
Petri-Net-Based Hypertext: Document
Structure with Browsing Semantics

P. DAVID STOTTS and RICHARD FURUTA

University of Maryland

We present a formal definition of the Trellis model of hypertext and describe an authoring and

browsing prototype called aTrellis that is based on the model. The Trellis model not only represents

the relationships that tie individual pieces of information together into a document (i.e., the

adjacencies), but specifies the browsing semantics to be associated with the hypertext as well (i.e.,

the manner in which the information is to be visited and presented). The model is based on Petri

nets, and is a generalization of existing directed graph-based forms of hypertext. The Petri net basis

permits more powerful specification of what is to be displayed when a hypertext is browsed and

permits application of previously developed Petri net analysis techniques to verify properties of the

hypertext. A number of useful hypertext constructs, easily described in the Trellis model, are

presented. These include the synchronization of simultaneous traversals of separate paths through a

hypertext, the incorporation of access controls into a hypertext (i.e., specifying nodes that can be

proven to be accessible only to certain classes of browsers), and construction of multiple specialized

(tailored) versions from a single hypertext.

Categories and Subject Descriptors: F.l.l [Computation by Abstract Devices]: Models of Com-

putation; H.3.4 [Information Storage and Retrieval]: Systems and Software; 1.7.m [Text Pro-

cessing]: Miscellaneous-hypertext

General Terms: Design, Languages, Theory

Additional Key Words and Phrases: Access controls, browsing semantics, formal models, Petri nets,

synchronization, trellis model of hypertext

1. INTRODUCTION

Hypertext is a structuring mechanism for information, one that is particularly
well suited for use on an interactive computer. Hypertext is not a new idea. Bush
[3] is credited with the first proposal for such a system, which he called the
“memex,” in 1945. Brown University’s HES [5] and Engelbart’s NLS [13, 141
are early implementations of computer-based hypertext systems, dating from the
late 1960s. Only in recent years have hypertext systems become widely available.
Commercially available systems such as Apple’s HyperCard and Shneiderman’s
Hyperties [21, 251 may be purchased for use on personal computers. Research
systems such as Xerox’s NoteCards [171 show the wide range of components that

The work of R. Furuta was supported in part by NSF grant CCR-8810312.
Authors’ address: Department of Computer Science and Institute for Advanced Computer Studies,

University of Maryland, College Park, MD 20742.

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific

permission.
0 1989 ACM 0734-2047/89/0100-0003 $01.50

ACM Transactions on Information Systems, Vol. ‘7, No. 1, January 1989, Pages 3-29.

4 - P. D. Stotts and R. Furuta

are useful in a hypertext and the different presentations that help make it more
understandab1e.l

Traditionally, a hypertext is composed of information fragments (such as text,
graphics, sound, video) and tangible relationships among these fragments. One
way to represent such a document is as a directed graph. Each information
fragment is associated with a node in the graph, and the directed arcs represent
the relationships among nodes. In this interpretation the arc represents a poten-
tial traversal from the source node of the arc to the destination node. A person
browsing a hypertext traverses the graph and views (or hears) the information
fragments as he visits nodes.

Some researchers are beginning to realize the need for a more formal substruc-
ture for the highly implementation-defined field of hypertext; for example, [12]
and [16]. Projects that attempt to construct a more complete and descriptive
mathematical basis for documents than directed graphs and annotations can
provide are now beginning to appear.

The work described in this paper is based on one such mathematical frame-
work-that provided by a Petri net. The Trellis model essentially provides a
unifying formalism for describing and reasoning about many of the features of
existing hypertext systems. The model also naturally expresses and manages
concurrent browsing paths, an area of hypertext that has not been fully explored.
Another advantage of this approach is that a Petri net is an incremental change
to the commonly understood directed graph formalism, not a wholesale replace-

ment of that representation, and results developed for directed graph-based
hypertext are easily adapted to a Petri net formalism. Unlike a directed graph
alone, though, a Petri net also permits the specification of a hypertext’s browsing
semantics, that is, the dynamic properties of a reader’s experience when browsing
a document. This is due to the dual nature of Petri nets: they are easily and
naturally represented as bipartite directed graphs, but they are automata as well,
and have inherently parallel execution semantics. As automata they also have
formal language properties and can be viewed as language generators and recog-
nizers. These different but interchangeable aspects of nets provide analytical
leverage for the solution of several interesting access control and version problems
in hypertext.

Petri net formalism has long been recognized as an effective tool for describing
and analyzing control flow among concurrent activities. Though we know of no
other use of Petri nets in describing hypertexts, Petri nets have been used to
model user interactions and interfaces. For example, Zisman [34] describes a
model for activity coordination in office automation environments in which Petri
nets are used to specify the possible interactions among a set of active agents.
The agents themselves are represented as production systems that specify com-
putational behavior. In another project, van Biljon [29] has used Petri nets to
specify user interfaces, calling them man-machine dialogues. For illustration, he
models a simple operating system shell. These practical uses of Petri net theory
are similar in goals and approach to the Trellis model described herein; but our

’ TWO recent surveys of the hypertext field are [2] and [8]. In addition, [30] presents a perspective on

the history and development of the area.

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

Petri-Net-Based Hypertext l 5

work is cast directly into the hypertext domain and addresses some of the unique
problems found there.

In the following section we present a brief review of Petri nets and then present
our formal hypertext model. Following the presentation of the model, Section 3
describes aTrellis, a prototype Petri-net-based hypertext system. Section 4 then
presents the solution to some specific hypertext problems as an illustration of
the analytic power of our formalism. A discussion of useful extensions and further
implications of the Trellis model, in Section 5, completes the report.

2. THE TRELLIS MODEL OF HYPERTEXT

The formal model of hypertext that we propose is based primarily on a Petri net
representation of a document’s structure. We take advantage of the fact that
Petri nets not only capture the descriptive power of directed graphs, known to
be a useful abstraction in hypertext systems, but provide as well a mathematically
precise abstract machine for control and analysis of hypertext “execution” or
“browsing.”

For completeness of our discussion and to motivate the descriptive power of
our approach, we first provide a short set of definitions for the Petri nets we
employ. Following this, we give the definitions for our hypertext model. Readers
familiar with basic Petri net theory can skip directly to Section 2.2 without loss
of understanding.

2.1 Basic Petri Net Theory

To provide a complete presentation of the Trellis hypertext model, we review
first the basic points from Petri net theory that are used in the later definitions.
Readers who desire a more thorough exposition of net theory can consult the
texts by Peterson [23] and Reisig [24]. The notation used here is taken from
Reisig.

Definition 1. A Petri net structure is a triple, N = (S, T, F) in which

s= (Sl, . . .) s,) is a finite set of places with n I 0;

T= (tl, . . . , t,) is a finite set of transitions with m 2 0 and S n T = 0;

FG (S X T) U (T X S) is the flow relation, a mapping representing arcs
between places and transitions.

The arcs represented by F prescribe pre- and post-relations for places and
transitions. The set of places that are incident on a transition t is termed the
preset of t, and is denoted by

*it = (sl (s, t) E F].

The set of places that follow a transition t is termed the postset of t, and is
denoted by

t- = (s 1 (t, s) E FJ.

The preset and postset for a place s are defined similarly as the sets of transitions
incident on s and following s, respectively.

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

6 l P. D. Stotts and FL Furuta

In our model, we have simplified the notation often used for Petri nets by

assuming that the weight on each arc is 1, and that the token capacity of each
place is unbounded.

Definition 2. A marking h4 of a Petri net structure N = (S, T, F) is a function

M: s + {O, 1, . . .) u (w),

mapping each place in the net into either a nonnegative integer or the symbol w.
A marking is normally written as a vector (m,, m2, . . . , m,) in which mi = M(si).

Each integer in a marking indicates the number of tokens residing in the
corresponding place. The symbol w represents an arbitrarily large number of
tokens and is included for consistency with existing net theory. It may appear in
Petri nets representing an infinite number of states.

An execution of a Petri net consists of a sequence of markings, beginning with
the initial marking MO and ending in some final marking Mf (which can be
defined in several different ways, see [23]). To go from the current state M to.
some next state M’, any transition t that is enabled under M is chosen and fired.
For a transition t to be enabled under M, it must be the case that

Vs E et: M(s) 2 1.

Firing t consists of removing one token from each place in l t and adding one
token to each place in to. The new state M’ is then the tuple of integers showing
the number of tokens in each place after the firing.

For example, consider the marked Petri net shown in Figure 1. Places are
drawn as circles, transitions as bars, and tokens as dots in places. The initial
marking, shown in part (a), is MO = (111000). The enabled transitions under MO
are tl and t2. If tl were chosen to fire, the resulting next state would be M, =
(OOllll), as shown in part (b). If, instead, transition tz were fired from the initial
state, the resulting state (100000) would be terminal from initial state since no
further transitions would be enabled. Note that the number of tokens in s4 is
increased by 1 every time that tl is fired; hence s4 acts as a counter.

Being a finite automaton, a Petri net has a dual mathematical nature. It can
be viewed as generating (or representing) a formal language and as an abstract
machine. From the formal language viewpoint, a Petri net describes a set of
strings of symbols in which each symbol represents a transition in the net. From
the automaton viewpoint, a Petri net is a state transition system in which the
number of tokens in each place collectively constitutes the state of the abstract
machine. Both views are of value to us when interpreting a Petri net in terms of
a hypertext.

2.2 Formal Definitions of Trellis

The Trellis model of hypertext uses Petri net structure and execution semantics
to specify both the linked form and the browsing semantics of a hypertext. This
logical structure is then interpreted through a layer of indirection to arrive at a
displayed form for reader consumption. Hypertext content and linked structure
are effectively separated by the Trellis model.

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

Petri-Net-Based Hypertext l 7

(a) (b)

Fig. 1. Petri net before and after transition firing.

Definition 3. A hypertext H is a sextuple H = (N, C, W, B, PL, Pd) in which

N = (S, T, F) is a Petri net structure;

C is a set of document contents;

W is a set of windows;

B is a set of buttons;

P1 is a logical projection for the document;

Pd is a display projection for the document.

A hypertext consists of a Petri net representing the document’s linked struc-
ture, several sets of human-consumable components (contents, windows, and
buttons), and two collections of mappings, termed projections, between the Petri
net, the human-consumables, and the display mechanisms. A Petri net is a
bipartite directed graph and, as such, is as capable of representing a linked
hypertext as existing models using directed graphs alone.’ A window from set W
is a logically distinct locus of information.3 A button from set B is an action that
causes the current display to change in a specified way. A content element from
the set C can be many things: text, graphics, tables, bit maps, executable code,
audio information, or, most important, another hypertext. Figure 2 shows an
example of a Petri net structure for a hypertext. It will be used as the basis for
further examples.

’ Any directed graph has a simple representation as a Petri net; the bipartite nature of a Petri net

is important for the execution semantics and does not restrict its structural modeling power. See

Section 5.

3 The locus of information represented by a “window” is not necessarily visible. Indeed, a logical
window may require other devices, such as an audio generator, for presentation of its information.

Note that the model does not require that a logical window be associated with each net place (see the
definition of logical projection, below). This is useful when a place is mapped to a computation that
does not create presentable information (e.g., an action node in NoteCards).

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

8 l P. D. Stotts and R. Furuta

/

Fig. 2. Example Petri net hypertext structure.

Definition 4. Given the Petri net structure N = (S, T, F) in a hypertext H,
the logical projection of H is a triple Pl = (Cl, Wl, &) in which

cl: s + c u (u)

Iv,: s + w u (u)

Bl: T +B U (v)

A logical projection provides mappings from components of a Petri net to the
human-consumable portions of a hypertext, as mentioned above. The u in the
definition is a special item denoting a null value. The function Cl associates a
content element with each place in the Petri net N. The function I45 associates a
logical window with each place in N as well. The function Bl associates a logical
button with each transition in N. A transition is fired by selecting its associated
logical button. Buttons can thus be thought of as the mechanism that couples
hypertext browsing with Petri net execution. Together, these mappings provide
an informational form and a logical layout for the browsing structure of the Petri
net.

As mentioned above, content elements may be more than simple information.
A Petri net place may have as its contents another hypertext, creating a natural
hierarchy in the model. The uses for hierarchical structure in a hypertext are
numerous. One obvious advantage is that each Petri net is independently analyz-
able. Many analysis algorithms for Petri nets are exponential in the size of the

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

Petri-Net-Based Hypertext l 9

net, so a collection of smaller nets is preferable to one large net. Another
advantage is that, with careful use of hierarchy, an author can organize a
hypertext more effectively than with a flat structure. For instance, hierarchy can
provide a form of abstraction. Browsing semantics can be designed so that the
initial display of a lower-level hypertext shows an overview of its contents. The

detailed text can then be browsed for more information, or it can be skipped by
moving on at the upper level.

The display projection Pd is simply a collection of mappings that associate the
logical buttons and windows of a hypertext with physical screen representations
and locations. For example, given a text segment displayed in a physical window,
one way to represent the logical buttons is to map them to a menu of mouse-
selectable items located next to the text window; this is the approach in the
current aTrellis system, explained in Section 3 below. Another way is to map
them onto words actually in the text window. Either mechanism (or others) can
be used without altering the logical hypertext structure simply by appropriately
specifying the display projection. Since our emphasis here is on logical represen-
tation and analysis, we do not present this aspect of the model in any detail.

There are, in summary, two important levels of indirection in this model. The
first is the separation of content from structure. By appropriate selection of the
logical mappings PL, one structure can serve to represent several document
versions (see Section 4.5). The second level is the display projection Pd, which
allows a set of logical entities to be presented in different forms for consumption.
For example, logical buttons that exist but are not selectable (due to the Petri
net marking) can either be shown on a screen “grayed out” (as in the well-known
Apple Macintosh menu format), or they can simply not be displayed at all. This
second approach has implications for document security: If information is not
attainable, its existence is not even admitted (see Section 4.4).

Definition 5. A marked hypertext is a pair HIM = (H, M) in which H = (N, C,
W, B, P,, Pd) is a hypertext, and M is a marking for the Petri net N in H.

A marked hypertext can be thought of as representing the state of a hypertext
during browsing. It is a characterization of the set of possible paths through a
hypertext from a given point. A special case of marked hypertext, termed the
initial state, is HrMO = (H, MO) where MO is an initial marking for the Petri net in
H. Different browsing patterns can be enforced on a single hypertext simply by
choosing appropriate initial states, as del?onstrated in the section below on
access control restrictions. When a hypertext is first viewed, the node contents
displayed correspond to the places that contain tokens in the initial net marking
M,; that is,

(C,(s) 1 s E S and M,(s) > 01

is the set of elements displayed.
The execution semantics of a Petri net provides the model of browsing a

marked hypertext. A token in a place s indicates that the contents of the place
C,(s) are displayed for viewing (or editing, or some other interaction). When a
token moves into an empty place, the associated content element is mapped to
the display device; likewise, when all tokens are removed from a place, leaving it
empty, its contents are removed from the display. Tokens move through the net

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

10 - P. D. Stotts and R. Furuta

as transitions are fired. This is accomplished by selecting logical buttons in the
display. When a transition t is enabled in the Petri net, the logical button B,(t)

is mapped to some area of the screen where it may be selected.4 Browsing begins
by starting execution of the Petri net in MO. Browsing may terminate, depending
on the structure of the hypertext, or it may cycle without end. If a state M of the
Petri net is ever reached in which no transitions are enabled, then browsing ends,
since no buttons are selectable at that point.

Hierarchy affects execution in the following way. When a token arrives at a
place s having a marked hypertext as its value under the content mapping Cl,
the content elements corresponding to the places initially marked in the lower
level net C,(s) are displayed. Browsing in the lower level net continues concur-
rently with the remainder of the marked locations in the higher level net. The
transitions leaving place s at the higher level remain visible for selection as long
as they are enabled (this reflects the idea that, as long as the lower level net is
being browsed, a token is sitting in the higher level place representing it).
Selection of one of the buttons on arcs out of s causes immediate termination of
the lower level browsing session. Otherwise, the lower level net may be browsed
until no transitions in it are enabled. At this point, the reader has only the higher
level transitions leaving s to select, and browsing continues at the higher level.

To summarize, a marked hypertext combines graphical structure with Petri
net execution semantics to encapsulate all possible paths that a reader may
follow through a document. During browsing, the current marking M of the Petri
net determines which hypertext elements are viewable. The transitions enabled
under M determine which buttons are visible, and hence selectable, in which
windows. Selection of a button by the reader fires one of the enabled transitions,
thereby generating a new state M’ from M and causing the display to change
correspondingly. Browsing formally terminates when no buttons are selectable.

3. THE aTRELLIS HYPERTEXT SYSTEM

We have constructed a prototype hypertext browsing and authoring environment
called aTrellis to experiment with the Petri-net-based Trellis hypertext model.
It presents a multipath browsing environment in which many different elements
may be viewed at a given point in time. The current version of aTrellis operates
on Sun-3 workstations under the SunView window package. aTrellis is intended
as an experimental platform and a proof-of-principle vehicle. As such, we have
paid more attention to implementing the Petri net document representation with
browsing semantics, and have not implemented sophisticated window placement
strategies.

aTrellis allows both construction and viewing of a Petri net hypertext. Physi-
cally, the aTrellis screen is divided into two main parts. On the right side is a
Petri net editor and simulator, derived from Molloy’s SPAN tool [22]. The left
side of the screen is the hypertext browser, subdivided into four windows, each
containing a text panel and a button panel. Using the net editor, an author builds

4 The choice of how to do this mapping is a design decision and is the function of the display mapping.
The particular mapping chosen for the aTrellis prototype is to show the button in the window of

each place in the preset of t. This is particularly useful in, say, a distributed implementation where
the various windows may not appear on the same screen.

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

II R

c

14 l P. D. Stotts and R. Furuta

a Petri net structure and then, using tag strings, specifies the mappings of places
to browsable text elements and transitions to buttons. The tag on a place is the

name of a UNIX@ file containing the associated text. The tag on a transition is
the name displayed in a button panel when that transition is enabled to fire.
During browsing, when a token resides in a place, the text in the file associated
with that place is displayed in one of the four text panels. The place name
appears in the upper left-hand corner of that window. Any enabled transitions
in the postset of the place have their button names displayed in the button menu
to the left of the text. Button names do not appear in any browser window until
the associated transitions are enabled to fire.

Both the author and the reader can refer to the visual representation of the
Petri net to get a graphical image of his location(s) in the document. Only an
author is allowed to alter a document structure or directly place tokens in the
net. Reading a hypertext is accomplished by simply executing the Petri net from
its initial marking. Execution is controlled either (as is common in hypertext
systems) by mouse selection of displayed buttons in the browser windows or by
direct firing of enabled transitions from the net editor.

Figure 3 shows an initial screen from aTrellis, using the example shown earlier
in Figure 2. This simple hypertext is a fictitious personnel record. Among other
things, it contains salary, education, job history, and performance evaluation
information for an employee. The Petri net structure of the hypertext is directly
illustrated on the right side. The content mapping CL is implicitly represented by
the file names tagging the net places. The logical button mapping BI is represented
similarly by the tags on the transitions. The logical window mapping for this
example simply associates a different logical window with each net place. The
display projection implemented in aTrellis specifies that a logical window will be
displayed in the first open panel on the left. If none are open, the extra logical
windows are not displayed until some browsing action causes space to open up.
The number of logical windows waiting for open space is noted at the bottom of
the browser. In Figure 3, the button “evals” is being selected, causing the display
shown in Figure 4 to appear. Notice that now there are three concurrently
displayed elements. The net structure shows two different transitions leaving
these places, and the buttons for these transitions are displayed next to each text
panel. Here, button “recommend” in panel “review3” is being selected. Figure 5
shows the resulting screen display. All three previous windows have been removed
together, and two more have been displayed as dictated by the net structure.
Notice in these figures the token movement through the Petri net, corresponding
to transitions fired by button selection.

4. SOLUTIONS USING THE MODEL

The Petri net basis for hypertext in the Trellis model allows the solution of
several problems using state-space analysis techniques. In this section we discuss
the following:

-Display parameters. Characteristics of the display, such as the maximum
number of simultaneously needed windows, can be determined for planning
screen layouts.

@ UNIX is a trademark of AT&T Bell Laboratories.

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

Petri-Net-Based Hypertext l 15

-Concurrent browsing paths and synchronization. A Petri-net-based hypertext
structure can naturally indicate that several content elements are to be viewed
at the same time. More generally, an author can easily specify the creation
and deletion of multiple concurrent browsing paths. These can be independent,
or they can be related in various ways. An author can also specify that multiple
paths be synchronized at certain places during browsing so that concurrently
displayed information elements do not become unrelated to each other.

-Node reachability and unreachability. It is possible to verify that all nodes in
a hypertext can be reached via some path; more important, verification is
possible that certain nodes cannot be reached from particular initial markings,
giving the basis for access control and for tailored versions.

Many of these solutions are derived from the reachability graph, a structure
representing the various token distributions a Petri net may encounter during
its execution. A marking can be thought of as the state of a Petri net automaton.
The set of all markings a net can possibly attain during execution is called
its reachability set. For a general Petri net, this set can be infinite, though
for a Petri net representing a reasonable hypertext it is finite. In his book,
Peterson summarizes a technique for representing this possibly infinite set
as a tree that is guaranteed to be of finite size for any Petri net [23, p. 91, ff.].
The technique involves collapsing some infinite subsets of states into single
metastates.

The left side of Figure 6 shows the reachability graph for the Petri net in
Figure 2. Each node in the tree structure is a net state; the state number is
indicated in the box and the marking for each state is listed in the table below
the graph. Each arc leaving a node is labeled with the number of the transition
that must fire to create the marking at the end of the arc. A node with a heavy
line at its base is a duplicate of one found elsewhere in the graph. Note that the
reachability graph is highly dependent on the initial marking. The right side of
Figure 6, for example, shows the reachability graph for the same net structure as
the one on the left, but with an initial marking MO = (0100000000000).

4.1 Display Complexity

Using the reachability graph for the Petri net in a hypertext, we can determine
some parameters of the physical presentation that cannot be determined from a
directed graph alone for many forms of hypertext browsing. One such parameter
is the maximum number of windows that will be required for any reading of the
hypertext. Since the model associates a content C,(s) with each place s in the
Petri net, if the browser displays each concurrently viewed element in a separate
window, then the number of marked places in a Petri net state is the number of
windows required to be concurrently displayed for that state. We can then scan
the reachability graph node-by-node and find the maximum number of marked
places over all states. For the reachability graph shown in Figure 6, this number
is 5. This information can be employed in a number of ways: for example, it can
aid the determination of a reasonable layout for a display mechanism that, say,
tiles a screen with windows.

The analysis presumes that concurrently viewed elements are specified by the
author rather than the reader. This means that in a single browsing session, a

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

16 l P. D. Stotts and R. Furuta

5

m4

6

ml : (1 lOOOOOO0lOOO) is interior

m2 : (1000010001000) is interior

m3 : (1OOOOO1101000) is interior
m4 : (1OOOOO1011000) is interior
m5 : (ltXWOOOOllOO) is interior

m6 : (1 lOOOOOO0lOOO) duplicates ml
m7 : (1~1011) is interior
m8 : (llOOOOOO0lOOO) duplicates ml
m9 : (1011100001000) is interior

m10: (1OOOOO1011000) duplicates m4

mll: (lOOOOOOOOlOll) duplicates m7

ml : (0100000000000) is interior

m2 : (OOOOOlOOOOOOO) is interior

m3 : (OOOOOOl lOWOO) is interior

m4 : (OOOOOOlOlOOOO) is interior

m5 : (OOOOOO0000100) is interior

m6 : (OlOOOOOOOOOOO) duplicates ml

(a) (b)

Fig. 6. Reachability graphs for Petri net in Figure 2.

reader is not allowed to simultaneously initiate separate traversals of the various
alternative paths leaving a node. Systems allowing that form of browsing certainly
exist. Rather than treating such behavior as a single session with arbitrary
potential concurrency at each node, we view it as splitting one browsing session
into several distinct sessions (or, equivalently, several logically distinct readers).
The discussion of colored tokens in Section 5 provides a more detailed exposition
of multiple readers in a hypertext.

It should also be noted that the Trellis model of hypertext neither pre-
scribes nor prohibits any particular window placement or replacement strategy
for concurrent displays. The particular choices of a hypertext system designer
are reflected in the display mapping specified, but no form is inherently
disallowed.

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

Petri-Net-Based Hypertext l 17

4.2 Concurrent Browsing Paths and Synchronization

As a computation model, Petri net theory is recognized as an excellent represen-
tation of parallel activities. As such, it is a natural choice for representing
concurrent display of multiple elements and concurrent browsing paths in a
hypertext. The advantage obtained over directed graphs alone is that the execu-
tion semantics of Petri nets provide an author with the opportunity to specify
synchronization of concurrent activity.

There are several forms in which concurrent activity may appear. First is
simply the display of several (presumably related) content elements simultane-
ously in different windows or via different media. For example, selection of a
single button may cause a browser to see a text frame, a related picture, and
perhaps hear some audio as well. These distinct elements are in essence a unit,
and a single action should cause all three elements to be removed from the

display when the reader is finished with them. This type of concurrent activity
is created using a Petri net form in which a single transition (the button)
branches to several places (the multiple elements) and a second transition is the

sole output of these places. An example can be seen in the portion of Figure 2
composed of the transitions t, and t2 along with places s3, s4, and s5. The three
content elements associated with these places will all be visible after button
Bl(tl) is selected. They will all be removed when either button Bl(tz) or button
Bl(tlo) is selected.

As another example, consider the guided tours recently described by Trigg for
Xerox’s NoteCards [28]. A guided tour is formed from a pool of possible display

. windows (“cards”). The various cards of interest to an author are collected into
sets called “tabletops.” The cards in a tabletop are all displayed concurrently. An
author constructs a tour by linking tabletops together to form a directed graph.
From any one tabletop there may be several alternative next tabletops, and the
final linked structure may be cyclic as well.

Guided tours are a subclass of the hypertexts one can describe with Petri nets.
The browsing control they offer can be represented by the Trellis model in two
ways. The first method does not use hierarchy; rather, we assume that each place
in a Petri net has an information element associated with it. A tabletop is then
represented by a Petri net fragment consisting of a single transition connected
to as many places as there are elements in the tabletop (with the exception of
the first tabletop, which has no transition). Tabletop net fragments are intercon-
nected as desired by the author. When one tabletop is connected to another, an
arc is created from each of the places in the source fragment to the single
transition in the destination fragment. This construction is illustrated by the left
side of Figure 7. Note that lone transitions may follow terminating tabletops (for
instance, transition ts follows places sb and s6) to clear their elements from view
at the end of a tour. To begin browsing, a token is placed in each of the places
constituting the first tabletop of the tour.

The second construction technique uses the model’s hierarchy, and it is more
illustrative of the underlying sequential finite automaton in guided tours. The
set of elements in a tabletop is fixed, so we represent each tabletop as a simple
lower level Petri net: one place for every information element in the tabletop,
with no connected transitions. Then, at the higher level, a single place followed

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

18 l P. D. Stotts and R. Furuta

Sl
.

t1 I----a t2

(4

Sl
. A

,,~....._.______.........,

t1 t2 ,,:,”
_.I’

.“’ i @ @ 1

,’
,:’ ,_:’

t,

. .._....___...........

__.’

s3 _..‘.

(b)

Fig. 7. Petri net representation of guided tours: (a) without hierarchy, (b) using the hierarchy.

by a single transition will represent each tabletop (again with the exception of
the first tabletop). A tabletop is linked by an author to others as in the previous
method. The right side of Figure 7 shows this construction. The semantics for
browsing a net hierarchy specify that a token arriving at a high-level tabletop
place causes all the places in the low-level net to be marked, and their contents
thereby to be displayed. Since the lower level net representing a tabletop has no
transitions, no browsing can occur at the lower level. The only button selections
a reader can make correspond to the high-level transitions that leave the high-
level place representing the entire tabletop. For example, when browsing the
tabletop represented by place sQ, content elements for places s3.1 and s~.~ are
visible and buttons for transitions t4 and t5 selectable.

Since the high-level Petri net formed by the hierarchical construction method
has a single input and a single output arc for each transition (the terminating
transitions t3, ts, and ts can be thought of as all leading to a single “final state”
place with null contents), it is equivalent to a deterministic finite state machine
[23, p. 41, ff.]. Thus, separate parallel browsing paths in a guided tour must be
simulated unnaturally. Careful selection of the elements that appear in successive
tabletops can give the appearance of parallel independent paths, but such paths
cannot be identified from the linked structure alone.

Therefore, we introduce a second form of browsing concurrency-a generali-
zation of multiple concurrent elements to multiple concurrent paths. Concurrent
browsing paths are two or more sequences of content elements that are displayed
at the same time. During browsing, concurrent paths may be synchronized and
coalesced, they may join and overlap but still remain distinct, or they may never

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989

Petri-Net-Based Hypertext l 19

join again after their creation. The degree of relatedness among elements in two
different paths can vary from complete independence to a strong dependence
requiring rigid and frequent synchronization.

Separate concurrent browsing paths exist whenever multiple concurrent ele-
ments are created, and they remain distinct until they are synchronized and
coalesced. When several parallel paths are active, one content element from each
is concurrently visible, but the speed of browsing along each path can vary
according to the desires of the reader, within the limits prescribed by the
structure. The author specifies the desired parallel path interactions based on an
understanding of what net execution semantics allow and what the content and
context of the information require. Thus, a browser’s experience with a Petri-
net-based hypertext can be somewhat under the author’s control.

Different parallel browsing effects are easily created by varying the placement

and frequency of synchronizing events in a Petri net structure. Figure 2 contains
some simple paths that are independent for a while, but then are synchronized
and coalesced. Firing transition tQ causes two concurrent paths to be created,

showing first elements CL&) and Cl(ss). Instead of having both elements imme-
diately removed thereafter, browsing continues along the rightmost path only.
Firing transition tb causes the content element of place sg to replace the element
for place s8, while the element for place s7 remains visible. Transition t6 is not
enabled for firing (and, therefore, the button B,(t,) is not visible for selecting)
until after transition t5 is fired. Firing ts then removes both content elements
from view and coalesces the two browsing paths into one. This example is short,
but the principle generalizes to arbitrarily long paths with numerous parallel
branches. Even though browsing activities are concurrent on the different paths,
they are not allowed to progress at speeds that are too dissimilar. In essence,
synchronization points required the reader to “catch up” on each of the multiple
paths before continuing on any of them.

A synchronized structure like this can be used for presenting information
simultaneously at several levels of detail or in several complementary forms. For
example, using only the net structure in Figure 2, the content mapping could be
one that maps place s7 to, say, a picture of the NASA space shuttle. The content
elements associated with places ss and sg could then be textual descriptions of
some aspect of the picture, say an explanation of the orbiter vehicle itself and a
description of the booster rockets, respectively.” The Petri net structure shown
dictates that the text descriptions are to be displayed in sequence and the picture
of the shuttle is to remain visible during the entire sequence. When the text
frame sequence is consumed, selecting the single button Bl(t6) would remove all
the related concurrent windows from view. The burden of cleaning up multiple
displays can thus be removed from the reader by the synchronization inherent
in a Petri net automaton.

Concurrent browsing paths do not have to be synchronized or coalesced. They
can overlap like a pipeline, join and separate, or just individually come to an end.
Figure 8 shows a Petri net structure in which four parallel browsing paths are
active. From an initial marking MO = (1000000 . . .), transition tl is fired to create

’ This example was suggested to us by a novel graphic display of the NASA space telescope in an
experimental Sun workstation version of Shneiderman’s Hyperties system [21, 251.

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

20 ’ P. D. Stotts and R. Furuta

Fig. 8. Multiple independent browsing paths,

the next marking Ml = (0101110 . . .). Transition tP is then fired to create the
marking M2 = (0011110.. .) shown in the figure. The contents of the four places
s3, s4, s5, and s6 are all concurrently visible. From this point, the reader can select
three different buttons. Selection of button &(t3) will cause the leftmost path to
simply terminate, removing the contents of sa and replacing it with nothing.
Selection of button Bl(t5) will instead synchronize the middle two paths and
move them further along in the net. Selection of button Bl(t4), though, is perhaps
the most interesting of these cases. This action will create a net marking of
(0010121 . . .), putting a second token in place s6. The rightmost path continues
to exist separately from the middle two; they are not coalesced into a single path,
as can happen at a synchronization point. The paths simply come together and
overlap here. Even with two tokens present in s 6, its content element is displayed
in only one spot. When either of transitions t5 or t6 is fired, though, a token will
remain in s6 so its contents will remain displayed. One path will move on and
another will remain at s6.

Note that, in this example, buttons can come and go within the context of one
content element. When C,(s6) is displayed, for instance, there may sometimes be
only one button shown (for t5), as in the scenario of Figure 8. At other times two
buttons may be shown for this same element. For instance, from marking Ml =

(0101110 . . .) transition t4 can be fired to create a next marking M2 = (0100111
. . .). In this state, both transitions t5 and t6 are enabled so their corresponding
buttons will both be displayed with the contents of place sg. In this particular
marking, the button for t6 will also appear in another window with the content
element for place see6

An example of a hypertext that might effectively use multiple browsing paths
is one in which the reader needs to accomplish several independent tasks, say

6 This nonstatic link behavior is an important feature of van Dam and Feiner’s Document Presenta-

tion System [15], which is further described by van Dam [30, p. 8941.

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

Petri-Net-Based Hypertext l 21

locating a record in a personnel file and locating a record in a payroll account.
The relative speeds with which the browsing tasks are accomplished are unim-
portant since they are essentially independent.

A variant of the multiple-path form of concurrency is obtained using a Petri
net extension called colored tokens [19]. Here, each token is associated with one
of several classes, and firing a transition requires all input places to be marked
with like-colored tokens. By using this model, completely independent browsing
sessions can be maintained. For example, a single hypertext can be shared and
browsed by different readers without them interfering with each other. Each
reader is given a different token color. More discussion on the use of colored
Petri nets in hypertext can be found in Section 5.

4.3 Node Reachability and Unreachability

As with directed graphs alone, the Petri net model can be used to determine if
portions of a hypertext can actually be reached during browsing, or alternately,
if portions can neuer be reached. The latter consideration forms the basis for a
unified method of providing hypertext access control, as discussed in the next
section. Given a hypertext H, an initial marking it&, and a place s, to determine
if a particular content element C,(s) can be viewed during browsing, one must
simply compute the reachability graph for the marked hypertext (H, MO) and
then scan the nodes, looking for a state in which place s is marked. If no state
exhibits such a marking, then the information cannot be viewed when the
hypertext is browsed starting in state MO. Similarly, we can determine if certain
collections of information can be viewed simultaneously by looking for states
containing sets of marked places.

Another characteristic of a hypertext that can be determined from the reach-
ability graph is termination. If a state M exists in which no transitions are
enabled, then there can be no next state M’ from M, so the browsing session in
that Petri net must terminate in M. Such terminal states appear in the tree
representation of a reachability graph as leaves that are not duplicates of other
nodes. If the author desires that a hypertext have no terminal states, then this
property can be easily checked by scanning all nodes in the graph.

Similarly, an author may wish to verify that any terminal states in a browsing
session are ones in which the screen is blank, that is, all places are unmarked in
a terminal state. Another state property that is reasonable to look for is that a
browsing session can return to its initial state, thus making it cyclic. Any
characterization one wishes to describe for a marking can be checked against the
reachability graph in order to verify that a hypertext has, or fails to have, a
particular property.

Another class of properties that can be checked for a browsing session are
temporal relationships among visitations of content elements. A Petri net, being
an automaton, can be viewed as a language generator. The language of a Petri
net [23, p. 151, ff.] is the set of all sequences of transitions that can be fired
during execution. In hypertext terms, the corresponding concept is the button
sequences a reader might select during browsing from an initial marking. Con-
sequently, analysis of the language of the Petri net can be used to verify the
browsing requirements an author may have for a hypertext. For example, an
author may wish to ensure that any browsing session that encounters an element

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

22 l P. D. Stotts and R. Furuta

Y must have somewhere previously encountered element X (e.g., X is a legally
required statement that protects trade secrets divulged in Y). Another example
is ensuring that any browsing session encountering an element X cannot subse-
quently encounter element Y, but a browsing session that first encounters Y can
later encounter X (e.g., X is an expert-level explanation of a topic and Y is a
novice-level explanation of the same topic). These are difficult properties to
verify by inspection in a complicated net.

4.4 Access Control

The Petri net formalism can be effectively used to enforce browsing restrictions
on readers of a hypertext. In a hypertext represented as a plain (unannotated)
directed graph, if two browsing paths share a common node, then no reader can
be prevented from visiting other nodes that lie on paths leaving that common
node. With an unannotated Petri net, however, browsing paths can share nu-
merous common subsections and still have interspersed mutually exclusive sec-
tions as well. The limitation of plain directed graphs is usually dealt with in
hypertext systems by annotating arcs with keywords or attributes and controlling
arc access via predicates. The Neptune system [ll], for instance, uses a list of
attribute/value pairs on nodes and arcs to provide conditional browsing of
hypertext sections. Attributes in Neptune can be dynamically created and deleted
by readers, a feature that the Trellis model does not include because of a stronger

distinction between a hypertext’s author and its readers.
The access control capabilities described in this section are otherwise not

different from those available with graph augmentation techniques such as tagged

arcs. However, we believe the Petri net notation is as intuitively easy to use as
existing augmentation techniques, if not easier, while being more succinct and
convenient. The notation successfully describes different existing access control
mechanisms in one unified mathematical formalism, making them accessible to
comparative reasoning and analysis.

With techniques like tagged arcs, the manner in which the graph additions are
used by a browser is not inherently obvious. The exact semantics of their behavior
and capabilities depend on the hypertext implementation and how it employs
the added notation. With the Petri net model, access capabilities become an
integral part of a document, as opposed to being properties of the browser. What
this really implies is that a Petri net engine essentially provides a standardized
abstract browser implementation, one whose semantics are mathematically de-
fined, as opposed to being “code defined.“7 The unified execution abstraction of
access control integrated with document structure is an important difference
from augmentation techniques like tagged arcs and predicates.

Access control in the Trellis model uses the idea of a marked hypertext. For a
hypertext H, various classes U, of users can be identified, depending on which
portions of H the author desires to be visible to certain readers. Then each class
can be given a different starting state Mb for browsing H. Thus, each class Ui
constitutes a separate marked hypertext HNIt = (H, Mf,).

7The Hypertext Abstract Machine [4], the basis of the Neptune system, is a similar attempt to

provide an abstract system semantics for standardization of browsing behavior.

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

Petri-Net-Based Hypertext . 23

For example, consider a scenario in which an employment record will have two
classes of reader: privileged (class P) and restricted (class R). Readers of class P
can browse the entire document, but readers of class R may not see the sections
containing, for example, job performance evaluations. We refer again to the Petri
net structure in Figure 2 to represent this scenario. Let places s3 through s5 have
job evaluations as their images under mapping Cl; as discussed earlier, the
structure specifies that the three are to be displayed concurrently. Places s12 and
s13 also contain privileged information, and their contents are to be displayed
simultaneously after the evaluations have been read. The rest of the employment
record (sz, sg through sg, and sI1) is unrestricted information. Places s1 and sIo
are special “access control” places that serve to separate the classes of reader
during browsing. On this document, readers of class P define a hypertext with
initial Petri net marking M,P = (1100000001000), whereas readers of class R
define a hypertext with initial marking 44: = (0100000000000). The initial
marking shown in Figure 2 is that of class P. The reachability graph resulting
from this marking is shown in Figure 6(a). Having a token in each of places s1
and s2 enables transition tl. This in turn allows readers of class P to select the
button Ill(&) and thereby read the job performance evaluations. Readers of class
R do not start with a token in the access control place s,; a scan of the reachability
graph for their initial hypertext state, shown in Figure 6(b), shows that no token
can ever be there. Since transition t, is never enabled for readers of class R, the
evaluations can never be browsed.

Readers of class P can also choose to leave the restricted portion of the
hypertext by selecting the button Bl(tlo) after reading the evaluations at places
s3 through s5. The token in access control place slo allows them to reenter the
restricted section at a later point. Firing transition t7 replaces this access control
token. Class R readers will never have a token in place slot so they will always
be excluded from sections s12 and s13 of the hypertext (again, see Figure 6(b)).
Note that for both access control places in this example, the net structure is such
that firing the transitions they guard replaces their respective tokens.

A third class of reader can be defined on this hypertext: semirestricted (class
S). Readers of class S can see the salary information contained in places s12 and
s13, but they cannot see the performance evaluations in places s3 through s5. This
restriction can be created by giving readers of class S an initial marking Mi =
(0100000001000). An examination of the reachability graph for this marked
hypertext shows that the token in access control place sIo will allow a reader to
fire transition t7, but that transition t, can never be enabled.

The structure of this simple example suggests the following strategy for
constructing hypertexts with access control classes. First, outline the access
control classes for the hypertext. Next, construct a collection of subhypertexts,
each having a separate Petri net structure and each intended to be read in its
entirety by access control class members. Next, for each subhypertext, decide
which of the classes can browse it. Finally, using the hierarchy in the Trellis
model, construct a top-level hypertext that has one place representing each
subhypertext and that is connected with the desired browsing patterns. Add one
access control place for each subhypertext place, connected like the ones in Figure
2, as input and output to the transitions before and after the subhypertext place.

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

24 - P. D. Stotts and R. Furuta

For each access control class, prescribe an initial marking that includes a token

in the access control place of every subhypertext the class is allowed to browse.

4.5 Tailored Versions of a Hypertext

Tailored versions of a hypertext are useful when each is to contain information
specific to a separate environment. Portions of the contents of the documents in
a collection of such tailored versions are common to all of the versions, and other
portions are specific to one or to a subset of the documents. An example of a
situation in which a tailored document set would be useful is to describe the
invocation and use of a piece of software that runs on a number of different
computers or operating systems. A similar situation is to support different user
groups with different kinds of expertise (for example, a spreadsheet might be
described for a user community that was expert in computer use or alternately
for a group that was expert in accounting principles).

While each version could be maintained as a separate hypertext, a more
attractive design is to take advantage of the commonality of structure and content
in the collection of tailored versions and to represent the collection as a single
Petri net. The issue of representation and of specification of appropriate alternate
choices for content is exactly the same issue discussed in the previous section on

access control in browsing, and the same solutions apply. The reachability graph
analyses needed to verify the correctness of tailored versions may differ, however,
from those defined for browsing control. One property to be shown for tailored
versions is that exactly one of a set of places is reachable (i.e., the content element
for only one of the versions is ever viewable). A second property to be shown is
that every place in a particular set is reachable (i.e., all the contents of one
version are potentially viewable).

It is interesting to note that tailored versions of a hypertext may also be
specified through modification of the function C,. The mapping defined by CL
would be the same for all common portions of the two versions, but would differ
for the changed content elements. For example, an author may wish to create
two parallel versions of a document, one written in English and the other in
French. In this case, two different mappings would be associated with the Petri
net places: one to the English-language contents, the other to the French-
language contents. In this case, there would be no overlap between the content
elements in the two versions. Similar substitutions may be used to tailor versions
of a document for different environments-for example, a user manual describing
software that runs on a number of different pieces of hardware, or perhaps a
descriptive document with versions at different levels of technical complexity
corresponding to the technical knowledge of differing communities of readers. In
these cases, only a subset of the content elements would vary among different
versions.

Similar effects have been studied in the context of traditional documents using
attribute-value pairs as the means for identifying the differing alternatives
(for example, see Ilson’s recent paper [Ml). Within the context of the Trellis
model, it is possible to verify that two versions based on the same logical
structure contain corresponding collections of elements and exhibit the same
connectivity. Browsers based on the Trellis model can easily be designed to

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

Petri-Net-Based Hypertext * 25

permit simultaneous viewing of the separate versions and to provide addi-
tional tools to help an author ensure that two versions are consistent with
each other.

5. DISCUSSION AND IMPLICATIONS OF THE MODEL

Consider again the common representation of a hypertext as a (usually annotated)
directed graph in which a single element is visible at any time during browsing.
The Trellis model does not restrict this representation; rather, it generalizes it
with concurrency and synchronization. This claim is supported by the observation
that any directed graph can be expressed as a Petri net by a well-known simple
transformation [23, p. 41, ff.]. The transformation takes the directed graph that
represents such a hypertext, makes each existing node a Petri net place, and
creates a Petri net transition in the middle of each arc. Nets constructed by this
technique are in an equivalence class with finite state machines. The browsing
semantics under our model for the hypertexts are exactly as expected for the
original directed graph form. Thus, methods applicable to directed graphs, such
as arc annotations and history mechanisms, are equally applicable to Petri-net-
based hypertexts.

In addition to directly representing graph-based documents in Petri net form,
a system based on the Trellis model can also adopt many of the user interface
techniques that have been developed for browsing directed graph hypertexts. The
Petri net provides the same logical document structure that a directed graph does
in a browsing tool. The results of empirical studies into visual aspects of a
hypertext browsing system (for example, see Shneiderman’s paper [25]) are
relevant when applied to either representation. However, research is needed into
effective window placement strategies for multiple concurrent elements.

Several points about Petri net representation deserve further emphasis. First,
the Trellis model provides the author of a hypertext with greater control over
the sequences in which nodes are browsed. Other researchers have found a similar
need to permit this kind of specification (both within one document and among
multiple documents [6, 7, 32, 331). However, the Petri net model permits flexible
enforcement of such sequencing, making browsing restrictions an integral part
of a hypertext’s structure rather than applying it with an external browsing
mechanism. As such, we believe the Trellis model provides a needed unified
structuring facility to the author. Furthermore, as with other browsing control
facilities, the control provided by Petri nets is not forced on an author. The fact
that unrestricted directed graphs (i.e., finite state machines) are a subclass of
Petri nets implies that an author can choose to apply no browsing control, if that
is the effect desired. Concurrency and sequencing control are available, though,
and can be specified to whatever degree an author requires. Finally, augmentation
techniques that are applicable to directed graph hypertexts are equally applicable
to Petri nets. Essentially, a hypertext system based on highly annotated directed
graphs can have its document representation replaced by Petri nets, thereby
gaining concurrency specification and control without sacrificing any existing
functionality.

Two other advantages of the Trellis hypertext model should be noted. First,
the Petri net representation is essentially graphical and, consequently, is only an

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

26 l P. D. Stotts and FL Furuta

incremental change from the common directed graph model of hypertext.8 Sec-

ond, Petri nets have been studied and analyzed for over twenty years, so an
extensive theory exists that can be immediately applied to the solution of
problems in the hypertext domain. Indeed, useful extensions have been defined
to Petri nets that will have direct application to hypertext as well. Two such
extensions are deterministically timed Petri nets and colored Petri nets.

Use of a deterministically timed Petri net [9, 271 in the model allows hypertext
documents such as timed exams and paced presentations, or even simple ani-
mations. Several types of timed Petri nets have been well developed, and a body
of results is available for determining such temporal properties as relative firing
frequencies of transitions or execution durations of subnets.g In the timed Petri
net model that seems most appropriate for hypertext, an integer is associated
with each place in the Petri net; it represents the number of time units (clock
“ticks”) that must pass before a token in the place can enable any of its output
transitions to fire. In hypertext terms, the integer time on a place indicates the
minimum amount of time that the contents of a place are displayed when a token
arrives at the place. After the requisite number of ticks has passed, the token
would participate in enabling transitions for firing, meaning either that selectable
buttons would appear in display windows, or, if timing were to be strictly enforced,
transitions would be fired automatically, thereby causing the displays to change.”

Colored Petri nets [19] extend the classical model by associating colors with
the tokens, the places, or perhaps the transitions of a net. A color is simply a
method of distinguishing classes of elements that share the same structural
category. The firing rule is altered to require some color property to hold, in
addition to having tokens in all input places for an enabled transition. For
example, the rule may require all tokens being consumed by a transition to be of
the same color, or to be all of the same color and to be the color of the transition.
Color extensions increase the size of the state space that can be represented with
a given net structure.

Several applications of colored Petri nets are of note in the hypertext domain.
In one obvious extension, colored tokens permit multiple, simultaneously active,
asynchronous browsing sessions over a hypertext. Additional sessions cannot be
created by simply adding tokens to an uncolored net because this could permit
traversal of otherwise prohibited paths. In a colored net, a new independent
browsing session would be generated by replicating the initial marking for the
net (or perhaps the current marking) with a previously unused token color. This
preserves the correctness of the author-specified net behavior because tokens of

‘Contrast the use of this graphically based model with a nongraphical one such as Garg’s, which is

based in abstract algebra [16]. While the nongraphical models have certainly demonstrated their
utility, the mental shift required to employ their results is significant.

‘See, for example, the proceedings of the 1985 International Workshop on Timed Petri Nets and the

proceedings of the 1987 International Workshop on Petri Nets and Performance Models.
lo Dami et al. [lo] describe a general timed computation mechanism called temporal scripts that has
similar goals, in that animated graphical presentations are principal examples in their paper. The

approach in temporal scripts is to allow an object to consume virtual time as a resource and to have
time slices passed around from agent to agent to effect computation. In lieu of timing on a Petri net,

this model appears to be one that can also be used in conjunction with Trellis to specify and enforce

more precise temporal properties for events during hypertext browsing.

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

Petri-Net-Based Hypertext l 27

differing colors do not interact. The issues surrounding the actual mapping of
separate browsing sessions to a display, or a network of displays, are outside of
the scope of this paper, and indeed schemes such as those of Lifshitz and
Shneiderman [20, 211 could be adopted to provide this partitioning.

Another application for colored Petri nets is to permit definition of additional
levels of granularity in access control. KMS [l, p. 8321 has considered the case
of hypertext nodes that are both readable and modifiable by browsers (for
instance, to permit addition of notations and commentary). At issue is how to

grant some browsers the right to modify while restricting others to reading only.
One approach might be to encode the access rights in the token’s color and to
generalize the logical projection Pl and the display projection Pd to associate an
appropriate presentation with each color. Browsers receiving the appropriate
color of marked hypertext would then be granted modification privileges as they
browse.”

6. CONCLUSIONS

In summary, we have presented a Petri net model of hypertext that generalizes
the directed graph models currently in use. Since a Petri net is a directed graph,
the Trellis model specifies the logical linked structure of a hypertext; being
automata as well, Petri nets provide standardized browsing semantics for hyper-
text systems. As a natural formalism for concurrency, Petri net notation also
provides a unique mechanism for the expression and control of concurrent
browsing paths in a hypertext. This browsing control can be applied to or excluded
from a document at the author’s discretion. Since the finite state machine
representation used in many hypertext systems is given by a subclass of Petri
nets, useful annotations like tagged arcs and predicates can be as easily applied
to the Trellis model as they can to directed graphs. The Trellis model, then,
provides a unifying formalism for describing and reasoning about browsing
behavior, both concurrent and sequential, both controlled and unrestricted.

An important research problem now is the development of composition tech-
niques to produce “well-formed” documents and the incorporation of these
techniques into a comprehensive authoring and analysis environment. One
example of such an approach is the heuristic mentioned earlier for constructing
a hypertext with access control classes. Another approach is an authoring
language that we envision to structure meaningful hypertexts by the repeated
composition of a few simple Petri net fragments, much as control structures
in modern programming languages alleviate the confusion of an unstructured
assembly code program [26].” The authoring language not only ensures that
properly structured documents are produced, but the procedural programming
paradigm hierarchically organizes a hypertext and helps manage the complexity
of constructing and analyzing a very large document. An authoring environment

I’ We note that this use of colored tokens is a special case of capability-based addressing as defined

in the HYDRA operating system [31]. The more general statement is that we associate a capability

with the token and that the actions carried out in the P, and Pd mappings can be defined based on

that capability.
“Van Dam makes a similar point in his call for identification of new flow-of-control kinds of

hypertext constructs [30, p. 8941.

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

28 l P. D. Stotts and FL Furuta

based on the Trellis model and this structured programming approach to docu-
ment construction must provide tools for writing in the language, as well as
analysis tools for verifying that a hypertext will behave as expected.

The merging of hypertext and Petri nets is proving to be an advantageous
combination. Much of the power of the model, and corresponding implementa-
tion, results from our ability to adopt already established user interface tech-
niques from the hypertext community and analytical techniques from the Petri
net community. We believe that this format model will allow the development of
hypertexts that are not only general but also predictable in their behavior.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Frank Halasz, Robert Allen, and the anon-
ymous referees for their thorough reading of earlier versions of this report. Their
detailed comments and references were especially helpful in presenting this work
more clearly and accurately.

REFERENCES

1. AKSCYN, R. M., MCCRACKEN, D. L., AND YODEH, E. A. KMS: A distributed hypermedia system

for managing knowledge in organizations. Commun. ACM 31, 7 (July 1988), 820-835.

2. BROWN, P. J. Hypertext: The way forward. In Document Manipulation and Typography, J. C.

van Vliet, Ed. Cambridge University Press, Apr. 1988, pp. 183-191. Proceedings of the Znterna-

tional Conference on Electronic Publishing, Document Manipulation, and Typography (Nice,

France, Apr. 20-22, 1988).

3. BUSH, V. As we may think. The Atlantic 176, 1 (July 1945), 101-108.

4. CAMPBELL, B., AND GOODMAN, J. M. HAM: A general purpose hypertext abstract machine.
Commun. ACM 32, 7 (July 1988), 856-861.

5. CARMODY, S., GROSS, W., NELSON, T. E., RICE, D., AND VAN DAM, A. A hypertext editing

system for the /360. Tech. Rep., Center for Computer and Information Sciences, Brown Univ.,

Providence, RI., Mar. 1969. Also contained in Pertinent Concepts in Computer Graphics, M.
Faiman and J. Nievergelt, Eds., University of Illinois, Urbana, Mar. 1969, pp. 291-330.

6. CHRISTODOULAKIS, S., Ho, F., AND THEODORIDOU, M. The multimedia object presentation

manager of MINOS: A symmetric approach. In Proceedings of ACM SZGMOD ‘86 (Washington,
D.C., May 28-30). ACM, New York, 1986, pp. 295-310.

7. CHRISTODOULAKIS, S., THEODORIDOU, M., Ho, F., AND PAPA, M. Multimedia document

presentation, information extraction, and document formation in MINOS: A model and a system.

ACM Trans. Off. Znf. Syst. 4,4 (Oct. 1986), 345-383.
8. CONKLIN, J. Hypertext: An introduction and survey. Computer 20, 9 (Sept. 1987), 17-41.

9. COOLAHAN, J. E., AND ROUSSOPOULOS, N. A timed Petri net methodology for specifying real-

time system timing requirements. In Proceedings of the International Workshop on Timed Petri

Nets (Torino, Italy, July 1985), pp. 24-31.

10. DAMI, L., FIUME, E., NIERSTRASZ, O., AND TSICHRITZIS, D. Temporal scripts for objects. In

Active Object Environments (Enuironnements d’Objets Actifs), D. Tsichritzis, Ed. Centre Univ-

ersitaire D’lnformatique, Univ. de Geneve, June 1988, pp. 144-161.

11. DELISLE, N., AND SCHWARTZ, M. Neptune: A hypertext system for CAD applications. In
Proceedings of ACM SZGMOD ‘86 (Washington, D.C., May 28-30). ACM, New York, 1986, pp.
132-143.

12. DELISLE, N. M., AND SCHWARTZ, M. D. Contexts-A partitioning concept for hypertext. ACM

Trans. Off. Znf. Syst. 5, 2 (Apr. 1987), 168-186.
13. ENGELBART, D. C., AND ENGLISH, W. K. A research center for augmenting human intellect. In

Proceedings, AFZPS Fall Joint Computer Conference 33 (1968), pp. 395-410.

14. ENGELBART, D. C., WATSON, R. W., AND NORTON, J. C. The augmented knowledge workshop.

ARC Journal Accession Number 14724, Stanford Research Center, Menlo Park, Calif., Mar.

1973. Paper presented at the National Computer Conference, June 1973.

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

Petri-Net-Based Hypertext l 29

15. FEINER, S., NAGY, S., AND VAN DAM, A. An experimental system for creating and presenting
interactive graphical documents. ACM Trans. Graph. 1, 1 (Jan. 1982), 59-77.

16. GARG, P. K. Abstraction mechanisms in hypertext. Commun. ACM 31, 7 (July 1988), 862-870,
879.

17. HALASZ, F. G. Reflections on NoteCards: Seven issues for the next generation of hypermedia
systems. Commun. ACM 31, 7 (July 1988), 836-852.

18. ILSON, R. Interactive effectivity control: Design and applications. In Proceedings of ACM

Conference on Document Processing Systems (Santa Fe, N.M., Dec. 5-9). ACM, New York, 1988,
pp. 85-91.

19. JENSEN, K. Coloured Petri nets and the invariant method. Z’heor. Comput. Sci. I4 (1981),
317-336.

20. LIFSHITZ, K., AND SHNEIDERMAN, B. Window control strategies for on-line text traversal.
Working paper, July 1987.

21. MARCHIONINI, G., AND SHNEIDERMAN, B. Finding facts vs. browsing knowledge in hypertext
systems. Computer 21, 1 (Jan. 1988), 70-80.

22. MOLLOY, M. K. A CAD tool for stochastic Petri nets. In Proceedings of the ACM-IEEE Fall

Joint Computer Conference (Nov. 1986), pp. 1082-1091.
23. PETERSON, J. L. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood

Cliffs, N.J. 1981.
24. REISIG, W. Petri Nets: An Introduction. Springer, New York, 1985.
25. SHNEIDERMAN, B. User interface design for the Hyperties electronic encyclopedia. In Proceed-

ings of Hypertext ‘87 (Nov. 1987), pp. 199-204.
26. STOWS, P. D., AND FURUTA, R. Alpha: An authoring language for Petri-net-based hypertext,

1989. Hypertext 2, Univ. of York, June 29th and 30th, 1989. To appear.
27. STOTTS, JR., P. D., AND PRATT, T. W. Hierarchical modeling of software systems with timed

Petri nets. In Proceedings of the International Workshop on Timed Petri Nets (Torino, Italy, July
1985), pp. 32-39.

28. TRIGG, R. H. Guided tours and tabletops: Tools for communicating in a hypertext environment.
ACM Trans. Off. Inf. Syst. 6, 4 (Oct. 1988), 398-414.

29. VAN BILJON, W. R. Extending Petri nets for specifying man-machine dialogues. Int. J. Mun-

Much. Stud. 28 (1988), 437-455.

30. VAN DAM, A. Hypertext ‘87 keynote address. Commun. ACM 32, 7 (July 1988), 887-895.
31. WULF, W., COHEN, E., CORWIN, W., JONES, A., LEVIN, R., PIERSON, C., AND POLLACK,

F. HYDRA: The kernel of a multiprocessor operating system. Commun. ACM Z7,6 (June 1974),
337-345.

32. ZELLWEGER, P. T. Directed paths through collections of multi-media documents. Position
paper. In Hypertext ‘87 (Nov. 1987).

33. ZELLWEGER, P. T. Active paths through multimedia documents. In Document Manipulation

and Typography, J. C. van Vliet, Ed. Cambridge University Press, Apr. 1988, pp. 19-34. Proceed-
ings of the International Conference on Electronic Publishing, Document 1.4anipulation, and
Typography (Nice, France, Apr. 20-22, 1988).

34. ZISMAN, M. D. Use of production systems for modeling asynchronous, concurrent processes. In
Pattern-Directed Inference Systems, D. A. Waterman and F. Hayes-Roth, Eds. Academic Press,
Orlando, Fla., 1978, pp. 53-68.

ACM Transactions on Information Systems, Vol. 7, No. 1, January 1989.

