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Petermann-factor sensitivity limit near an
exceptional point in a Brillouin ring laser gyroscope
Heming Wang 1,4, Yu-Hung Lai1,2,4, Zhiquan Yuan1,4, Myoung-Gyun Suh 1,3 & Kerry Vahala 1✉

Exceptional points are singularities of open systems, and among their many remarkable

properties, they provide a way to enhance the responsivity of sensors. Here we show that the

improved responsivity of a laser gyroscope caused by operation near an exceptional point is

precisely compensated by increasing laser noise. The noise, of fundamental origin, is

enhanced because the laser mode spectrum loses the oft-assumed property of orthogonality.

This occurs as system eigenvectors coalesce near the exceptional point and a bi-orthogonal

analysis confirms experimental observations. While the results do not preclude other pos-

sible advantages of the exceptional-point-enhanced responsivity, they do show that the

fundamental sensitivity limit of the gyroscope is not improved through this form of operation.

Besides being important to the physics of microcavities and non-Hermitian photonics, these

results help clarify fundamental sensitivity limits in a specific class of exceptional-point

sensor.
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N
on-Hermitian Hamiltonians1,2 describing open systems
can feature singularities called exceptional points
(EPs)3–5. EPs have been experimentally realized in several

systems6–8 and applied to demonstrate non-reciprocal transmis-
sion9–11 and lasing dynamics control12–15. Moreover, resonant
frequencies become strongly dependent on externally applied
perturbations near an EP, which has given rise to the concept of
EP-enhanced sensing in photonics16–19 and electronics20,21.
While increased sensor responsivity has been demonstrated in
several systems22–25, signal-to-noise performance (sensitivity) has
been considered only theoretically26–30.

Recently, strong responsivity improvement near an EP was
reported in a Brillouin ring laser gyroscope by monitoring an
increase in the gyroscope scale factor (i.e., transduction factor of
rotation-rate into a signal)24. At the same time, however, mea-
surement of the gyroscope Allan deviation versus averaging time
showed that short-term laser frequency noise also increased near
the EP. This noise was random-walk in nature, suggesting a
fundamental origin. Moreover, it depended upon system bias
relative to the EP in such a way so as to precisely compensate for
the observed EP-enhanced transduction. As a result, the gyro-
scope’s angular random walk, the metric used to quantify short-
term rotation sensitivity, was observed to maintain a constant
value (i.e., independent of gyroscope bias relative to the EP). In
effect, the measurements showed that gyroscope sensitivity (i.e.,
weakest rotation signal measurable at a given detection band-
width) is not improved by operation near the EP even while the
gyroscope responsiveness through improved transduction (scale
factor) increases.

As with all laser gyroscopes, the Brillouin ring laser gyroscope
measures rotations through the Sagnac effect31. Clockwise (cw)
and counter-clockwise (ccw) lasing waves experience opposing
frequency shifts when the plane of the gyroscope rotates. By
mixing the two laser fields on a detector, their difference fre-
quency therefore reveals the rotation-induced frequency shift
added onto a constant bias frequency (which is at audio rates in
this case24). Frequency noise in the beat frequency therefore
determines the measurement sensitivity. This noise has both a
technical component (observable on longer time scales in the
Allan deviation24) as well as a random walk component that,
absent the EP, is known to result from fundamental linewidth
broadening of the Brillouin laser waves32,33. Significantly, sub-
sequent measurement of the random walk component showed
that none of the parameters which normally impact its magnitude
(e.g., laser power, cavity Q factor) varied near the EP, therefore
suggesting that frequency noise (and linewidth) is increased by
way of another mechanism.

Laser linewidth can also be broadened by the Petermann fac-
tor34–39. This mechanism is associated with non-orthogonality of
a mode spectrum, and its connection to EPs has been considered
in theoretical studies of microresonators40,41. However, despite
continued theoretical interest42,43, including the development of
new techniques for determination of linewidth in general laser
systems44, the observation of Petermann linewidth broadening
near exceptional points was reported only recently by the Yang
group in a phonon laser system45, and the link between
Petermann-factor-induced noise and EP sensor performance is
unexplored.

Here, it is shown that mode non-orthogonality induced by the
EP limits the gyroscope sensitivity via Petermann-factor line-
width broadening. Indeed, analysis and measurement confirm
near-perfect cancellation of the signal transduction improvement
by increasing Petermann-factor noise, so that the gyroscope’s
fundamental signal-to-noise ratio (SNR) and hence sensitivity is
not improved by operation near the EP. These results are further
confirmed using an Adler phase locking equation approach46,47,

which is also applied to analyze the combined effect of dissipative
and conservative coupling on the system.

Results
Biorthogonal noise enhancement theory. The gyroscope uses a
high-Q silica whispering gallery resonator48 in a ring-laser con-
figuration32. As illustrated in Fig. 1a, optical pumping of cw and
ccw directions on the same whispering-gallery mode index
induces laser action through the Brillouin process. On account of
the Brillouin phase matching condition, these stimulated Bril-
louin laser (SBL) waves propagate in a direction opposite to their
corresponding pump waves33. Dissipative backscattering49 cou-
ples the SBLs and the following Hamiltonian governs the above-
laser-threshold motion24:

H ¼
ωcw iΔωEP=2

iΔωEP=2 ωccw

� �

ð1Þ

where H describes the dynamics via idΨ=dt ¼ HΨ and
Ψ ¼ acw; accwð ÞT is the column vector of SBL mode amplitudes
(square of norm is photon number). Also, ΔωEP is a non-
Hermitian term related to the coupling rate between the two SBL
modes and ωcw (ωccw) is the active-cavity resonance angular
frequency of the cw (ccw) SBL mode above laser threshold. The
dependence of ωcw , ωccw , and ΔωEP on other system parameters,
most notably the angular rotation rate and the optical pumping
frequencies, has been suppressed for clarity.

A class of EP sensors operates by measuring the frequency
difference of the two system eigenmodes. This difference is
readily calculated from Eq. (1) as ΔωS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δω2
D � Δω2

EP

p

where
ΔωD � ωccw � ωcw is the resonance frequency difference and
ΔωEP is the critical value of ΔωD at which the system is biased at
the EP. As illustrated in Fig. 1b, c the vector composition of
the SBL modes strongly depends upon the system proximity
to the EP. For jΔωDj � ΔωEP the SBL modes (unit vectors) are
orthogonal cw and ccw waves. However, closer to the EP the
waves become admixtures of these states that are no longer
orthogonal. At the EP, the two waves coalesce to a single state
vector (a standing wave in the whispering gallery). Rotation of the
gyroscope in state II in Fig. 1 ΔωDj j > ΔωEPð Þ introduces a
perturbation to ΔωD whose transduction into ΔωS is enhanced
relative to the conventional Sagnac factor31. This EP-induced
signal-enhancement-factor (SEF) is given by24,

SEF ¼
∂ΔωS

∂ΔωD

�

�

�

�

�

�

�

�

2

¼
Δω2

D

Δω2
D � Δω2

EP

ð2Þ

where SEF refers to the signal power (not amplitude) enhance-
ment. This factor has recently been verified in the Brillouin ring
laser gyroscope24. The control of ΔωD (and in turn ΔωS) in that
work and here is possible by tuning of the optical pumping
frequencies and is introduced later.

ΔωS is measured as the beat frequency of the SBL laser signals
upon photodetection and the SNR is set by the laser linewidth. To
understand the linewidth behavior a bi-orthogonal basis is used
as described in Supplementary Notes 1 and 3. As shown there and
illustrated in Fig. 1d, the peculiar properties of non-orthogonal
systems near the EP cause the unit vectors (optical modes) to be
lengthened. This lengthening results in an effectively shorter laser
field amplitude. Also, noise into the mode is increased as
illustrated in Fig. 1e. Because the laser linewidth can be
understood to result from diffusion of the phasor in Fig. 1e,
linewidth increases upon operation close to the EP. And the
linewidth enhancement is given by the Petermann factor (see
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Supplementary Note 2),

PF ¼
1

2
1þ

TrðHy
0H0Þ

jTrðH2
0Þj

 !

¼
Δω2

D

Δω2
D � Δω2

EP

ð3Þ

where Tr is the matrix trace operation and H0 ¼ H � TrðHÞ=2 is
the traceless part of H. As derived in Supplementary Note 2, the
first part of this equation is a basis independent form and is valid
for a general two-dimensional system. The second part is specific
to the current SBL system. Inspection of Eqs. (2) and (3) shows
that SEF= PF. As a result the SNR is not expected to improve
through operation near the EP when the system is fundamental-
noise limited.

Petermann noise measurement. To verify the above predictions,
the output of a single pump laser (~1553.3 nm) is divided into
two branches that are coupled into cw and ccw directions of the
resonator using a tapered fiber50,51. Both pump powers are
actively stabilized. The resonator is mounted in a sealed box and a
thermo-electric cooler (TEC) controls the chip temperature
which is monitored using a thermistor (fluctuations are held
within 5 mK). Each pumping branch has its frequency controlled
using acousto-optic modulators (AOMs). SBL power is also
monitored and controlled so that fluctuations are within 0.6%.
Even with the control of temperature and power, the Allan

deviation at longer gate times reflects technical-noise drifting that
is observed to be more pronounced for operation near the EP. As
described in ref. 24, the ccw pump laser frequency is Pound-
Drever-Hall (PDH) locked to one resonator mode and the cw
pump laser can then be independently tuned by the AOM. This
pump detuning frequency (ΔωP) is therefore controlled to radio-
frequency precision. It is used to precisely adjust ΔωD and in turn
ΔωS as shown in three sets of measurements in Fig. 2a. Here, the
photodetected SBL beat frequency ΔωS is measured using a fre-
quency counter. The data sets are taken for three distinct SBL
output amplitude ratios as discussed further below. A solid curve
fitting is also presented using ΔωS ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δω2
D � Δω2

EP

p

, where

ΔωD ¼ γ=Γ
1þγ=ΓΔωP þ

1
1þγ=ΓΔωKerr (see Supplementary Note 4).

Also, γ is the photon decay rate, Γ is the Brillouin gain band-
width33, and ΔωKerr is a Kerr effect correction that is explained
below. As an aside, the data plot and theory show a frequency
locking zone, the boundaries of which occur at the EP.

The frequency counter data are also analyzed as an Allan
deviation (Adev) measurement (Fig. 2a inset). The initial roll-off
of the Adev features a slope of �1/2 corresponding to white
frequency noise52. This was also verified in separate measure-
ments of the beat frequency using both an electrical spectrum
analyzer and a fast Fourier transform. The slope of this region is
fit to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S
ν
=ð2τÞ

p

where S
ν
is the one-sided spectral density of the
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Fig. 1 Brillouin laser linewidth enhancement near an exceptional point. a Diagram of whispering-gallery mode resonator with the energy distribution of an

eigenmode superimposed. The eigenmode energy distribution corresponds to state III in b. Optical pumps on the coupling waveguide and whispering-

gallery SBL modes are indicated by arrows. b Mode energy distributions for three different states: far from EP (state I) the eigenmodes are traveling cw or

ccw waves; near EP (state II) the eigenmodes are hybrids of cw and ccw waves; at EP (state III) eigenmodes coalesce to a standing wave. c Bloch sphere

showing the eigenstates for cases I, II and III with corresponding cw and ccw composition. d Illustration of the cw-ccw and SBL1-SBL2 coordinate systems.

Unit vectors for states I and II are shown on each axis. As the system is steered towards the EP, the SBL axes move toward each other so that unit vectors

along the SBL axes lengthen as described by the two hyperbolas. This is illustrated by decomposing a unit vector of the non-orthogonal SBL coordinate

system using the orthogonal cw-ccw coordinates [e.g., (5/4, 3/4)T and (3/4, 5/4)T for state II]. Consequently, the field amplitude is effectively shortened

in the SBL basis. e Phasor representation of the complex amplitude of a lasing mode for states I and II provides an interpretation of linewidth enhancement.

Phasor length is shortened and noise is enhanced as the system is steered to the EP, leading to an increased phasor angle diffusion and laser linewidth

enhancement (see Supplementary Note 3).
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white frequency noise. Adev measurement at each of the detuning
points in Fig. 2a is used to infer the S

ν
values that are plotted in

Fig. 2b. There, a frequency noise enhancement is observed as the
system is biased toward an EP. Also plotted is the Petermann
factor noise enhancement (Eq. (3)). Aside from a slight
discrepancy at intermediate detuning frequencies (analyzed
further below), there is an overall excellent agreement between
theory and measurement. The frequency noise levels measured in
Fig. 2b are consistent with fundamental SBL frequency noise (see
Methods). Significantly, the fundamental nature of the noise, the
good agreement between the PF prediction (Eq. (3)) and
measurement in Fig. 2b, and separate experimental work24 that
has verified the theoretical form of the SEF (Eq. (2)) confirm that
SEF= PF so that the fundamental sensitivity limit of the
gyroscope is not improved by operation near the EP.

Adler noise analysis. While the Petermann factor analysis pro-
vides very good agreement with the measured results, we also
derived an Adler-like coupled mode equation analysis for the
Brillouin laser system. This approach is distinct from the bi-

orthogonal framework and, while more complicated, provides
additional insights into the system behavior. Adapting analysis
applied in the noise analysis of ring laser gyroscopes47, a noise
enhancement factor NEF results (see Supplementary Note 4),

NEF ¼
Δω2

D þ Δω2
EP=2

Δω2
D � Δω2

EP

ð4Þ

It is interesting that this result, despite the different physical
context of the Brillouin laser system, has a similar form to one
derived for polarization-mode-coupled laser systems53. The PF
and NEF predictions are shown in Fig. 2b and the Adler-derived
NEF correction provides slightly better agreement with the data at
the intermediate detuning values.

Adler locking bandwidth analysis. The Adler approach is also
useful to explain a locking zone dependence upon SBL amplitudes
observed in Fig. 2a. As shown in Supplementary Note 4, this
variation can be explained through the combined action of the
Kerr effect and intermodal coupling coefficients of both dis-
sipative and conservative nature. Specifically, the locking band-
width is found to exhibit the following dependence upon the
amplitude ratio q ¼ jaccw=acwj of the SBL lasers,

Δω2
EP ¼

Γ

Γþ γ

� �2

qþ
1

q

� �2

jκj2 þ q�
1

q

� �2

jχj2
" #

ð5Þ

where κ is the dissipative coupling and χ is the conservative cou-
pling between cw and ccw SBL modes. The locking zone bound-
aries in terms of pump detuning frequency have been measured
(Fig. 3 inset) for a series of different SBL powers. Using this data,
the locking bandwidth is expressed in pump frequency detuning
(ΔωP) units using ΔωC � ð1þ Γ=γÞΔωEP and plotted versus q in
the main panel of Fig. 3. The plot agrees well with Eq. (5) (fitting
shown in black) and gives jκj= 0.93 kHz, jχj= 8.21 kHz.

Finally, the center of the locking band is shifted by the Kerr
effect and (in pump frequency detuning ΔωP units) can be
expressed as �ðΓ=γÞΔωKerr, where ΔωKerr ¼ η accwj j2 � acwj j2

� �

¼
ðηΔPSBLÞ=ðγex_ωÞ is the Kerr induced SBL resonance frequency
difference, ΔPSBL ¼ Pccw � Pcw is the output power difference of
the SBLs, and γex is the photon decay rate due to the output
coupling. Also, η ¼ n2_ω

2c=ðVn20Þ is the single-photon Kerr-
effect angular frequency shift with ω the SBL angular frequency,
n2 the Kerr-nonlinear refractive index of silica, V the mode
volume, n0 the linear refractive index, and c the speed of light in
vacuum. If the white frequency noise floors in Fig. 2 are used to
infer the resonator quality factor, then a Kerr nonlinearity value
of 558 Hz μW−1 is predicted (see Methods). This value gives the
line plot in the Fig. 3 inset (with no free parameters), which
agrees with experiment.

Discussion
Prior work has shown that Brillouin laser gyroscopes when
operated near an EP have an improved responsivity (equivalently,
an increase in the gyroscope’s scale factor for transduction of
rotation rate into the Sagnac frequency shift)24. At the same time,
these measurements have shown that the gyroscope’s sensitivity
did not improve near the EP. We have verified through mea-
surement and theory that mode non-orthogonality induced by
the EP explains this latter result. Specifically, increasing mode
non-orthogonality occurs when the two system eigenvectors
(optical modes) begin to coalesce near the EP. This, in turn,
increases laser frequency noise from an increasing Petermann
factor and thereby reduces sensitivity. Curiously, these two
mechanisms, the enhanced transduction and enhanced noise,
feature an almost identical dependence upon the system’s
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Fig. 2 Measured linewidth enhancement of SBLs near the exceptional

point. a Measured SBL beating frequency is plotted versus pump detuning

for three distinct locking zones, corresponding SBL amplitude ratios q: 1.15

(blue), 1 (orange), 0.85 (red). Solid curves are theoretical fittings. Inset is

a typical Allan deviation measurement of frequency (σ
ν
ðτÞ) versus gate

time τ. Error bars give the standard error of the mean. The short-term part

is fitted with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S
ν
=ð2τÞ

p

where S
ν
is the one-sided power spectral density of

the white frequency noise plotted in b. b Measured white frequency noise

of the beating signal is determined using the Allan deviation measurement.

Data point color corresponds to the amplitude ratios used in a. The

Petermann factor PF (solid lines) and NEF (dashed lines) theoretical

predictions use parameters obtained by fitting from a.
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proximity to the EP. In effect, the increased signal response in the
gyroscope arising from the EP does not lead to an improvement
in the minimum detectable signal (sensitivity).

It is interesting to note that a recent theoretical study of noise
limitations in a class of non-lasing EP sensors showed no fun-
damental sensitivity advantage for operation near the EP28.
Nonetheless it is still possible that other sensing modalities could
benefit from operation near an EP. Moreover, open systems offer
other potentially useful ways for transduction of rotation54. Also,
the proposal of conservative nonlinear mode coupling provides a
potential way to enhance the Sagnac effect55–57. The apparent
divergence of the linewidth near the EP is an interesting feature of
the current model and also one that agrees well with the data (at
least in the range of the measurement). Nonetheless, constraints
to this divergence set by the linewidth of the passive cavity loss
are a subject of further study. More generally, the excellent
control of the state space that is possible in the Brillouin system
can provide a new platform for studies of the remarkable physics
associated with exceptional points.

Methods
Linewidth and Allan deviation measurement. In experiments, frequency is
measured in the time domain using a frequency counter and its Allan deviation is
calculated for different averaging times (Fig. 2a). The Allan deviation σ

ν
ðτÞ for a

signal frequency is defined by

σ
ν
τð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2 M � 1ð Þ

X

M�1

k¼1

�νkþ1 � �νk

� �2

v

u

u

t ð6Þ

where τ is the averaging time, M is the number of frequency measurements, and νk

is the average frequency of the signal (measured in Hz) in the time interval between
kτ and ðkþ 1Þτ. The Allan deviation follows a τ�1=2 dependence when the
underlying frequency noise spectral density is white52 as occurs for laser frequency
noise limited by spontaneous emission. White noise causes the lineshape of the
laser to be a Lorentzian. White noise is also typically dominant in the Allan
deviation plot at shorter averaging times where flicker noise and frequency drift are

not yet important. This portion of the Allan deviation plot can be fit using σ
ν
ðτÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S
ν
=ð2τÞ

p

where S
ν
is the white frequency noise one-sided spectral density func-

tion. This result can be further converted to the Lorentzian full-width at half

maximum (FWHM) linewidth ΔνFWHM (measured in Hz) using the conversion,

S
ν
¼ 2σ2

ν
ðτÞτ ¼

1

π
ΔνFWHM ð7Þ

Experimental parameters and data fitting. The resonator is pumped at the
optical wavelength λ ¼ 1553:3 nm, which, subject to the Brillouin phase matching
condition, corresponds to a phonon frequency (Stokes frequency shift) of
approximately Ωphonon=ð2πÞ ¼ 10:8 GHz. Quality factors of the SBL modes are

measured using a Mach-Zehnder interferometer, and a loaded Q factor QT ¼
88 ´ 106 and coupling Q factor Qex ¼ 507 ´ 106 are obtained.

The theoretical formula for the white frequency noise of the beat frequency far
away from the EP reads,

S
ν
¼

Γ

γþ Γ

� �2
_ω3

4π2QTQex

1

Pcw

þ
1

Pccw

� �

nth þ N th þ 1ð Þ ð8Þ

which results from summing the Schawlow-Townes-like linewidths of the SBL laser
waves33. In the expression, N th and nth are the thermal occupation numbers of the
SBL state and phonon state, respectively. At room temperature, nth � 577 and
N th � 0. For the power balanced case (orange data set in Fig. 2), Pcw= Pccw=
215 μW and the predicted white frequency noise (Eq. (8)) is S

ν
= 0.50 Hz2Hz−1.

For the blue (red) data set, Pcw (Pccw) is decreased by 1.22 dB (1.46 dB) so that S
ν
¼

0.58 (0.60) Hz2Hz−1 is calculated. On the other hand, the measured values for the
blue, orange and red data sets in Fig. 2b (i.e., white frequency noise floors far from
EP) give S

ν
¼ 0.44, 0.39, 0.46 Hz2Hz−1, respectively. The difference here is

attributed to errors in Q measurement. For example, the experimental values of
noise can be used to infer a corrected coupling Q factor Qex � 658 ´ 106 . Using this
value below yields an excellent prediction of the Kerr nonlinear coefficient which
supports this belief.

The beating frequency in Fig. 2a is fit using the following relations:

ΔωS ¼ sgnðΔωDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δω2
D � Δω2

EP

q

ΔωD ¼
γ=Γ

1þ γ=Γ
ΔωP þ

1

1þ γ=Γ
ΔωKerr

ð9Þ

where sgn is the sign function and γ=Γ, ΔωKerr , and ΔωEP are fitting parameters.
The fitting gives γ=Γ ¼ 0:076 consistently, while ΔωKerr and ΔωEP are separately
adjusted in each data set. These parameters feature a power dependence that is fully
explored in Fig. 3 and the related main text discussion.

The theoretical Kerr coefficient used in Fig. 3 can be calculated as follows.
Assuming n2 � 2:7 ´ 10�20 m2=W, n0 ¼ 1:45 for the silica material, and V=
107 μm3 (obtained through finite-element simulations for the 36mm-diameter disk
used here), gives η=2π � 10�5 Hz. Using the Qex corrected by the white
frequency noise data (see discussion above), γex=2π ¼ 299 kHz so that
ΔωKerr=ð2πΔPSBLÞ � 42 Hz μW−1. When γ=Γ ¼ 0:076, the center shift of pump
locking band is �ðΓ=γÞΔωKerr = 558Hz μW−1. This value agrees very well with
experiment (Fig. 3 inset).

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.
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