENTIAL)
puts $history_file \
"$i_step $replica(index) $NEWTEMP $TEMP $POTENTIAL"

if { $i_run % 2 ==0 2} {
set swap a; set other b
} else {
set swap b; set other a

}

set doswap O
if { $replica(index) < $replica(index.$swap) } {
set temp $replica(temperature)
set temp2 $replica(temperature.$swap)
set BOLTZMAN 0.001987191
set dbeta [expr ((1.0/$temp) - (1.0/$temp2)) / $BOLTZMAN]
set pot $POTENTIAL
set pot2 [replicaRecv $replica(loc.$swap)]
set delta [expr $dbeta * ($pot2 - $pot)]
set doswap [expr $delta < 0. || exp(-1.*$delta) > rand()]
replicaSend $doswap $replica(loc.$swap)
if { $doswap } {
set rid $replica(index)
set rid2 $replica(index.$swap)
puts stderr \
"EXCHANGE $rid ($temp) $rid2 ($temp2) RUN $i_run"
incr replica(exchanges_accepted)
}
incr replica(exchanges_attempted)
}
if { $replica(index) > $replica(index.$swap) } {
replicaSend $POTENTIAL $replica(loc.$swap)
set doswap [replicaRecv $replica(loc.$swap)]

}

set newloc $r
if { $doswap } {
set newloc $replica(loc.$swap)
set replica(loc.$swap) $r
}
set replica(loc.$other) [replicaSendrecv \
$newloc $replica(loc.$other) $replica(loc.$other)]
set oldidx $replica(index)
if { $doswap } {
set OLDTEMP $replica(temperature)
array set replica [replicaSendrecv \
[array get replica] $newloc $newloc]
set NEWTEMP $replica(temperature)
rescalevels [expr sqrt(1.0*x$NEWTEMP/$OLDTEMP)]
langevinTemp $NEWTEMP
}

incr i_run

ACKNOWLEDGMENTS

This and other NAMD and VMD development is supported
by National Institutes of Health grants 9P41GM104601 and
5R01GM098243-02, directed by Klaus Schulten.

This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the National Sci-
ence Foundation (awards OCI-0725070 and ACI-1238993)
and the state of Illinois. Blue Waters is a joint effort of the
University of Illinois at Urbana-Champaign and its National
Center for Supercomputing Applications. This work is also
part of the Petascale Computational Resource (PRAC) grant
“The Computational Microscope”, which is supported by
the National Science Foundation (awards OCI-0832673 and
ACI-1440026).

The Swift parallel scripting language is supported in part
by NSF award ACI 1148443 and the U.S. DOE Office of
Science under contract DE-AC02-06CH11357.

REFERENCES

[1] D. Aristoff, T. Leliévre, C. G. Mayne, and 1. Teo.
Adaptive multilevel splitting in molecular dynamics
simulations. ESAIM: Proc., 2014. In Press.

[2] T. G. Armstrong, J. M. Wozniak, M. Wilde, and I. T.
Foster. Compiler techniques for massively scalable
implicit task parallelism. In Proc. SC 14, Nov. 2014.

[3] D. Beazley. Automated scientific software scripting
with SWIG. Future Generation Computer Systems,
19(5):599-609, 2003.

[4] J. Dinan, S. Krishnamoorthy, D. B. Larkins,

J. Nieplocha, and P. Sadayappan. Scioto: A framework
for global-view task parallelism. pages 586-593, Los
Alamitos, CA, USA, 2008. IEEE Computer Society.

[5] B. Hess, C. Kutzner, D. van der Spoel, and
E. Lindahl. Gromacs 4: Algorithms for highly efficient,
load-balanced, and scalable molecular simulation.

J. Chem. Theor. Comp., 4:435-447, 2008.

[6] W. Humphrey, A. Dalke, and K. Schulten. VMD —
Visual Molecular Dynamics. J. Mol. Graphics,
14:33-38, 1996.

[7] W. Jiang, J. Phillips, L. Huang, M. Fajer, Y. Meng,
J. Gumbart, Y. Luo, K. Schulten, and B. Roux.
Generalized scalable multiple copy algorithms for
molecular dynamics simulations in NAMD. Comput.
Phys. Commun., 185:908-916, 2014.

[8] K. W. Kaufmann, G. H. Lemmon, S. L. Deluca, J. H.
Sheehan, and J. Meiler. Practically useful: what the
Rosetta protein modeling suite can do for you.
Biochemistry, 49:2987-2998, 2010.

[9] S. J. Krieder, J. M. Wozniak, T. G. Armstrong,

M. Wilde, D. S. Katz, B. Grimmer, 1. T. Foster, and
I. Raicu. Design and evaluation of the GeMTC
framework for GPU-enabled many task computing. In
Proc. HPDC, 2014.

[10] P. T. Lang, S. R. Brozell, S. Mukherjee, E. F.
Pettersen, E. C. Meng, V. Thomas, R. C. Rizzo, D. A.
Case, T. L. James, and I. D. Kuntz. DOCK 6:
Combining techniques to model RNA-small molecule
complexes. RNA, 15(6):1219-1230, June 2009.

[11] E. Lindahl, B. Hess, and D. van der Spoel. Gromacs
3.0: A package for molecular simulation and trajectory
analysis. J. Mol. Mod., 7(8):306-317, 2001.

[12]

[13]

[14]

[22]

M. Lubin, C. Petra, M. Anitescu, and V. Zavala.
Scalable stochastic optimization of complex energy
systems. In Proc. SC, 2011.

E. L. Lusk, S. C. Pieper, and R. M. Butler. More
scalability, less pain: a simple programming model
and its implementation for extreme computing.
SciDAC Review, 17:30-37, Jan. 2010.

M. Matheny, S. Schlachter, L. M. Crouse, E. T.
Kimmel, T. Estrada, M. Schumann, R. Armen, G. M.
Zoppetti, and M. Taufer. ExSciTecH: expanding
volunteer computing to explore science, technology,
and health. In eScience’12, pages 1-8, 2012.

C. G. Mayne, J. Saam, K. Schulten, E. Tajkhorshid,
and J. C. Gumbart. Rapid parameterization of small
molecules using the Force Field Toolkit. J. Comp.
Chem., 34:2757-2770, 2013.

J. Mongan. Interactive essential dynamics.

J. Comp.-Aided Mol. Design, 18:433-436, 2004.

J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.
Stone, and J. C. Phillips. GPU computing. Proc.
IEFEE, 96:879-899, 2008.

T. Peterka, R. Ross, B. Nouanesengsy, T.-Y. Lee,
H.-W. Shen, W. Kendall, and J. Huang. A Study of
Parallel Particle Tracing for Steady-State and
Time-Varying Flow Fields. In Proc. IPDPS,
Anchorage AK, 2011.

P. Peterson. F2PY: a tool for connecting Fortran and
Python programs. Int. J. Comput. Sci. Eng.,
4(4):296-305, Nov. 2009.

J. C. Phillips, R. Braun, W. Wang, J. Gumbart,

E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel,

L. Kale, and K. Schulten. Scalable molecular dynamics
with NAMD. J. Comp. Chem., 26:1781-1802, 2005.
J. C. Phillips, J. E. Stone, and K. Schulten. Adapting
a message-driven parallel application to
GPU-accelerated clusters. In SC ’08: Proceedings of
the 2008 ACM/IEEE Conference on Supercomputing,
Piscataway, NJ, USA, 2008. IEEE Press.

J. C. Phillips, Y. Sun, N. Jain, E. J. Bohm, and L. V.
Kalé. Mapping to irregular torus topologies and other
techniques for petascale biomolecular simulation. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC ’14. IEEE Press, 2014.

S. Plimpton. Fast parallel algorithms for short-range
molecular dynamics. J Comp Phys, 117:1-19, 1995.
T. Proffen and R. Neder. DISCUS: A program for
diffuse scattering and defect-structure simulation. J.
Applied Crystallography, 30(2):171-175, 1997.

E. Roberts, J. Eargle, D. Wright, and

Z. Luthey-Schulten. MultiSeq: Unifying sequence and
structure data for evolutionary analysis. BMC
Bioinformatics, 7:382, 2006.

J. E. Stone, D. Gohara, and G. Shi. OpenCL: A
parallel programming standard for heterogeneous
computing systems. Comput. in Sci. and Eng.,
12:66-73, 2010.

J. E. Stone, B. Isralewitz, and K. Schulten. Early
experiences scaling VMD molecular visualization and
analysis jobs on Blue Waters. In Extreme Scaling
Workshop (XSW), 2018, pages 43-50, Aug. 2013.

(28]

29]

30]

(31]

32]

33]

(34]

35]

(36]

37]

(38]

(39]

J. E. Stone, R. McGreevy, B. Isralewitz, and

K. Schulten. GPU-accelerated analysis and
visualization of large structures solved by molecular
dynamics flexible fitting. Faraday Discuss., 2014. In
press. doi:10.1039/C4FD00005F.

J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J.
Hardy, L. G. Trabuco, and K. Schulten. Accelerating
molecular modeling applications with graphics
processors. J. Comp. Chem., 28:2618-2640, 2007.

J. E. Stone, J. Saam, D. J. Hardy, K. L. Vandivort,
W. W. Hwu, and K. Schulten. High performance
computation and interactive display of molecular
orbitals on GPUs and multi-core CPUs. In Proceedings
of the 2nd Workshop on General-Purpose Processing
on Graphics Processing Units, ACM International
Conference Proceeding Series, volume 383, pages 9-18,
New York, NY, USA, 2009. ACM.

J. E. Stone, K. L. Vandivort, and K. Schulten.
Immersive out-of-core visualization of large-size and
long-timescale molecular dynamics trajectories. Lect.
Notes in Comp. Sci., 6939:1-12, 2011.

J. E. Stone, K. L. Vandivort, and K. Schulten.
GPU-accelerated molecular visualization on petascale
supercomputing platforms. In Proceedings of the Sth
International Workshop on Ultrascale Visualization,
UltraVis '13, pages 6:1-6:8, New York, NY, USA,
2013. ACM.

L. G. Trabuco, E. Villa, K. Mitra, J. Frank, and

K. Schulten. Flexible fitting of atomic structures into
electron microscopy maps using molecular dynamics.
Structure, 16:673-683, 2008.

L. G. Trabuco, E. Villa, E. Schreiner, C. B. Harrison,
and K. Schulten. Molecular Dynamics Flexible Fitting:
A practical guide to combine cryo-electron microscopy
and X-ray crystallography. Methods, 49:174-180, 2009.
T. Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror,
J. Gullingsrud, M. O. Jensen, J. L. Klepeis,

P. Maragakis, P. Miller, K. A. Stafford, and D. E.
Shaw. A scalable parallel framework for analyzing
terascale molecular dynamics simulation trajectories.
In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, SC ’08, pages 56:1-56:12, Piscataway,
NJ, USA, 2008. IEEE Press.

M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford,

D. S. Katz, and I. Foster. Swift: A language for
distributed parallel scripting. Par. Comp., 37:633-652,
2011.

C. J. Woods, M. H. Ng, S. Johnston, S. E. Murdock,
B. Wu, K. Tai, H. Fangohr, P. Jeffreys, S. Cox, J. G.
Frey, M. S. P. Sansom, and J. W. Essex. Grid
computing and biomolecular simulation. Philosophical
Transactions of the Royal Society A, 363(1833), 2005.
J. M. Wozniak, T. G. Armstrong, D. S. Katz,

M. Wilde, and I. T. Foster. Toward computational
experiment management via multi-language
applications, 2014. DOE ASCR Workshop on Software
Productivity for eXtreme scale Science (SWP4XS).

J. M. Wozniak, T. G. Armstrong, K. Maheshwari,

E. L. Lusk, D. S. Katz, M. Wilde, and I. T. Foster.
Turbine: A distributed-memory dataflow engine for
high performance many-task applications.
Fundamenta Informaticae, 28(3), 2013.

[40] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S.
Katz, E. Lusk, and I. T. Foster. Swift/T: Large-scale
application composition via distributed-memory data
flow processing. In Proc. CCGrid ’13, pages 95-102,
May 2013.

[41] J. M. Wozniak, T. Peterka, T. G. Armstrong,
J. Dinan, E. L. Lusk, M. Wilde, and I. T. Foster.
Dataflow coordination of data-parallel tasks via MPI
3.0. In Proc. EuroMPI, 2013.

[42] G. Zhao, J. R. Perilla, E. L. Yufenyuy, X. Meng,
B. Chen, J. Ning, J. Ahn, A. M. Gronenborn,
K. Schulten, C. Aiken, and P. Zhang. Mature HIV-1
capsid structure by cryo-electron microscopy and
all-atom molecular dynamics. Nature, 497:643—-646,
2013.

