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Petri Net Based Symbolic Model Checking for
Computation Tree Logic of Knowledge

Leifeng He and Guanjun Liu

Abstract—Computation Tree Logic of Knowledge (CTLK) can specify many design requirements of privacy and security of multi-agent
systems (MAS). In our conference paper, we defined Knowledge-oriented Petri Nets (KPN) to model MAS and proposed Reachability
Graphs with Equivalence Relations (RGER) to verify CTLK. In this paper, we use the technique of Ordered Binary Decision Diagrams
(OBDD) to encode RGER in order to alleviate the state explosion problem and enhance the verification efficiency. We propose a
heuristic method to order those variables in OBDD, which can well improve the time and space performance of producing, encoding
and exploring a huge state space. More importantly, our method does not produce and encode any transition or equivalence relation of
states when producing and encoding an RGER, and in fact it dynamically produces those transition or equivalence relations that are
required in the verification process of CTLK formulas. This policy can save a lot of time and space since the number of transition or
equivalence relations of states is much greater than the number of states themselves. We design symbolic model checking algorithms,
develop a tool and apply them to two famous examples: Alice-Bob Protocol and Dining Cryptographers Protocol. We compare our tool
with MCMAS which is the state-of-the-art model checker of verifying CTLK. The experimental results illustrate the advantages of our
model and method. Our tool running in a general PC can totally spend less than 14 hours to verify Dining Cryptographers Protocol with
1200 concurrent cryptographers where there are about 101080 states and the two verified CTLK formulas have more than 6000 atomic
propositions and more than 3600 operators. These good performances are owed to a combination of the OBDD technique and the
structure characteristics of KPN.

Index Terms—epistemic logic, model checking, Petri nets, multi-agent systems, OBDD.
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1 INTRODUCTION

Errors in some privacy/security-critical systems such as
anonymity protocols can lead to serious consequences. It
is therefore important for designers to use some logically
precise approaches to find these errors. Model checking [6],
[14], [16], [52] is an automated and practically successful
approach of formally verifying these systems.

In the paradigm of model checking, a system is first
encoded by a model. Famous modelling languages in-
clude labelled transition systems (LTS) [6], Petri nets [12],
[30], [31], [33], reactive modules [2], New Symbolic Model
Verifier (NUSMV) [11], [48], Interpreted Systems Programming
Language (ISPL) [32] and so on. Then, a to-be-checked
property (or requirement) of the system is specified by a
logical formula. Verifying whether the system satisfies the
property is translated into the problem of checking whether
the model satisfies the logical formula. Some design re-
quirements, such as deadlock-freeness, safety, liveness and
fairness, can be specified by discrete temporal logic such as
Linear Temporal Logic (LTL) [6], [18], [51] and Computation
Tree Logic (CTL) [5], [13], [31].

A big challenge in model checking is the state explosion
problem especially for concurrent systems, i.e., the state
space of a system grows exponentially with the number of
variables. Many techniques have been developed to deal
with this problem such as OBDD-based symbolic model
checking [6], [26], [32], [35], [39], SAT-based bounded model
checking [4], [10], [56], abstraction [38], [40], [42], partial
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order reduction [15], [47] and decomposition [1].
A Multi-Agent System (MAS) [7], [17], [23], [55] is a

concurrent system where multiple agents interact or col-
laborate with each other in order to perform some com-
mon/distributed tasks. Both the correctness of interact-
ing/collaborating behaviors and the privacy/security of
agents should be ensured before an MAS is put into ser-
vice. Discrete temporal logic can only specify some de-
sign requirements of interacting/collaborating behaviors,
but cannot specify the requirements of privacy and security.
Then Epistemic logic [8], [36] (or logic of knowledge) is used
to specify these privacy/security-related requirements since
they can represent knowledge of agents.

Epistemic logic was first put forward by philosophers
and later used in the computer science field. Nowadays
it has become a means of reasoning about the knowledge
and belief of agents [21], [32], [56]. It is a modal logic
concerned with agent-related reasoning and offers a useful
expression and analysis of privacy and security of MAS.
It has been used for verifying security protocols [25], agree-
ment protocols [50] and some other knowledge-related sys-
tems [32]. By adopting epistemic modalities as primitives,
one can naturally express private and collective (common
or distributed) knowledge of agents. If a fact is private
to some agents, then only these agents know it but oth-
ers do not know it at all. As a kind of epistemic logic,
Computation Tree Logic of Knowledge (CTLK) [56] is a tem-
poral and epistemic logic1 and can specify many design
requirements of MAS including not only privacy/security

1. If a CTLK formula has no epistemic operator, then it is a CTL
formula in fact.
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behaviors but also interacting/collaborating behaviors. Bit
Transmission Protocol [21], [45] and Dining Cryptographers
Protocol [9], [29], [54] can both be viewed as an MAS and
their privacy/security-related requirements can be specified
by CTLK. Some algorithms and tools have been developed
for the related model checking [32], [53].

MCMAS [32] is a state-of-the-art model checker of ver-
ifying CTLK, where an MAS is modelled by ISPL and the
requirements of privacy/security are specified by CTLK.
However, it usually has three weaknesses:

1. Programs written by ISPL are usually non-intuitive
and have hard readability, which was also pointed
out in [48]. Additionally, a program of ISPL needs
an environment agent to configure the interac-
tion/collaboration of all agents, which usually brings
much inconvenience to users when building or scaling
up a model.

2. It has a high time complexity when translating a pro-
gram of ISPL into its induced model as its behavioral
representation. Although it uses OBDD to alleviate
the state explosion problem, the time complexity of
producing an induced model is still very high since it
needs to find a good compromise between continuous
variable reordering in OBDD and efficiency of reducing
memory-consuming.

3. Before verifying a CTLK formula, it first needs to pro-
duce all states as well as all transition and equivalence
relations of these states. As we all know, the number
of transition or equivalence relations of states is much
greater than the number of states themselves. But in
fact, it is not necessary to produce all transition and
equivalence relations of states when verifying a CTLK
formula. Thus this also wastes too much time.

In order to overcome these weaknesses, this paper uses
Petri nets and OBDD to model MAS and to verify CTLK
since we can make full use of the structure characteristics of
Petri nets. There are some studies on Petri-nets-based model
checking for MAS [12], [30], [31], [33]. However, they only
pay attention to the correctness of interacting/collaborating
behaviors but do not consider the privacy/security-related
requirements. Therefore, in our conference paper [24], we
defined Knowledge-oriented Petri Nets (KPN) to intuitively
simulate both the processes of interaction/collaboration of
multiple agents and their epistemic evolutions. We used
CTLK [56] to specify the requirements of both interac-
tion/collaboration and privacy/security. We defined equiv-
alence relation for each agent and constructed Reachability
Graph with Equivalence Relations (RGER)2 to verify CTLK.
We designed their model checking algorithms, but the state
explosion problem was not handled well. In this paper,
we consider more epistemic operators in CTLK, improve
our algorithms greatly and develop a related tool. We use
OBDD [3], [46] as the symbolic representation of states of
RGER in order to alleviate the state explosion problem.
Especially, we propose a heuristic method to order variables
in OBDD that can well improve the time and space perfor-
mance of producing, encoding and exploring the states of an

2. In [24], we called it as similar reachability graph. Since a similar
relation defined in [24] is an equivalence relation, we rename it as
Reachability Graph with Equivalence Relations in this paper.

RGER. The heuristic method exactly utilizes the structure
characteristics of KPN, but that is not easy for MCMAS
since its modeling language ISPL does not have an obvi-
ous or direct structure representation. More importantly,
instead of producing all transition and equivalence relations
of states before verification, our algorithms dynamically
produce those transition or equivalence relations that are
required in the process of verifying a set of CTLK formulas.
This also makes full use of the structure characteristics of
KPN. Therefore, our algorithms can save much time. Our
experiments over the benchmark of Dining Cryptographers
Protocol show that our tool can obtain surprising results
compared with MCMAS. We also compare our heuristic
method of ordering variables in OBDD with the state-of-
the-art one proposed in [49] and show that our method can
obtain a good overall performance.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces some basic concepts of Petri nets. Section 3
introduces KPN and RGER. Section 4 recalls OBDD and
presents an OBDD-based symbolic approach to produce and
encode the states and relations of an RGER. Section 5 intro-
duces the syntax and semantics of CTLK based on KPN and
RGER. Section 6 proposes our model checking algorithms in
which we use the structure of KPN and the encoded states
of RGER to produce those required transition or equivalence
relations. Section 6 also shows our tool briefly. Section 7
uses two examples to show the usefulness of our model and
method. Section 8 illustrates and analyzes our experiments.
Section 9 concludes this paper.

2 PETRI NETS

Petri nets and their related concepts are recalled in this
section. For more details, one may refer to [34] and [44].
N = {0, 1, 2, · · · } is the set of all non-negative integers.

A net is a 3-tuple N = (P , T , F ) where P = {p1,
· · · , pn} is a finite set of places, T = {t1, · · · , tm} is a
finite set of transitions, F ⊆ (P × T ) ∪ (T × P ) a set of
arcs, and P ∩ T = ∅. A net can be viewed as a directed
bipartite diagram. Generally, transitions are represented by
rectangles and places by circles in a net diagram. Given a
net N = (P , T , F ) and a node x ∈ P ∪ T , the pre-set and
post-set of x are defined as •x = {y ∈ P ∪ T | (y, x) ∈ F}
and x• = {y ∈ P ∪ T | (x, y) ∈ F}, respectively. If the
post-set of a place is empty, we call it as an end place.

A marking of N = (P , T , F ) is a mapping M : P → N
where M(p) is the number of tokens in place p. Place p is
marked at M if M(p) > 0. A marking is denoted as a multi-
set of places in this paper. For example, if the marking M
satisfies that place p1 has 2 token, place p2 has 4 tokens and
other places have no tokens, then it is written as M = {2p1,
4p2}. Sometimes, a marking is also called as a state in this
paper.

A net N with an initial marking M0 is called a Petri net or
net system and denoted as (N , M0). Transition t is enabled at
M if ∀p ∈ •t: M(p) > 0. This is denoted as M [t〉. Firing an
enabled transition t yields a new markingM ′ which satisfies
that M ′(p) = M(p)− 1 if p ∈ •t \ t•; M ′(p) = M(p) + 1 if
p ∈ t•\•t; and M ′(p) = M(p) otherwise. This is denoted as
M [t〉M ′, and we call M as a predecessor of M ′. A marking
Mk is reachable from another marking M if Mk = M or
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p1,1

p1,10 {a1}

p1,2 p1,3 p1,4 p1,5 p1,6 p1,7

p2,1 p2,2 p2,3 p2,4 p2,5 p2,6 p2,7

p1,8 {a1} p1,9 {a1} p1,11 {a1}

p2,8  

{a2}

p2,9 {a2} p2,10 {a2}
p2,11 {a2}

c1 c2 c3 c4

t1,1 t1,2 t1,3 t1,4 t1,5 t1,6

t2,1 t2,2 t2,3 t2,4 t2,5 t2,6

Alice

Bob

Fig. 1. KPN modeling Alice-Bob Protocol.

there exists a non-empty transition sequence σ = t1t2 · · · tk
such that M [t1〉M1[t2〉 · · · 〉Mk−1[tk〉Mk. We use M [σ〉Mk

to represent that M reaches Mk after firing σ. The set of
all markings reachable from M in a net N is denoted as
R(N , M).

The reachability graph of a Petri net (N , M0) = (P , T , F ,
M0) is a 3-tuple ∆ = (M, T , F) where M = R(N , M0) is the
set of all reachable markings and F ⊆ M× T ×M is the set
of all directed edges such that (M , t, M ′) ∈ F iff M [t〉M ′.

A Petri net is safe if each place has at most one token in
each reachable marking. In this paper, we only consider safe
Petri nets and thus a marked place p means M(p) = 1. A
marking M is a deadlock if every transition is disabled at M .

3 KPN AND RGER
In this section, we introduce Knowledge-oriented Petri nets
(KPN) and their Reachability Graphs with Equivalence Relations
(RGER). For more details, one may refer to [24].

3.1 Knowledge-oriented Petri Nets

Definition 1 (KPN). A KPN is a 7-tuple Σ = (PS , PK , T , F ,
M0, A, L) where

1. (PS ∪ PK , T , F , M0) is a safe Petri net;
2. PS is a set of local state places3, PK is a set of basic

knowledge places, and PS ∩ PK = ∅;
3. A = {a1, a2, · · · , am} is a set of names of agents;
4. L : PK → 2A \ {∅} is a labeling function.

A KPN is a special Petri net where the epistemic evolu-
tion of each agent is considered. The underlying Petri net
w.r.t. PS models the execution process of each agent and
the interaction/collaboration of multiple agents. For each
p ∈ PK , it represents a basic knowledge obtained by a set
of agents when it is marked, and L(p) means those agents
who obtain the knowledge. A place is also used to represent
an atomic proposition in CTLK, i.e., an atomic proposition is
true iff the corresponding place is marked, which is also the
reason why a KPN is required to be safe. Therefore, KPN can

3. In our conference paper [24], we called these places as state places.
In fact, a place in a Petri net represents a local state of the related system
[34], [44], and a distribution of tokens across all places (i.e., a marking of
PS ∪ PK ) represents a global state. For readability, this paper renames
these places as local state places instead of state places in [24].

model both the interaction/collaboration of multiple agents
and their epistemic evolutions.

In our previous work [24] and other related work [22],
[32], [48], some notions and methods were usually illus-
trated via bit transmission protocol [21], [45]. Here, we use
Alice-Bob Protocol [41] to illustrate our notions and methods
since it is closely related to privacy/security. In this protocol,
a password needs to be transferred between Alice and Bob
secretly and it is realized by the asymmetric encryption
technique.4 The KPN in Fig. 1 models this protocol where
the hollow circles are local state places and the solid circles
are basic knowledge places. Here, we use a1 and a2 to
represent the names of Alice and Bob, respectively. First of
all, Alice chooses her password and Bob chooses his public
and private keys, which are modelled by transitions t1,1
and t2,1, respectively. Secondly, Alice sends Bob a request
(t1,2) asking for his public key, and Bob delivers his public
key to Alice (t2,3) once receiving the request (t2,2). Thirdly,
after Alice receives the public key (t1,3), she uses this key
to encrypt her password (t1,4) and sends it to Bob (t1,5).
Fourthly, after Bob receives the encrypted password (t2,4),
he uses his private key to decrypt it (t2,5). Finally, Bob sends
an acknowledgement to Alice (t2,6).

Places p1,8–p1,11 and p2,8–p2,11 are basic knowledge
places. A token in p1,8 means that Alice owns the basic
knowledge that she has got her password. A token in
p2,8 (resp. p2,9) means that Bob owns the basic knowledge
that he has got his private (resp. public) key. A token in
p1,9 means that Alice owns the basic knowledge that she
has got a public key. A token in p1,10 (resp. p2,10) means
that Alice (resp. Bob) owns the basic knowledge that she
(resp. he) has got an encrypted password. A token in p2,11

means that Bob owns the basic knowledge that he has got
a password. A token in p1,11 means that Alice owns the
basic knowledge that she has got an acknowledgement. For
complex knowledges, we use CTLK to specify them and
verify their validity via reasoning. For example, when Alice
receives an acknowledgement, she can derive that Bob has
got the password.

Note that for the simplification of a KPN diagram, a
self-loop is represented by an arc with arrowheads at both
ends, e.g., the self-loop between p1,8 and t1,4 in Fig. 1.
A self-loop between a transition and a place means that
the transition is an output of the place and the place is
also an output of the transition. Additionally, in the above
example, every knowledge is owned by only one agent. The
case of common knowledge, i.e., a knowledge is owned
by two or more agents, can be found in the example of
Dining Cryptographers Protocol. Fig. 2 shows the program
of Alice-Bob Protocol written in ISPL. Obviously, KPN is
more intuitive and has better readability.

In a KPN, each agent corresponds to a subnet and differ-
ent agents interact or collaborate via some common places
such as c1–c4 in Fig. 1. Therefore, it avoids an environment
agent to describe the interaction and collaboration of agents.
However, MCMAS needs such an agent because it is used
to controls two kind of common variables: global variables

4. Here we focus on the epistemic and interacting processes of this
protocol, but do not concern the specific encryption and decryption
technique. Even from this perspective, we use our methods to show
that this protocol is not secure.
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Agent Alice

     Vars:

          pw : {empty, num1}; --password

          prk : {empty, num2}; --private key

          enpw : {empty, num3}; --encrypted password

          ack : boolean; --true when receiving an 

acknowledgement

     end Vars

     Actions = {start, encypte, send, none};

     Protocol:

         pw=empty ：{start};

         pw=num1 and prk=num2 and enpw=empty: 

{encrypt};

         enpw=num3 and ack=false: {send};

         other : {none};

     end Protocol

     Evolution:

          pw=num1 if (pw=empty) and (Alice.Action=start);

          prk=num2 if (prk=empty) and (Bob.Action=send-prk)  

and (Environment.Action=R)

          enpw=num3 if (enpw=empty) and 

(Alice.Action=encrypt)

          ack=true if (ack=false) and (Bob.Action=send-ack) 

and (Environment.Action=R)

     end Evolution

end Agent

Agent Bob

     Vars:

          prk : {empty, num4} --private key

          puk : {empty, num5} --public key

          enpw : {empty, num6} --encrypted password

          pw : {empty, num7} --password

     end Vars

     Actions={start, send-prk, decrypt, send-ack, 

none};

     Protocol:

         prk=empty and puk=empty : {start};

         prk=num4 and enpw=empty :{send-prk};

         puk=num5 and enpw=num6 and pw=empty : 

{decrypt};

         pw=num7 : {send-ack};

         other : {none};

     end Protocol

     Evolution:

         prk=num4 and puk=num5 if (prk=empty) and 

(puk=empty) and (Bob.Action=start);

         enpw=num6 if (enpw=empty) and 

(Alice.Action=send) and (Environment.Action=S);

         pw=num7 if (puk=num5) and (enpw=num6) and 

(pw=empty) and (Bob.Action=decrypt);

     end Evolution

end Agent

Agent Environment

     Vars:

          state : {S, R}; --S: the transmission 

from Alice to Bob, R: the transmission from 

Bob to Alice

     end Vars

     Actions={S, R};

     Protocol:

         state=S : {S. R};

         state=R : {S, R};

     end Protocol

     Evolution:

         state=S if (Environment. Action=S);

         state=R if (Environment. Action=R);

     end Evolution

end Agent

InitStates

     (Alice.pw=empty) and 

(Alice.prk=empty) and (Alice.enpw=empty) 

and (Alice.ack=false) and (Bob.prk=empty) 

and (Bob.puk=empty) and 

(Bob.enpw=empty) and (Bob.pw=empty) 

and (Environment.state=S) or 

(Environment.state=R)

end InitStates

         

Fig. 2. The program of ISPL describing Alice-Bob Protocol.

observable by all agents and local variables observable by
two or more agents. In other words, the environment agent
is in charge of the interaction and collaboration of all agents.
Therefore, KPN has better scalability and can be expanded
more easily compared to ISPL of MCMAS, especially when
we do experiments facing hundreds of or even more than a
thousand agents. Of course, the environment agent in Fig. 2
is simple because there is no common variable. Later, we
will use the example of Dining Cryptographers Protocol to
show the complexity of one environment agent.

The rules of enabling and firing transitions of KPN are
the same as those of Petri nets described in Section 2.
Therefore, we can produce the reachability graph for any
KPN. In order to reflect the epistemic evolution of each
agent (e.g., whether an agent has the same knowledge at
two different markings?), we define an equivalence relation
for each agent based on the reachability graph and thus we
can verify CTLK using them.

3.2 Reachability Graph with Equivalence Relations

Given a marking M and a set of places P in a KPN, we
use M � P to denote the projection of M onto P , i.e., M �
P = {p ∈ P | M(p) > 0}. For each agent a ∈ A, we use
Pa to represent those basic knowledge places w.r.t. agent a,
i.e., Pa = {p ∈ PK | a ∈ L(p)}. Then M � Pa = {p ∈
Pa | M(p) > 0} denotes the basic knowledges owned by
agent a at M . For a set of agents Γ ⊆ A, we use PΓ to
represent those basic knowledeg places w.r.t. Γ, i.e., PΓ =
{p ∈ PK | ∃a ∈ Γ : a ∈ L(p)}. Then M � PΓ = {p ∈
PΓ | M(p) > 0} denotes the basic knowledges owned by at
least one agent in Γ at M . For example in Fig.1, M = {p1,2,
p1,8, p2,1} is a reachable marking from M0 by firing t1,1,
and all basic knowledges at M are M � PA = {p1,8} which
means that Alice has got a password but Bob has no any

basic knowledge at M (i.e., Pa2 = {p2,8, p2,9, p2,10, p2,11}
and M � Pa2 = ∅).

Definition 2 (RGER). Given a KPN Σ = (PS , PK , T , F , M0,
A, L) where A = {a1, a2, · · · , am}, its RGER ∆ = (M, F,
∼a1

, ∼a2
, · · · , ∼am

) is defined as follows:

1. (M, T , F) is the reachability graph of Petri net (PS ∪ PK ,
T , F , M0); and

2. ∀a ∈ A, ∼a⊆ M×M is an equivalence relation w.r.t. agent
a such that ∀M , M ′ ∈ M, M ∼a M ′ iff M � Pa =
M ′ � Pa.

In the definition of RGER, we omit transition names on
all directed edges because they are not related to our model
checking. In fact, F ⊆ M×M is the set of all directed edges
such that (M , M ′) ∈ F iff ∃t ∈ T such that M [t〉M ′.

For each agent, an equivalence relation is constructed
based on the reachability graph. If an agent owns the same
basic knowledges at two markings, then the two markings
are indistinguishable from the agent’s epistemic perspec-
tive, i.e., they are equivalent w.r.t. the agent. We call it
as an equivalence relation since it is reflexive, symmetric
and transitive. Therefore, those markings that are mutu-
ally equivalent w.r.t. an agent form an equivalence class of
knowledge (equivalence class for short), and an equivalence
relation divides M into a group of equivalence classes. An
equivalence class Q w.r.t. an equivalence relation ∼a means
that at any marking in Q, agent a owns the same basic
knowledges, i.e., ∀M , M ′ ∈ Q : M � Pa = M ′ � Pa.

Fig. 3 shows the reachability graph of the KPN in
Fig. 1. Equivalence relation ∼a1

is shown in Fig. 4 where
an equivalence class is represented in the same color. For
example, {M1, M3, M4, M5, M6, M7} is an equivalence
class w.r.t. ∼a1

which means that agent a1 only owns one
basic knowledge p1,8 at these markings (i.e., Alice only
knows that she has got a password). Similarly, Fig. 5 shows
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M0={p1,1, p2,1}
t1,1

M1={p1,2, p1,8, p2,1}

M2={p1,1, p2,2, p2,8, p2,9}

M3={p1,3, p1,8, p2,1, p1}

M4={p1,2, p1,8, 

p2,2, p2,8, p2,9}

M7={p1,3, p1,8, 

p2,4, p2,8, p2,9, p2}

M5={p1,3, p1,8, 

p2,2, p2,8, p2,9, p1}

M6={p1,3, p1,8, 

p2,3, p2,8, p2,9}

M8={p1,4, p1,8, 

p1,9, p2,4, p2,8, p2,9}

M9={p1,5, p1,8, p1,9, 

p1,10, p2,4, p2,8, p2,9}

M14={p1,7, p1,8,

p1,9, p1,10, p1,11, p2,7, p2,8, 

p2,9, p2,10, p2,11}

M13={p1,6, p1,8, 

p1,9, p1,10, p2,7, p2,8, p2,9, 

p2,10, p2,11, p4}

M10={p1,6, p1,8, p1,9, 

p1,10, p2,4, p2,8, p2,9, p3}

M11={p1,6, 

p1,8, p1,9, p1,10, p2,5, p2,8, 

p2,9, p2,10}

M12={p1,6, p1,8,

 p1,9, p1,10, p2,6, p2,8, p2,9, 

p2,10, p2,11}

t2,1

t1,2

t2,1

t1,1

t2,1

t1,2 t2,2

t2,3

t1,3

t1,4

t1,5

t2,4t2,5t2,6t1,6

Fig. 3. The reachability graph of the KPN in Fig. 1.

M0={p1,1, p2,1}
t1,1

M1={p1,2, p1,8, p2,1}

M2={p1,1, p2,2, p2,8, p2,9}

M3={p1,3, p1,8, p2,1, p1}

M4={p1,2, p1,8, 

p2,2, p2,8, p2,9}

M7={p1,3, p1,8, 

p2,4, p2,8, p2,9, p2}
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p2,2, p2,8, p2,9, p1}

M6={p1,3, p1,8, 

p2,3, p2,8, p2,9}

M8={p1,4, p1,8, 

p1,9, p2,4, p2,8, p2,9}

M9={p1,5, p1,8, p1,9, 

p1,10, p2,4, p2,8, p2,9}

M14={p1,7, p1,8,

p1,9, p1,10, p1,11, p2,7, p2,8, 

p2,9, p2,10, p2,11}

M13={p1,6, p1,8, 

p1,9, p1,10, p2,7, p2,8, p2,9, 

p2,10, p2,11, p4}

M10={p1,6, p1,8, p1,9, 

p1,10, p2,4, p2,8, p2,9, p3}

M11={p1,6, 

p1,8, p1,9, p1,10, p2,5, p2,8, 

p2,9, p2,10}

M12={p1,6, p1,8,

 p1,9, p1,10, p2,6, p2,8, p2,9, 

p2,10, p2,11}

t2,1

t1,2

t2,1

t1,1

t2,1

t1,2 t2,2

t2,3

t1,3

t1,4

t1,5

t2,4t2,5t2,6t1,6

Fig. 4. Equivalence relation ∼a1 in Fig. 3.

M0={p1,1, p2,1}
t1,1

M1={p1,2, p1,8, p2,1}

M2={p1,1, p2,2, p2,8, p2,9}

M3={p1,3, p1,8, p2,1, p1}

M4={p1,2, p1,8, 

p2,2, p2,8, p2,9}

M7={p1,3, p1,8, 

p2,4, p2,8, p2,9, p2}

M5={p1,3, p1,8, 

p2,2, p2,8, p2,9, p1}

M6={p1,3, p1,8, 

p2,3, p2,8, p2,9}

M8={p1,4, p1,8, 

p1,9, p2,4, p2,8, p2,9}

M9={p1,5, p1,8, p1,9, 

p1,10, p2,4, p2,8, p2,9}

M14={p1,7, p1,8,

p1,9, p1,10, p1,11, p2,7, p2,8, 

p2,9, p2,10, p2,11}

M13={p1,6, p1,8, 

p1,9, p1,10, p2,7, p2,8, p2,9, 

p2,10, p2,11, p4}

M10={p1,6, p1,8, p1,9, 

p1,10, p2,4, p2,8, p2,9, p3}

M11={p1,6, 

p1,8, p1,9, p1,10, p2,5, p2,8, 

p2,9, p2,10}

M12={p1,6, p1,8,

 p1,9, p1,10, p2,6, p2,8, p2,9, 

p2,10, p2,11}

t2,1

t1,2

t2,1

t1,1

t2,1

t1,2 t2,2

t2,3

t1,3

t1,4

t1,5

t2,4t2,5t2,6t1,6

Fig. 5. Equivalence relation ∼a2 in Fig. 3.

equivalence relation ∼a2
.

Based on the notions and notations of set and binary
relation, we can define union ∼a ∪ ∼b, intersection ∼a ∩ ∼b

and transitive closure (∼a ∪ ∼b)
+ of two given equiva-

lence relations ∼a and ∼b. Consequently, ∼a ∩ ∼b and
(∼a ∪ ∼b)

+ are still equivalence relations; but ∼a ∪ ∼b is
not necessarily an equivalence relation because it is reflexive
and symmetric but not necessarily transitive. For example,
given equivalence relation ∼a1

in Fig. 4 and equivalence
relation ∼a2

in Fig. 5, we have that M0 (∼a1
∪ ∼a2

) M2

because of M0 ∼a1
M2; and M2 (∼a1

∪ ∼a2
) M4 because

of M2 ∼a2
M4. However, (M0, M4) 6∈ (∼a1

∪ ∼a2
)

because of (M0, M4) 6∈ ∼a1
and (M0, M4) 6∈ ∼a2

, but
M0 (∼a1

∪ ∼a2
)+ M4 because of M0 ∼a1

M2 and
M2 ∼a2

M4. Besides, M1 (∼a1
∩ ∼a2

) M3 because of
M1 ∼a1

M3 and M1 ∼a2
M3. These operations of binary

relation are important for our definitions of epistemic oper-
ators in CTLK.

4 SYMBOLIC ANALYSIS OF KPN USING OBDD
For reachability graph, there is the state explosion problem.
We use OBDD to deal with it. This section first recalls
OBDD [3], [46], then presents our heuristic method of con-
structing a static variable order in OBDD and finally illus-
trates our OBDD-based symbolic approaches of producing
and encoding the states and relations of an RGER.

For an OBDD, a key factor is the order of variables in
it since the order directly decides the scale of the related
diagram (tree) and affects the compressed result. Based on
the structure and initial marking of a KPN, we propose a
heuristic method of ordering variables in OBDD, and thus
can reduce the time and space complexity of producing,
encoding and exploring the states of an RGER.

An OBDD can symbolically represent all states of a KPN
and thus we can significantly reduce the space of storing
those states based on a good variable order. Our model
checking algorithms (which will be introduced in Section
6) require a part (but not all) of transition or equivalence
relations of states in a verification process. To carry out these
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tasks, we need to utilize OBDD to compute the predecessors
or equivalence classes of a given set of states, which will also
be introduce in this section.

4.1 Ordered Binary Decision Diagrams
OBDD is recalled in this section. For more details, one may
refer to [3]. Here, we only review some of its definitions
for readability, but some examples of OBDD can be seen in
Section 8.

A Binary Decision Diagram (BDD) is a rooted, directed,
and acyclic graph with two sink nodes labelled by 0 or 1
that represent Boolean functions 0 and 1, respectively. Each
non-sink node is labelled with a Boolean variable υ and has
two out-edges labelled by 1 (that represents then) or 0 (that
represents else). Each non-sink node represents a Boolean
function corresponding to its 1-edge if υ = 1 or a Boolean
function corresponding to its 0-edge if υ = 0.

An OBDD is a BDD where all variables are totally
ordered and each path from source node to a sink node
visits these variables in the ascending order. A Reduced
OBDD (ROBDD) is an OBDD where each node represents a
distinct Boolean function and no variable node has identical
1–edge or 0–edge. ROBDD has some important properties.
It provides compact representations of Boolean functions.
Besides, there are efficient algorithms for performing all
kinds of logical operations on ROBDD. They are all based
on such a crucial fact that a ROBDD has a canonical repre-
sentation of a Boolean function: given a fixed variable order,
there is exactly one ROBDD representing it for any Boolean
function. Notice that we use the ROBDD technique in this
paper, but for readability we still call it as OBDD in the
next content.

The OBDD technique can encode large sets of states with
small data structures and enable efficient manipulation of
those sets. However, it is known that the size of an OBDD
for a Boolean function seriously depends on the chosen
variable order [43] and an improper variable order can still
result in the node explosion problem, i.e., the number of
nodes in an OBDD grows exponentially with the number
of variables. To find an optimal variable order is still an
NP-hard problem [26], and thus a policy of dynamically
reordering variables is often taken. For example, MCMAS
takes such a policy so that it often has a very high time
complexity since it frequently looks for a good compromise
between continuous variable reordering and efficiency of
reducing memory-consuming. In this paper, we uses a static
variable order instead of dynamically reordering variables.
The order is constructed based on the structure and initial
marking of a KPN. Therefore, our method of producing and
exploring a huge state space encoded by OBDD can save
lots of time. In this paper, we use the OBDD-package in the
CUDD library [46] developed by Fabio Somenzi at Colorado
University.

4.2 A Heuristic Method of Ordering Variables in OBDD
In this paper, we propose a heuristic method to produce a
static variable (i.e., place) order based on the structure and
initial marking of a KPN.

In an OBDD, a set of states are encoded by a Boolean
function composed of variables xp1 , xp2 , · · · and xpn . Firing

Algorithm 1 Order(PS ∪ PK)

Input: KPN Σ
Output: A static variable order in OBDD
1: S = ∅;
2: i = 0;
3: while (S 6= PS ∪ PK) do
4: for (each p ∈ (PS ∪ PK) \ S) do
5: if (M0(p) == 1) then
6: yi = xp;
7: S = S ∪ {p};
8: i = i+ 1;
9: break;

10: end if
11: end for
12: for (each p ∈ (PS ∪ PK) \ S) do
13: if (∃t ∈ T : p ∈ t• ∧ •t ⊆ S) then
14: yi = xp;
15: S = S ∪ {p};
16: i = i+ 1;
17: end if
18: end for
19: end while
20: return y1 < y2 < · · · < y|PS∪PK |;

a transition t will change the assignments of these places
that belong to •t ∪ t• (i.e., xp becomes xp or xp becomes
xp). It will spend much time for OBDD to compute a
new Boolean function if the distance between two value-
changed variables in a variable order is long. Therefore, we
can consider the structural and behavioral characteristics of
Petri nets and thus reasonably arrange the order of places.

Two places are dependent if there is a transition which
affects them [37]. Then we can conclude that the shorter the
average distance among all dependent places in a variable
order, the better effect of compacting the state space. An
MAS is a modular system where an agent corresponds to
a module and different agents interact/collaborate at some
points. In a KPN modelling an MAS, a subnet corresponds
to one agent, and different subnets are combined via some
common places and thus are loosely coupled. Therefore, we
can propose a heuristic method to construct a place (i.e.,
variable) order. It is described in Algorithm 1. First, let y1 <
y2 < · · · < y|PS∪PK |, S be the set of places already assigned
to some variables and S = ∅ initially. Second, we randomly
choose an unassigned variable yi and a marked place p at
initial marking (p 6∈ S) and let yi = xp. Third, we find
those places (say pj , pk, · · · ) that are not in S but each of
them is marked at some marking reached from S (S is seen
as a marking) by firing some transition. Let yi+1 = xpj

,
yi+2 = xpk

, · · · , and we add these places to S. We repeat
the third step until no place is marked. Then we return the
second step and repeat them until S = PS ∪ PK , which
means that all places have been assigned. Since |PS ∪PK | is
limited, Algorithm 1 can be terminated in O(|PS ∪ PK |2).

The order outputted by our algorithm can guarantee that
those dependent places in the same subnet (agent) are as
close as possible. Due to the feature of loose coupling of
different subnets, our algorithm enables that the average
distance among all dependent places in this order is short
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enough so that it can guarantee a good effect of compacting
the state space. Later, our experiments will substantiate
this idea.

4.3 Producing and Encoding All States of a KPN Based
on OBDD

We now present our symbolic approach of producing and
encoding all states of a KPN.

Given a KPN, since it is safe, we can use xp or xp to
represent a place p and then a marking M is encoded by
logical operation AND (i.e., symbol · in Algorithm 2) of
places p1, p2, · · · , pn. The assignment of these places is
defined as: p = xp if M(p) = 1, and p = xp if M(p) = 0.
For example, if there is a KPN where P = {p1, p2, p3,
p4}, then marking M = {p1, p3} can be represented by
xp1
· xp2

· xp3
· xp4

(or xp1
xp2

xp3
xp4

for short), which is
true only if xp1

= xp3
= 1 ∧ xp2

= xp4
= 0. Similarly,

a set of markings can be encoded by logical operation
OR (i.e., symbol + in Algorithm 2) of the corresponding
Boolean functions. For example, if M1 = xp1 xp2

xp3
xp4

and M2 = xp1
xp2

xp3
xp4

, then {M1, M2} = M1 + M2 =
xp1

xp2
xp3

xp4
+ xp1

xp2
xp3

xp4
= xp1

xp2
xp4

. It is true
only if xp1

= 1 ∧ xp2
= xp4

= 0, but the value of xp3
is

arbitrary, i.e., 1 or 0. It is worthy to note that when a variable
does not occur in a Boolean expression, this expression
represents such all markings that the place corresponding
to the variable is marked or unmarked. These notations and
operations refer to the work in [39].

Based on the advantage that an OBDD can efficiently
manipulate sets, we can consider the firing of transitions at
a set of markings rather than using the traditional one-by-
one marking-producing method. Given a subset Mx ⊆ M
and a transition t ∈ T , we define two functions:

Enable(t,Mx) = {M ∈ Mx |M [t〉}

which is the markings in Mx that can enable transition t;

Img(t,Mx) = {M ∈ M | ∃M ′ ∈ Mx : M ′[t〉M}

which is the markings reachable from Mx by firing t.
Based on the rules of enabling transitions, we can easily

calculate Enable(t, Mx), i.e.,

Enable(t,Mx) = Mx ·
∏
p∈•t

xp .

Then we can easily calculate Img(t, Mx) based on the rules
of firing transitions. If Enable(t, Mx) = ∅, then Img(t,
Mx) = ∅. Otherwise, we modify the assignment of places
in Enable(t, Mx), i.e., p = xp for each p ∈ •t \ t•, p = xp for
each p ∈ t• \ •t, and p is unchanged for other cases. Finally,
the modified Enable(t, Mx) is Img(t, Mx).

Based on the function Img, we design Algorithm 2 to
produce all reachable markings of a KPN encoded by an
OBDD. First of all, M0 is represented by the above encoding
rule and the reached markings Reached = {M0} initially.
Second, the new markings New are produced by using
function Img for each transition t ∈ T and then Reached
is updated by Reached ∪ New. We repeat the second
step until no new marking is produced. Finally, Reached
represents all reachable markings encoded by an OBDD.

Algorithm 2 Mark(Σ)

Input: KPN Σ
Output: All markings M encoded by OBDD
1: M0 = true;
2: for (each p ∈ PS ∪ PK) do
3: if (M0(p) == 1) then
4: M0 = M0 · xp;
5: else M0 = M0 · xp;
6: end if
7: end for
8: Reached = From = M0;
9: repeat

10: for (each t ∈ T ) do
11: From = From+ Img(t, From);
12: end for
13: New = From \Reached;
14: From = New;
15: Reached = Reached+New;
16: until (New == 0);
17: return Reached;

Algorithm 3 Pre(M, Mx)

Input: All markings M and a set of markings Mx

Output: {M ∈ M | ∃t ∈ T ∧ ∃M ′ ∈ Mx : M [t〉M ′}
1: M1 = ∅;
2: for (each t ∈ T ) do
3: M2 = Mx ·

∏
p∈t•

xp;

4: if (M2 6= ∅) then
5: M2 is updated such that ∀p ∈ PS ∪ PK

6:

p =

{
xp if p ∈ t• \ •t
xp if p ∈ •t \ t•

;

7: M1 = M1 + M2;
8: end if
9: end for

10: return M ·M1;

4.4 Computing Predecessors and Equivalence Classes
of A Given Set of States

Based on the output of Algorithm 2, we define functions
Pre(M, Mx) to compute the predecessors of markings in
Mx and Eq(M, Mx, a) to compute those equivalent mark-
ings to at least one marking in Mx w.r.t. agent a, i.e., the
equivalence classes of markings in Mx. They are described
in Algorithms 3 and 4, respectively.

In fact, computing the predecessors of Mx in a net is
to compute the successors of Mx in the inversed net of the
original net. Here the inversed net of a net (P , T , F ) is (P ,
T , F−1), i.e., the direction of each arc of the original net
is inversed. But the following facts should be noted. First,
Algorithm 3 does not use the inversed net of a KPN, and
we only utilize this concept to explain this algorithm. In
fact, what we use in the algorithm is the input places of
input transitions of places occurring in Mx. Second, every
predecessor of Mx is in these markings computed through
this method, but some of these computed markings are
possibly not reached in the KPN and thus they should be
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Algorithm 4 Eq(M, Mx, a)

Input: All markings M, a set of markings Mx and an agent a
Output: {M ∈ M | ∃M ′ ∈ Mx : M ∼a M

′}
1: M1 = M2 = Mx;
2: for (each p ∈ (PS ∪ PK) \ Pa) do
3: M1 is updated by p = xp;
4: M2 is updated by p = xp;
5: M3 = M1 + M2;
6: M1 = M2 = M3;
7: end for
8: return M ·M3;

removed. For removing these fake markings, we only need
to implement a set intersection operation of all reachable
markings and the computed ones, i.e., the OBDD operation
M ·M1 in Algorithm 3. For example, Fig. 6 shows a simply
net and its inversed net. When Fig. 6 (a) is initialized by
marking {p1}, there are two reachable markings, i.e., M0 =
{p1} = xp1

xp2
xp3

and M1 = {p3} = xp1
xp2

xp3
where

M1 is the successor of M0 and M0 is the predecessor of M1.
However, if we do not consider Line 10 in Algorithm 3, i.e.,
the final M1 is viewed as the computed predecessors, then
we have that Pre(M, {M1}) = xp1

xp2
xp3

+ xp1
xp2

xp3
,

i.e., it corresponds to the successors {p1} and {p1, p2} of
marking {p3} in the inversed net in Fig. 6 (b). Obviously,
marking xp1

xp2
xp3

= {p1, p2} is not the predecessor of M1

in Fig. 6 (a) when {p1} is the initial marking of this net.
M · M1 = xp1

xp2
xp3

is the right result. Algorithm 3 only
executes |T | loops and each loop is to execute some simple
operations of OBDD.

It is simple to compute the equivalence classes of Mx

w.r.t. agent a according to the operations of OBDD. Just
stated in Section 4.3, if a variable does not occur in a Boolean
expression, the expression represents such all markings in
which the place corresponding to the variable is marked
or unmarked. Therefore, we only need to eliminate from
Mx those variables corresponding to the places that are
not in Pa, which represents all possible markings that
are equivalent to at least one marking in Mx w.r.t. agent
a. However, some of these markings computed by this
method are possibly not reached in the KPN, and thus they
should be removed. Similar to Algorithm 3, for removing
these fake markings, we also implement a set intersection
operation of all reachable markings and the computed
ones, i.e., the OBDD operation M · M3 in Algorithm 4.
For example, let M0 = xp1

xp2
xp3

, M1 = xp1
xp2

xp3
,

M2 = xp1
xp2

xp3
, Pa = {p1}, M = {M0, M1, M2} =

xp1
xp2

xp3
+ xp1

xp2
xp3

+ xp1
xp2

xp3
and Mx = {M0,

M2} = xp1
xp2

xp3
+ xp1

xp2
xp3

. Then we compute Eq(M,
Mx, a). First, we eliminate variables xp2

and xp3
from Mx,

i.e., M3 = xp1
+ xp1

. Obviously, M3 represents 8 markings
but some markings such as xp1

xp2
xp3

are not what we
want. M · M3 = xp1

xp2
xp3

+ xp1
xp2

xp3
+ xp1

xp2
xp3

is
the right result. Algorithm 4 executes at most |P | loops and
each loop is to execute some simple operations of OBDD.

Obviously, Algorithms 1–4 are all based on the structure
characteristics of Petri nets and only use the inputs or
outputs of the related places or transitions. The combination
of the OBDD technique and the structure characteristics of

p1

t1

t2

p2

p3 p1

t1

p2

p3

(a) (b)

t2

Fig. 6. (a) A simple net: when it is initialized by marking {p1}, it has
two reachable markings, i.e., {p1} and {p3}; (b) the inversed net of (a):
when it is initialized by marking {p3}, it has three reachable markings,
i.e., {p3}, {p1} and {p1, p2}.

KPN guarantees that our model checking algorithms can
obtain good performances.

5 CTLK
We use CTLK [56] as the specification language of com-
plex knowledges. CTLK extends CTL [5], [13], [16] with
epistemic operators so as to reason about the knowledge
of agents in MAS. In general, when a kind of modelling
language is used to model MAS, the syntax of CTLK is based
on this language (e.g., ISPL and KPN) and the induced
model (e.g., Kripke model of ISPL and RGER of KPN) is
used to explain the semantics of CTLK. Because we use KPN
to model MAS, the syntax of CTLK is based on KPN and the
semantics of CTLK is based on RGER.

Definition 3 (Syntax of CTLK). Given a KPN Σ = (PS , PK ,
T , F , M0, A, L), the syntax of CTLK is defined by the following
Existential Normal Form (ENF) expressions:

φ ::= true | p | ¬φ | φ ∧ φ | EX φ | EGφ |
E (φUφ) | Ka | EΓ φ | DΓ φ | CΓ φ

where p ∈ PS ∪ PK , a ∈ A and Γ ⊆ A.

Other basic modalities derived from the above ones are
defined as follows:

– deadlock
def
= ¬EX true;

– φ1 ∨ φ2
def
= ¬(¬φ1 ∧ ¬φ2);

– φ1 → φ2
def
= ¬φ1 ∨ φ2;

– AX φ
def
= ¬EX ¬φ ∧ ¬deadlock;

– A (φ1 U φ2)
def
= ¬E (¬φ1 U (¬φ1 ∧ ¬φ2)) ∧ ¬EG(¬φ1)

– EF φ
def
= E (trueU φ);

– AGφ
def
= ¬EF ¬φ;

– AF φ
def
= A (trueU φ).

Given an RGER ∆ = (M, F, ∼a1
, ∼a2

, · · · , ∼am
) and a

marking M ∈ M, a computation of ∆ starting from M is a
maximal sequence of markings, i.e., ω = (M0,M1, · · · ) such
that M0 = M and ∀i ∈ N: (M i, M i+1) ∈ F. A computation
may be finite or infinite. For a finite computation ω = (M0,
M1, · · · , Mn), ω(i) = M i for each i ≤ n, and ω(i) = ∅
for each i > n. For an infinite computation ω = (M0, M1,
· · · ), ω(i) = M i for each i ∈ N. Ω(M) denotes the set of all
computations starting from M .

Since a KPN is safe, we can use one place to represent
one atomic proposition in CTLK. A marked place means
the value true of the corresponding atomic proposition and
otherwise the value false.
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Definition 4 (Semantics of CTLK). Given an RGER ∆ = (M,
F,∼a1

,∼a2
, · · · ,∼am

), a marking M ∈ M and a CTLK formula
φ, (∆, M) |= φ denotes that φ is true at the marking M in ∆.
∆ can be omitted when no ambiguity takes place. The relation |=
is defined inductively as follows:

– M |= true;
– M |= p iff M(p) = 1;
– M |= ¬φ iff M 2 φ;
– M |= φ1 ∧ φ2 iff M |= φ1 and M |= φ2;
– M |= EX φ iff there exists ω ∈ Ω(M) such that
ω(1) 6= ∅ ∧ ω(1) |= φ;

– M |= EGφ iff there exists ω ∈ Ω(M) such that for each
i ∈ N, if ω(i) 6= ∅, then ω(i) |= φ;

– M |= E (φ1 U φ2) iff there exists ω ∈ Ω(M) and n ∈ N
such that ω(n) 6= ∅ ∧ ω(n) |= φ2 and ω(j) |= φ1 for each
j ∈ {0, 1, · · · , n− 1};

– M |= Ka φ iff ∀M ′ ∈ M : M ′ ∼a M ⇒M ′ |= φ;

– M |= EΓ φ iff ∀M ′ ∈ M : M ′
( ⋃

a∈Γ
∼a

)
M ⇒

M ′ |= φ;

– M |= DΓ φ iff ∀M ′ ∈ M : M ′
( ⋂

a∈Γ
∼a

)
M ⇒

M ′ |= φ;

– M |= CΓ φ iff ∀M ′ ∈ M : M ′
( ⋃

a∈Γ
∼a

)+

M ⇒

M ′ |= φ.

Definition 5 (Validity). A CTLK formula φ is valid in KPN Σ
(denoted Σ |= φ) if the RGER ∆ of Σ satisfies (∆, M0) |= φ,
i.e., φ is true at the initial marking of Σ.

As mentioned above, CTLK is an extension of CTL
since epistemic operators are considered in it. From Def. 4
we can see that the semantics of the first seven proposi-
tions/operators are the same with those of CTL [5], [13],
[16]. Here, we only explain the last four epistemic operators.

The semantics of Ka means that agent a gains the (basic
or complex) knowledge φ (i.e., he knows that φ is true) at
marking M if and only if he can derive that φ is true at each
marking that has the same knowledge with M for agent a.
In other words, knowledge φ is true at the equivalence class
of marking M w.r.t. agent a.

The semantics of EΓ means that every agent in a set of
agents Γ gains the knowledge φ at marking M , i.e., ∀a ∈ Γ :

M |= Ka φ. Obviously, Kaφ
def
= E{a}φ.

The semantics ofDΓ means that φ is a distributed knowl-
edge in a set of agents Γ at marking M , i.e., M |= KaΓ

φ
where aΓ is viewed as a special agent who owns all basic
knowledges of Γ. In other words, the basic knowledges of
each agents in Γ need be collected together to gain knowl-
edge φ. For one agent in Γ, knowledge φ is unknowable.

The semantics of CΓ means that φ is a common knowl-
edge in a set of agents Γ at marking M , i.e., ∀ai1 ,
ai2 , ai3 , · · · ∈ Γ : M |= Kai1

φ ∧ Kai1

(
Kai2

φ
)
∧

Kai1

(
Kai2

(
Kai3

φ
))
∧· · · . In other words, knowledge φ can

be arbitrarily transitive among Γ.
For a KPN, each agent can gain some basic knowledges

when its basic knowledge places are marked. Therefore, for
each a ∈ A and each p ∈ Pa,M |= Ka p holds iffM(p) = 1;
and similarly, for each p ∈ PK , M |= EL(p) p holds iff
M(p) = 1.

Algorithm 5 Sat(Σ, M, φ)

Input: KPN Σ, all markings M and CTLK formula φ
Output: {M ∈ M |M |= φ}
1: if (φ is true) then
2: return M;
3: end if
4: if (φ is a place) then
5: return {M ∈ M |M(φ) = 1};
6: end if
7: if (φ is ¬φ1) then
8: return {M ∈ M |M 6∈ Sat(Σ, M, φ1)};
9: end if

10: if (φ is φ1 ∧ φ2) then
11: return Sat(Σ, M, φ1) ∩ Sat(Σ, M, φ2);
12: end if
13: if (φ is EX φ1) then
14: return SatEX(φ1);
15: end if
16: if (φ is EGφ1) then
17: return SatEG(φ1);
18: end if
19: if (φ is E(φ1 U φ2)) then
20: return SatEU (φ1, φ2);
21: end if
22: if (φ is Ka φ1) then
23: return SatK(φ1, a);
24: end if
25: if (φ is EΓ φ1) then
26: return SatE(φ1, Γ);
27: end if
28: if (φ is DΓ φ1) then
29: return SatD(φ1, Γ);
30: end if
31: if (φ is CΓ φ1) then
32: return SatC(φ1, Γ);
33: end if

For an MAS, can an agent (or a set of agents) derive
some complex knowledges based on his (or their) basic
knowledges? For example in Fig. 1, after the protocol is
executed, do Alice and Bob both know that each one has
got the password? CTLK formula AG ((p1,7 ∧ p2,7) →
E{a1,a2} (p1,8 ∧ p2,11)) specifies the complex knowledge.
Furthermore, is it a common knowledge for Alice and
Bob that each other has got the password? CTLK formula
AG ((p1,7 ∧ p2,7) → C{a1,a2} (p1,8 ∧ p2,11)) specifies this
case. Our model checking method can decide that the first
formula is valid but the second one is not, i.e., after the
protocol is executed, it is not a common knowledge for Alice
and Bob that each other has got the password even though
they both know it.

6 MODEL CHECKING ALGORITHMS AND MODEL
CHECKER OF CTLK

In this section, we introduce our model checking algorithms
and then show our model checker KPNer.
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Algorithm 6 SatEX (φ)

1: X = Sat(Σ, M, φ);
2: return Pre(M, X);

Algorithm 7 SatEG (φ)

1: X1 = M;
2: Y1 = Z = Sat(Σ, M, φ);
3: while (X1 6= Y1) do
4: X1 = Y1;
5: Y1 = Z ∩ Pre(M, Y1);
6: end while
7: X2 = ∅;
8: Y2 = Z ∩ (M \ Pre(M, M));
9: while (X2 6= Y2) do

10: X2 = Y2;
11: Y2 = Y2 ∪ (Z ∩ Pre(M, Y2));
12: end while
13: return X1 ∪X2;

Algorithm 8 SatEU (φ1,φ2)

1: X = ∅;
2: Y = Sat(Σ, M, φ2);
3: Z = Sat(Σ, M, φ1);
4: while (X 6= Y ) do
5: X = Y ;
6: Y = Y ∪ (Z ∩ Pre(M, Y ));
7: end while
8: return X ;

Algorithm 9 SatK(φ, a)

1: X = Sat(Σ, M, ¬φ);
2: return M \ Eq(M, X , a);

6.1 Model Checking Algorithms of CTLK
Since every CTLK formula can be translated into its ENF ex-
pression [6], we just need to give the algorithms of verifying
those formulas in ENF.

Our algorithms extend those of CTL in [16]. Given a
KPN Σ and a CTLK formula φ, the basic verifying procedure
mainly includes three steps:

1. All markings M in the RGER (i.e., Mark(Σ)) are pro-
duced by Algorithm 2;

2. The markings satisfying φ (i.e., Sat(Σ, M, φ)) can be
computed recursively based on those transition and
equivalence relations in the RGER related to φ that can
be computed by Algorithms 3 and 4;

3. It follows that Σ |= φ if M0 ∈ Sat(Σ, M, φ).
Algorithm 5 describes a high-level structure of recur-

sively computing Sat(Σ, M, φ).
The algorithms SatEX , SatEG and SatEU of temporal

operators EX , EG and EU are described in Algorithms 6,
7 and 8, respectively. The algorithms SatK, SatE , SatD and
SatC of epistemic operators K, E , D and C are described in
Algorithms 9, 10, 11 and 12, respectively.

Algorithm 6 shows the process of computing SatEX (φ).
First, we compute Sat(Σ, M, φ). Second, we use function
Pre to compute all predecessors of Sat(Σ, M, φ) and these
predecessors is SatEX (φ).

Algorithm 10 SatE(φ, Γ)

1: X = Sat(Σ, M, ¬φ);
2: Y = ∅;
3: for (each a ∈ Γ) do
4: Y = Y ∪ Eq(M, X , a);
5: end for
6: return M \ Y ;

Algorithm 11 SatD(φ, Γ)

1: X = Sat(Σ, M, ¬φ);
2: Y = M;
3: for (each a ∈ Γ) do
4: Y = Y ∩ Eq(M, X , a);
5: end for
6: return M \ Y ;

Algorithm 12 SatC(φ, Γ)

1: X = M;
2: Y = Sat(Σ, M, ¬φ);
3: while (X 6= Y ) do
4: X = Y ;
5: for (each a ∈ Γ) do
6: Y = Y ∪ Eq(M, Y , a);
7: end for
8: end while
9: return M \ Y ;

Algorithm 13 Model checking algorithm of CTLK
Input: KPN Σ and CTLK formula φ
Output: Σ |= φ is true or false
1: M = Mark(Σ);
2: if (M0 ∈ Sat(Σ, M, φ)) then
3: return true;
4: end if
5: return false;

Algorithm 7 shows the process of computing SatEG (φ).
There are two cases: the computations without deadlock
and the computations with deadlock. For the former, we
first compute Sat(Σ, M, φ) and then use function Pre to
iteratively compute Sat(Σ, M, φ ∧ EX φ), Sat(Σ, M, φ ∧
EX (φ∧EX φ)), · · · until the result no longer changes. Then
the final result satisfies EGφ. For the latter, we use function
Pre to iteratively compute Sat(Σ, M, φ ∧ ¬(EX true)),
Sat(Σ, M, φ∧EX(φ∧¬(EX true))), · · · until the result no
longer changes. Notice that ¬(EX true) ≡ deadlock. Then
the union of these sets satisfies EGφ. Finally, the union of
the two cases is SatEG (φ).

Algorithm 8 shows the process of computing SatEU (φ1,
φ2). First, we compute Sat(Σ, M, φ1) and Sat(Σ, M, φ2).
Second, we use function Pre to iteratively compute Sat(Σ,
M, φ1 ∧ EX φ2), Sat(Σ, M, φ1 ∧ EX (φ1 ∧ EX φ2)), · · ·
until the result no longer changes. Then the union of Sat(Σ,
M, φ2) and these sets is SatEU (φ1,φ2).

Algorithm 9 shows the process of computing SatK(φ,
a). Because it is not easy to directly compute this set, we
choose to compute its complement set, i.e., ¬SatK(φ, a).
First, we compute Sat(Σ, M, ¬φ). Second, we use function
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(a) (c)

(b)

Fig. 7. (a) The specification of the KPN in Fig. 1; (b) the specifications of formulas φ1 and φ2; (c) the verification results.

Eq to look for those markings that are equivalent to at least
one marking in Sat(Σ, M, ¬φ) w.r.t. agent a, and all those
markings are exactly ¬SatK(φ, a). Then the complement of
this set is SatK(φ, a).

Algorithm 10 shows the process of computing SatE(φ,
Γ). Similarly, we compute its complement set, i.e., ¬SatE(φ,
Γ). First, we compute Sat(Σ, M, ¬φ). Second, we use
function Eq to look for those markings that are equivalent
to at least one marking in Sat(Σ, M, ¬φ) w.r.t. at least one
agent in Γ, and all these markings are exactly ¬SatE(φ, Γ).
Then the complement of this set is SatE(φ, Γ).

Algorithm 11 shows the process of computing SatD(φ,
Γ). Similarly, we compute its complement set, i.e., ¬SatD(φ,
Γ). First, we compute Sat(Σ, M, ¬φ). Second, we use
function Eq to look for those markings that are equivalent
to at least one marking in Sat(Σ, M, ¬φ) w.r.t. each agent in
Γ, and all these markings are exactly ¬SatD(φ, Γ). Then the
complement of this set is SatD(φ, Γ).

Algorithm 12 shows the process of computing SatC(φ,
Γ). Similarly, we compute its complement set, i.e., ¬SatC(φ,
Γ). First, we compute Sat(Σ, M, ¬φ). Second, we use
function Eq to iteratively look for those markings that can
access at least one marking in Sat(Σ, M, ¬φ) via a finite
sequence of equivalence relations w.r.t. those agents in Γ,
and all these markings are exactly ¬SatC(φ, Γ). Then the

complement of this set is SatC(φ, Γ).
Algorithm 13 describes our model checking process.
For example in Fig. 1, we can use our algorithms to verify

the following formulas:
φ1 = AG ((p1,7 ∧ p2,7)→ E{a1,a2} (p1,8 ∧ p2,11));
φ2 = AG ((p1,7 ∧ p2,7)→ C{a1,a2} (p1,8 ∧ p2,11)).
We first verify φ1. Its ENF expression is

¬E (trueU(p1,7 ∧ p2,7 ∧ ¬E{a1,a2} (p1,8 ∧ p2,11))).

Based on the RGER in Figs. 4 and 5 (all states have
been produced but the related transition and equivalence
relations of states are computed when they are required),
our recursive algorithms obtain the following sets in turns:

1. Compute Sat(Σ, M, E{a1,a2} (p1,8 ∧ p2,11)):
1.1. Sat(Σ, M, ¬(p1,8 ∧ p2,11)) = {M1, M2, · · · , M10,

M11};
1.2. Sat(Σ, M, ¬E{a1,a2} (p1,8 ∧ p2,11)) = {M1, M2, · · · ,

M12, M13};
1.3. Sat(Σ, M, E{a1,a2} (p1,8 ∧ p2,11)) = {M14};

2. Sat(Σ, M, ¬E{a1,a2} (p1,8∧p2,11)) = {M1,M2, · · · ,M12,
M13};

3. Sat(Σ, M, p1,7 ∧ p2,7) = {M14};
4. Sat(Σ, M, p1,7 ∧ p2,7 ∧ ¬E{a1,a2} (p1,8 ∧ p2,11)) = ∅;
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5. Sat(Σ, M, E (trueU(p1,7 ∧ p2,7 ∧ ¬E{a1,a2} (p1,8 ∧
p2,11)))) = ∅;

6. Sat(Σ, M, ¬E (trueU(p1,7 ∧ p2,7 ∧ ¬E{a1,a2} (p1,8 ∧
p2,11)))) = M.

Therefore, we have that M0 ∈ Sat(Σ, M, φ1) and thus
Σ |= φ1. Similarly, we have that Σ 6|= φ2.

The complexity of our model checking algorithms con-
sists of two parts. First, all states must be produced, but
the number of states possibly grows exponentially even
though KPN is safe. Therefore, we use OBDD to encode
these states instead of explicitly representing them. The size
of an OBDD is only related to the corresponding Boolean
function, the number of variables and the variable order, but
not related to the number of states. But for some worst cases,
OBDD can still have the node explosion problem. Second,
we should consider the complexity of verifying CTLK. As
shown in [6], for a CTL formula φ and a labelled transition
system LTS with n states and k transition relations, the CTL
model-checking problem LTS |= φ can by determined in
time O((n + k) · |φ|) where |φ| is the number of atomic
propositions and operators in φ. When we also use the
uncompressed RGER to verify CTLK in [24], the complexity
of the related algorithm is linear w.r.t. n + k + w and |φ|,
i.e., O((n+ k+w) · |φ|), where n is the number of all states,
k is the number of all transition relations of states and w is
the number of all equivalence relations of states. Certainly,
n grows exponentially at the worst case and w and k grow
more seriously than n. When we use OBDD to verify CTLK
in this paper, the complexity of the related algorithm (i.e.,
Algorithm 13) depends on the complexity of the operations
of OBDD, the size of OBDD and the length of formulas.
Certainly, at the worst case the size of OBDD still grows
exponentially [26] if the variable order is terrible, but lots
of studies [26], [32], [39] show that OBDD can work well at
most of cases.

6.2 Model Checker of CTLK
We develop a model checker KPNer written in C++ pro-
gramming language based on the above algorithms.

After inputting a KPN and one or more CTLK formulas,
KPNer can output the verification results. KPN and formu-
las are stored in a .ppn file, and KPNer can read them. Fig. 7
(a) shows the specification of the KPN in Fig. 1, (b) shows
the specifications of formulas φ1 and φ2, and (c) shows the
verification results. The results show that φ1 is valid but φ2

is invalid, which is coincident with the above analysis. Time
spent on verifying them is very short: < 0.000001 s.

7 APPLICATION

7.1 Verification of Alice-Bob Protocol
Alice-Bob Protocol is a famous communication protocol. As
shown in Section 6, it can achieve the basic communication
requirement, i.e., one knows that the other has received
the password when the protocol is executed. However, it
becomes insecure when the messages in the channel are
intercepted by an attacker and then the attacker completely
copies what Bob does.

Fig. 8 models this protocol with an attacker. First, the
attacker (agent a3) intercepts the request sent from Alice to

p1,1

p1,10 {a1}

p1,2 p1,3 p1,4 p1,5 p1,6 p1,7

p2,1 p2,2 p2,3 p2,4 p2,5 p2,6 p2,7

p1,8 {a1} p1,9 {a1} p1,11 {a1}

p2,8  

{a2}

p2,9 {a2}
p2,10 {a2}

p2,11 {a2}

c1 c2 c3 c4

t1,1 t1,2 t1,3 t1,4 t1,5 t1,6

t2,1 t2,2 t2,3 t2,4 t2,5 t2,6

p3,1 p3,2 p3,3 p3,4 p3,5 p3,6 p3,7

p3,9 {a3}
p3,10 {a3}

p3,11 {a3}

t3,1 t3,2 t3,3 t3,4 t3,5 t3,6

p3,8 

{a3}

Alice

Bob

attacker

Fig. 8. KPN model of Alice-Bob Protocol with an attacker.

Bob (t3,2) and sends his public key to Alice (t3,3). Second, the
attacker intercepts the password encrypted by Alice (t3,4),
uses his private key to decrypt it (t3,5) and thus gets the
password (p3,11). Finally, the attacker sends an acknowledge
to Alice (t3,6).

In this protocol, the security is destroyed due to the
following facts:

1. The attacker can finally get the password; and
2. Alice and Bob do not know that the password is de-

coded by an attacker.
They can be specified by the following formula:

φ3 = EF p3,11 ∧ ¬EF (Ka1 p3,11) ∧ ¬EF (Ka2 p3,11)

Based on our algorithms, we can check φ3 so as to prove
the insecurity of Alice-Bob Protocol. The ENF expression of
φ3 is

E (trueU p3,11) ∧ ¬E (trueU (Ka1
p3,11))∧

¬E (trueU (Ka2
p3,11))

We can produce the RGER of the KPN in Fig. 8. The
reachability graph is shown in Fig. 9. Because φ3 is related
to the knowledge of agent a1 and a2, we only give equiv-
alence relations ∼a1

and ∼a2
as shown in Figs. 10 and 11,

respectively.
Then our recursive algorithms can compute the follow-

ing sets in turn:
1. Compute Sat(Σ, M, E (trueUp3,11)):
1.1. Sat(Σ, M, p3,11) = {M12, M13, M14, M27, M28,

M29};
1.2. Sat(Σ, M, E (trueUp3,11)) = {M0, M1, · · · , M28,

M29};
2. Compute Sat(Σ, M, ¬E (trueU(Ka1

p3,11))):
2.1. Sat(Σ, M, ¬p3,11) = {M0, · · · , M11, M15, · · · , M26,

M30, · · · , M47};
2.2. Sat(Σ, M, ¬Ka1

p3,11) = M;
2.3. Sat(Σ, M, Ka1

p3,11) = ∅;
2.4. Sat(Σ, M, E (trueU(Ka1

p3,11))) = ∅;
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M0={p1,1, p2,1, p3,1} M1={p1,2, p1,8, p2,1, p3,1} M3={p1,3, p1,8, p2,1, p3,1, p1}
M7={p1,3, p1,8, p2,1, 

p3,4, p3,8, p3,9, p2}

M8={p1,4, p1,8, p1,9, 

p2,1, p3,4, p3,8, p3,9}

M2={p1,1, p2,1, p3,2, p3,8, p3,9}
M4={p1,2, p1,8, 

p2,1, p3,2, p3,8, p3,9}

M5={p1,3, p1,8, p2,1,

p3,2, p3,8, p3,9, p1}

M6={p1,3, p1,8, 

p2,1, p3,3, p3,8, p3,9}

M9={p1,5, p1,8, p1,9, 

p1,10, p2,1, p3,4, p3,8, p3,9}

M14={p1,7, p1,8,

p1,9, p1,10, p1,11, p2,1, p3,7, p3,8, 

p3,9, p3,10, p3,11}

M13={p1,6, p1,8, 

p1,9, p1,10, p2,1, p3,7, p3,8, p3,9, 

p3,10, p3,11, p4}

M12={p1,6, p1,8, 

p1,9, p1,10, p2,1, p3,6, p3,8, p3,9, 

p3,10, p3,11}

M11={p1,6, p1,8, 

p1,9, p1,10, p2,1, p3,5, p3,8, 

p3,9, p3,10}

M10={p1,6, p1,8, p1,9, p1,10, 

p2,1, p3,4, p3,8, p3,9, p3}

t1,1

t3,1

t1,1

t3,1

t1,2

t1,2

t3,1

t3,2

t3,3

t1,3

t1,4

t1,5

t3,4t3,5t3,6t1,6

M15={p1,1, p2,2, p2,8, p2,9, p3,1}
M16={p1,2, p1,8, 

p2,2, p2,8, p2,9, p3,1}

M18={p1,3, p1,8, p2,2, 

p2,8, p2,9, p3,1, p1}

M22={p1,3, p1,8, p2,2, p2,8, 

p2,9, p3,4, p3,8, p3,9, p2}

M23={p1,4, p1,8, p1,9, p2,2, 

p2,8, p2,9, p3,4, p3,8, p3,9}

M17={p1,1, p2,2, p2,8, 

p2,9, p3,2, p3,8, p3,9}

M19={p1,2, p1,8, p2,2, 

p2,8, p2,9, p3,2, p3,8, p3,9}

M20={p1,3, p1,8, p2,2, p2,8, 

p2,9, p3,2, p3,8, p3,9, p1}

M21={p1,3, p1,8, p2,2, 

p2,8, p2,9, p3,3, p3,8, p3,9}

M24={p1,5, p1,8, 

p1,9, p1,10, p2,2, p2,8, p2,9, p3,4, 

p3,8, p3,9}

M29={p1,7, p1,8, p1,9, 

p1,10, p1,11, p2,2, p2,8, p2,9, p3,7, 

p3,8, p3,9, p3,10, p3,11}

M28={p1,6, p1,8, p1,9,

p1,10, p2,2, p2,8, p2,9, p3,7, p3,8, 

p3,9, p3,10, p3,11, p4}

M27={p1,6, p1,8, p1,9, 

p1,10, p2,2, p2,8, p2,9, p3,6, p3,8, 

p3,9, p3,10, p3,11}

M26={p1,6, p1,8, 

p1,9, p1,10, p2,2, p2,8, p2,9, p3,5, 

p3,8, p3,9, p3,10}

M25={p1,6, p1,8, 

p1,9, p1,10, p2,2, p2,8, p2,9, p3,4, 

p3,8, p3,9, p3}

t1,1

t3,1

t1,1

t3,1

t1,2

t1,2

t3,1

t3,2

t3,3

t1,3

t1,4

t1,5

t3,4t3,5t3,6t1,6

M30={p1,3, p1,8, 

p2,3, p2,8, p2,9, p3,1}

M31={p1,3, p1,8, p2,4, 

p2,8, p2,9, p3,1, p2}

M32={p1,4, p1,8, p1,9, 

p2,4, p2,8, p2,9, p3,1}

M35={p1,6, p1,8, p1,9, p1,10, 

p2,5, p2,8, p2,9, p2,10, p3,1}

M34={p1,6, p1,8, p1,9, p1,10, 

p2,4, p2,8, p2,9, p3,1, p3}

M33={p1,5, p1,8, p1,9, 

p1,10, p2,4, p2,8, p2,9, p3,1}

M36={p1,6, p1,8, 

p1,9, p1,10, p2,6, p2,8, p2,9, p2,10, 

p2,11, p3,1}

M37={p1,6, p1,8, 

p1,9, p1,10, p2,7, p2,8, p2,9, p2,10, 

p2,11, p3,1, p4}

M38={p1,7, p1,8, 

p1,9, p1,10, p1,11, p2,7, p2,8, p2,9, 

p2,10, p2,11, p3,1}

t2,3

t2,4

t1,3

t1,5

t1,4

t1,6t2,6

M39={p1,3, p1,8, p2,3, 

p2,8, p2,9, p3,2, p3,8, p3,9}

M40={p1,3, p1,8, p2,4, p2,8, 

p2,9, p3,2, p3,8, p3,9, p2}

M41={p1,4, p1,8, p1,9, p2,4, 

p2,8, p2,9, p3,2, p3,8, p3,9}

M44={p1,6, p1,8, 

p1,9, p1,10, p2,5, p2,8, p2,9, p2,10, 

p3,2, p3,8, p3,9}

M43={p1,6, p1,8, 

p1,9, p1,10, p2,4, p2,8, p2,9, p3,2, 

p3,8, p3,9, p3}

M42={p1,5, p1,8, 

p1,9, p1,10, p2,4, p2,8, p2,9, p3,2, 

p3,8, p3,9}

M45={p1,6, p1,8, p1,9,

p1,10, p2,6, p2,8, p2,9, p2,10, p2,11, 

p3,2, p3,8, p3,9}

M46={p1,6, p1,8, p1,9,

p1,10, p2,7, p2,8, p2,9, p2,10, p2,11, 

p3,2, p3,8, p3,9, p4}

M47={p1,7, p1,8, p1,9, 

p1,10, p1,11, p2,7, p2,8, p2,9, p2,10, 

p2,11, p3,2, p3,8, p3,9}

t2,3

t2,4

t1,3

t1,5

t1,4

t1,6t2,6

t2,5

t2,5

t2,2

t2,2

t2,1

t3,1

Fig. 9. The reachability graph of the KPN in Fig. 8. Note that the two dotted boxes in the top have an edge labeled by t2,1 means that there is an
edge from Mi to Mi+15 labeled by t2,1 for each i ∈ {0, 1, · · · , 14}. Similarly, the two dotted boxes in the bottom have an edge labeled by t3,1
means that there is an edge from Mi to Mi+9 labeled by t3,1 for each i ∈ {30, 31, · · · , 38}. Figs. 10 and 11 are both similar with this figure.

2.5. Sat(Σ, M, ¬E (trueU(Ka1
p3,11))) = M;

3. Compute Sat(Σ, M, ¬E (trueUKa2
p3,11)):

3.1. Sat(Σ, M, ¬Ka2 p3,11) = M;
3.2. Sat(Σ, M, Ka2 p3,11) = ∅;
3.3. Sat(Σ, M, E (trueU(Ka2 p3,11))) = ∅;
3.4. Sat(Σ, M, ¬E (trueU(Ka2 p3,11))) = M;

4. Sat(Σ, M, E (trueUp3,11) ∧ ¬E (trueU(Ka1
p3,11)) ∧

¬E (trueU(Ka2
p3,11))) = {M0, M1, · · · , M28, M29}.

Finally, we can find M0 ∈ Sat(Σ, M, φ3) and thus
Σ |= φ3. Similarly, we can also find Σ 6|= φ1 because
Alice can no longer derive that Bob has got the password
even though she has received an acknowledgement (this
acknowledge may also come from the attacker). This means

that Alice-Bob Protocol is not secure while this kind of secu-
rity is not related with the specific encryption and decryp-
tion technique taken in it. The analysis results outputted
by our tool are identical with the above formal calculus
and derivation.

7.2 Verification of Dining Cryptographers Protocol

Anonymity protocols are a class of protocols aiming at es-
tablishing the privacy of principals during an exchange. One
well-known example is Dining Cryptographers Protocol [9]. In
this protocol, n (n ≥ 3) cryptographers share a meal around
a circular table, and either one of them or their employer
pays for the meal. If one of them paid, they would like
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Fig. 10. Equivalence relation ∼a1 in Fig. 9.

to discover whether one of them paid without revealing
the identity of the payer. Otherwise, they all know their
employer paid.

To this end, there is a coin between any two cryptogra-
phers. The coin between two cryptographers is randomly
tossed and the result (i.e., head or tail) can only be seen
by the two cryptographers but cannot be seen by others.
This protocol requires that each cryptographer makes an
announcement (i.e., say “same” or “different” of the two
coins beside him or her). If a cryptographer paid money,
he or she tells a lie, else he or she tells the truth. After
all cryptographer make an announcement, everyone knows
whether the employer paid or one of cryptographers paid,
but he or she cannot identify the cryptographer who paid
unless the payer is himself or herself.

Our model and method can prove that this protocol
indeed achieves the requirement. The KPN in Fig. 12 models
this protocol for the case of 3 cryptographers and is simpler
than the KPN in our conference paper [24]. For more details,
one may refer to [24]. Here, we does not repeat it. In the next
section, we will use this protocol as the benchmark to do the
comparison experiments.

8 EXPERIMENTS AND COMPARISON

In this section, we use Dining Cryptographers Protocol as
the benchmark to do the comparison experiments. First,
we compare our tool KPNer with the state-of-the-art CTLK
model checker MCMAS. Second, we show the performances
of KPNer on two kinds of patterns: parallel pattern of n
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Fig. 11. Equivalence relation ∼a2 in Fig. 9.

cryptographers and sequential pattern of n cryptographers.
Finally, we introduce a classical heuristic method [49] of
constructing a static variable order and compare it with our
heuristic method.

8.1 Benchmark
Dining Cryptographers Protocol was often used as a bench-
mark [22], [32], [48] because it can be expanded to the
case of more cryptographers. The following two epistemic
requirements were also considered in [22], [32], [48]: 1)
when each cryptographer has said “same” or “different”,
everyone either knows that the employer paid, or knows
that one cryptographer paid but cannot know who paid;
2) when each cryptographer has said “same” or “different”
and the employer paid, it is a common knowledge for all

cryptographers that the employer paid. Due to symmetry,
we only consider the related knowledge to Cryptographer 1
when verifying the first requirement. The two requirements
can be formalised by the following formulas:

φ4 = AG

((
n∧

i=1
cisaid ∧ ¬c1paid

)
→

(
Kc1 epaid ∨(

Kc1

(
n∨

i=2
cipaid

)
∧

n∧
i=2
¬Kc1 c

i
paid

)))
,

φ5 = AG

((
n∧

i=1
cisaid ∧ epaid

)
→ CA epaid

)
,

where n is the number of cryptographers, c1 represents
Cryptographer 1, cisaid represents that Cryptographer i said
“same” or “different”, cipaid represents that Cryptographer i
paid, and epaid represents that the employer paid.

When modelling this protocol, we use those KPNs
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Fig. 12. KPN model of Dining Cryptographers Protocol in parallel pattern.

whose structures are similar to the KPN in Fig. 12 and obvi-
ously these cryptographers are in a parallel pattern. But the
related models used in the MCMAS [32] are in a sequential
pattern. Therefore, for relatively fair comparisons, we also
consider a sequential pattern. We just need to add several
arcs into the KPN in Fig. 12 to get a sequential pattern,
as shown in Fig. 13. The idea is as follows: Coin 3 is first
tossed, then Coin 1 is tossed, then Cryptographer 1 goes
to see the tossed result and say “same” or “different”, then
Coin 2 is tossed, then Cryptographer 2 goes to do so, and
finally Cryptographer 3 goes to do so. TABLE 1 shows basic
information of these two patterns and formulas for different
n (i.e., the number of cryptographers).

8.2 Comparison of KPNer and MCMAS
To the best of our knowledge, there are three CTLK model
checkers MCK [22], MCTK [48] and MCMAS [32]. They
are similar but their difference is that they use different

modelling languages to describe MAS. As shown in [32],
MCMAS has the best performance among them. Therefore,
in this paper we only compare KPNer with MCMAS.

For MCMAS, there is almost no concurrency in ISPL,
because it is not allowed to execute a local action of one
agent independently and all executable local actions must
constitute a joint action so that they can be executed syn-
chronously. Therefore, in order to present a fair comparison,
we use the sequential pattern like Fig. 13 to compare KPNer
with MCMAS. Besides, the two model checkers both use
the same CUDD version 2.5.1 [46] for a fair comparison.
TABLE 2 shows the experimental results. The results show
that φ4 and φ5 are both valid in this protocol. Here, we only
show their performances through increasing the number of
cryptographers.

The results show that KPNer is much more efficient and
needs less memory than MCMAS. MCMAS can only verify
this protocol for the case of up to 36 cryptographers in
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Fig. 13. KPN model of Dining Cryptographers Protocol in sequential pattern.

12 hours but KPNer can verify this protocol for the case
of 100 cryptographers in 3 minutes. Obviously, KPNer is
able to handle larger number of cryptographers. Later, we
will show that KPNer can verify this protocol: up to 1200
cryptographers in 14 hours for the parallel pattern and
up to 600 cryptographers in 14 hours for the sequential
pattern. Notice that CUDD cannot count up the number
of states in an OBDD when the OBDD is composed of
more than 1024 Boolean variables. Therefore, when the
number of cryptographers is more than or equal to 100 (the
number of places > 1024), we cannot know the number of
markings in M. Here, we use INF (infinite) to represent these
numbers. Besides, the performance of MCMAS is unstable.
For example, when the number of cryptographers is 30
or 34, MCMAS spends more than 12 hours to produce a
complete Kripke model but does not output any result.
However, when the number of cryptographers is 32 or 36,
MCMAS can output the verification results in 5 hours. The

performance of KPNer is stable due to a good static variable
order. Because our method to construct a variable order
is heuristic, it is also possible for KPNer to find a better
order in some larger KPNs. This is the reason why OBDD
memory consumed for 32 cryptographers is less than 30
cryptographers’ for KPNer. But this improvement is so small
that the time still increases with increasing the number of
cryptographers. Note that all experiments are conducted
on a PC equipped with Inter(R) Core(TM) i5-9400F CPU @
2.90GHz and RAM @ 16.00G.

We can also see that the performance of KPNer is closely
related to the time of verification but the performance
of MCMAS is closely related to the time of generating a
Kripke model from an ISPL program. This is because KPNer
needs to produce the related transition and equivalence
relations of states only when verifying a formula. But for
MCMAS, all transition and equivalence relations of states
are produced before verification, which is time-consuming.
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TABLE 1
Basic information of the benchmark in parallel and sequential patterns and to-be-checked formulas

No. of
cryptos
(n)

KPNs in the parallel pattern KPNs in the sequential pattern φ4 φ5

|PS ∪ PK | |T | |F | |PS ∪ PK | |T | |F | |AP |φ4
|OP |φ4

|AP |φ5
|OP |φ5

(11n+ 1) (12n) (45n) (11n+ 1) (12n) (49n− 2) (3n) (3n+ 7) (2n+ 1) (5)

10 111 120 450 111 120 488 30 37 21 5

20 221 240 900 221 240 978 60 67 41 5

30 331 360 1350 331 360 1468 90 97 61 5

32 353 384 1440 353 384 1566 96 103 65 5

34 375 408 1530 375 408 1664 102 109 69 5

36 397 432 1620 397 432 1762 108 115 73 5

38 419 456 1710 419 456 1860 114 121 77 5

40 441 480 1800 441 480 1958 120 127 81 5

100 1101 1200 4500 1101 1200 4898 300 307 201 5

200 2201 2400 9000 2201 2400 9798 600 607 401 5

300 3301 3600 13500 3301 3600 14698 900 907 601 5

400 4401 4800 18000 4401 4800 19598 1200 1207 801 5

500 5501 6000 22500 5501 6000 24498 1500 1507 1001 5

600 6601 7200 27000 6601 7200 29398 1800 1807 1201 5

700 7701 8400 31500 7701 8400 34298 2100 2107 1401 5

800 8801 9600 36000 8801 9600 39198 2400 2407 1601 5

900 9901 10800 40500 9901 10800 44098 2700 2707 1801 5

1000 11001 12000 45000 11001 12000 48998 3000 3007 2001 5

1100 12101 13200 49500 12101 13200 53898 3300 3307 2201 5

1200 13201 14400 54000 13201 14400 58798 3600 3607 2401 5

1300 14301 15600 58500 14301 15600 63698 3900 3907 2601 5

• |AP |φ means the number of atomic propositions in formula φ.
• |OP |φ means the number of operators in formula φ.

TABLE 2
Experimental results of KPNer and MCMAS for the benchmark in the sequential pattern.

No. of
cryptos

(n)

KPNer MCMAS

|M| T11 (s) T12 (s) T13 (s) OBDD memory (B) No. of states T21 (s) T22 (s) OBDD memory (B)
10 75783 < 0.001 0.031 0.032 1.392× 107 45056 2.16 0.022 1.729× 107

20 1.615× 108 0.016 0.187 0.36 3.383× 107 8.808× 107 9.454 0.466 8.83× 107

30 2.513× 1011 0.031 0.562 1.219 6.048× 107 – Timeout – –
32 1.074× 1012 0.046 0.673 1.453 5.966× 107 5.669× 1011 109.512 2.523 1.785× 108

34 4.57× 1012 0.063 0.781 1.765 5.813× 107 – Timeout – –
36 1.938× 1013 0.078 0.906 2.125 5.668× 107 1.017× 1013 15587.3 28.192 5.584× 108

38 8.191× 1013 0.078 1.062 2.5 5.633× 107 – Timeout – –
40 3.452× 1014 0.093 1.188 3.031 5.752× 107 – Timeout – –
100 INF 1.359 17.547 113.829 7.406× 107 – Timeout – –

• T11 means the time spent by KPNer to construct a variable order in OBDD; T12 means the time spent by KPNer to produce and encode all
reachable markings; T13 means the time spent by KPNer to verify φ4 and φ5; T21 means the time spent by MCMAS to produce and encode a
complete Kripke model; T22 means the time spent by MCMAS to verify φ4 and φ5.

• – means that the result is not outputted.
• Timeout means that the time is more than 12 hours.
• INF means that the number of states in an OBDD cannot be counted up.

When we verify a few formulas, it is unnecessary to do
so because verifying a formula only needs to construct the
transition and equivalence relations of a part of states in an
intermediate model (i.e., Kripke model or RGER). This is one
reason why KPNer is much more efficient than MCMAS. For
example, KPNer can verify this protocol for the case of 36
cryptographers in 4 seconds but MCMAS spends about 4.3
hours to do so. At the same time, OBDD memory consumed
by MCMAS in this process is larger than KPNer’s. Besides,
we think that the following two reasons also ensure that

KPNer outperforms MCMAS:

1. Each state in Kripke model is global so that it first
needs to produce the local state of each agent and then
combine these local states into a joint one according
to its environment agent. Additionally, for each agent,
when producing a new local state from the current local
state, the agent considers not only its actions but also
the actions of others due to the synchronous semantics
required by ISPL. Therefore, it spends much time to
produce a new state from a current state. Fortunately,
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Agent Crypto i

--i-1=n if  i-1=0, n the number of 

cryptographers 

  Lobsvars = {Coin i, Coin i-1}; 

  Vars:

    payer : {yes,no};

    seedifferent : {empty, yes, no };

  end Vars

  Actions = { sayequal, saydifferent, none };

  Protocol:

    (payer=no and seedifferent=yes) : 

{saydifferent};

    (payer=no and seedifferent=no) : {sayequal};

    (payer=yes and seedifferent=yes) : 

{sayequal};

    (payer=yes and seedifferent=no) : 

{saydifferent};

    other : {none};

  end Protocol

  Evolution:

    (seedifferent=no) if ( seedifferent=empty and 

Environment.Coin i=head and 

Environment.Coin i-1=head ) or

    (seedifferent=empty and Environment. 

Coin i=tail and Environment.Coin i-1=tail ); 

    (seedifferent=yes)  if ( seedifferent=empty 

and Environment.Coin i=head and 

Environment.Coin i-1=tail ) or

    (seedifferent=empty and Environment.

Coin i=tail and Environment.Coin i-1=head );

  end Evolution

end Agent

--Dining Cryptographers Protocol (3 cryptographers)

Agent Environment

  Obsvars:

    numberofodd : { none, even, odd };

  end Obsvars

  Vars:

    Coin 1 : {head,tail}; Coin 2 : {head,tail}; Coin 3 : {head,tail};

    say1 : 0..1; say2 : 0..1; say3 : 0..1;

    count : boolean;

  end Vars

  Actions = { none };

  Protocol:

    other : {none};

  end Protocol

  Evolution:

    say1 = 0 if numberofodd=none and Crypto 1.Action=sayequal;

    say1 = 1 if numberofodd=none and Crypto 

1.Action=saydifferent;

    say2 = 0 if numberofodd=none and Crypto 2.Action=sayequal;

    say2 = 1 if numberofodd=none and Crypto 

2.Action=saydifferent;

    say3 = 0 if numberofodd=none and Crypto 3.Action=sayequal;

    say3 = 1 if numberofodd=none and Crypto 

3.Action=saydifferent;

    count = true if numberofodd=none and (Crypto 

1.Action=sayequal or Crypto 1.Action=saydifferent);

    numberofodd=even if numberofodd=none and count = true and 

(say1+say2+say3=0 or say1+say2+say3=2);

    numberofodd=odd if numberofodd=none and count = true and 

(say1+say2+say3=1 or say1+say2+say3=3);

  end Evolution

end Agent

--Dining Cryptographers Protocol (4 cryptographers)

Agent Environment

  Obsvars:

    numberofodd : { none, even, odd };

  end Obsvars

  Vars:

   Coin 1 : {head,tail}; Coin 2 : {head,tail}; Coin 3 : {head,tail}; 

   Coin 4 : {head,tail}; say1 : 0..1; say2 : 0..1; say3 : 0..1; say4 : 0..1; 

   count : boolean;

  end Vars

  Actions = { none };

  Protocol:

    other : {none};

  end Protocol

  Evolution:

    say1 = 0 if numberofodd=none and Crypto 1.Action=sayequal;

    say1 = 1 if numberofodd=none and Crypto 1.Action=saydifferent;

    say2 = 0 if numberofodd=none and Crypto 2.Action=sayequal;

    say2 = 1 if numberofodd=none and Crypto 2.Action=saydifferent;

    say3 = 0 if numberofodd=none and Crypto 3.Action=sayequal;

    say3 = 1 if numberofodd=none and Crypto 3.Action=saydifferent;

    say4 = 0 if numberofodd=none and Crypto 4.Action=sayequal;

    say4 = 1 if numberofodd=none and Crypto 4.Action=saydifferent;

    count = true if numberofodd=none and (Crypto 1.Action=sayequal 

or Crypto 1.Action=saydifferent);

    numberofodd=even if numberofodd=none and count = true and 

(say1+say2+say3+say4=0 or say1+say2+say3+say4=2 or 

say1+say2+say3+say4=4);

    numberofodd=odd if numberofodd=none and count = true and 

(say1+say2+say3+say4=1 or say1+say2+say3+say4=3);

  end Evolution

end Agent

(a) (b) (c)

Fig. 14. A part program of ISPL describing Dining Cryptographers Protocol.

our KPNer only needs to check the pre-set and post-
set of a transition when producing a new state from a
current state, which can save much time.

2. MCMAS dynamically reorders variables when OBDD
produces and encodes Kripke model. It needs much
time to find a good compromise between continuous
variable reordering and efficiency of reducing memory-
consuming. This is also the reason why the performance
of MCMAS is unstable. Fortunately, our KPNer can
construct a static variable order based on the structure
and initial marking of a KPN and the experiments have
shown that these orders are good enough to encode the
state space and reduce memory-consuming, so much
time can be saved too.

Additionally, we use this protocol to show the com-
plexity of the construction of one environment agent in
MCMAS. Fig. 14 shows a part program of ISPL describing
this protocol where (a) describes one cryptographer, (b)
describes the environment agent for 3 cryptographers and
(c) describes the environment agent for 4 cryptographers.
Obviously, when scaling up this protocol, the environment
agent uses more complex sentences. This is mainly because
it needs to control two kind of common variables, i.e., global
variables observable by all agents (e.g., numberofodd) and
local variables observable by at least two agents (e.g., Coin
i observable by Cryptographer i-1 and Cryptographer i).
But our KPNs can easily control these variables by labeling
function.

8.3 Experiments of KPNer for Parallel and Sequential
Patterns
We use KPNer to verify φ4 and φ5 for the two patterns
like Figs. 12 and 13, and TABLE 3 shows the experimental
results.

The results show that KPNer performs much better
for the parallel pattern than the sequential one. For the
parallel pattern, KPNer can verify the case of up to 1200
cryptographers in 14 hours. But for the sequential pattern,
it can only verify the case of up to 600 ones in 14 hours.
These results are surprising because the state explosion
problem of the parallel pattern is much more serious than
the sequential pattern’s. For example, we estimate that the
number of states of 600 cryptographers is about 10180 in the
sequential pattern but is about 10540 in the parallel pattern.
We think that it is because our heuristic method is more
suitable for those KPNs with a high degree of concurrency
so that the constructed variable order is good enough to
offset such serious state explosion problem. For the parallel
pattern, different subnets (agent) are loosely coupled and
thus randomly finding a few marked places in one subnet
can ensure that most of its subsequent places in the same
subnet are continuously add to the order from near to far. In
other words, it keeps those dependent places in the same
subnet as close as possible so that the average distance
among all dependent places is short. Therefore, it leads to
a very good variable order. However, for the sequential
pattern, almost all transitions are limited to be fired in
a fixed order and thus randomly finding a few marked
places in one subnet cannot usually bring about the above
good result.

In order to understand it better, we use a simple example
to illustrate it. The KPN in Fig. 15 (a) shows a completely
concurrent system where there are three agents and there
is no interaction/collaboration among them. The KPN in
Fig. 15 (b) shows the corresponding sequential pattern
where the three transitions are fired only in turn.

Fig. 15 (a) has 8 reachable markings and M is represented
by Boolean function f1 = (xp11 xp12 +xp11 xp12) (xp21 xp22 +
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Fig. 15. A simple example in parallel and sequential patterns.

xp21
xp22

) (xp31
xp32

+ xp31
xp32

). A variable order con-
structed by our heuristic method is xp11

< xp12
< xp21

<
xp22

< xp31
< xp32

, and the related OBDD for f1 is shown
in Fig. 16 (a). In this and subsequent OBDDs, we use xi
to represent xpi

for simplicity. Fig. 15 (b) has 4 reach-
able markings and M is represented by Boolean function
f2 = xp11 xp12

xp21
xp22

(xp31
xp32

+ xp31
xp32

) + (xp11
xp12

+
xp11

xp12
)xp21

xp22
xp31

xp32
. A variable order constructed

by our heuristic method is xp11
< xp21

< xp31
< xp32

<
xp22

< xp12
, and the related OBDD for f2 is shown in Fig. 16

(b). Obviously, the constructed order for the parallel pattern
is better than the sequential pattern’s because OBDD only
uses 11 nodes to encode f1 representing 8 markings but it
uses 17 nodes to encode f2 representing 4 markings. In fact,
we can also find a good variable order for the sequential pat-
tern if we know the sequential order of agents in advance.
For example, if we know that the sequential order of agents
in Fig. 15 (b) is a3 < a2 < a1, then our heuristic method
chooses the marked place p31 in the first iteration, chooses
the marked place p21 in the second iteration and chooses
the marked place p11 in the last iteration. Then the variable
order is xp31

< xp32
< xp21

< xp22
< xp11

< xp12
and

the related OBDD for f2 only has 13 nodes. However, it is
almost impossible for a large KPN to know this sequential
order so our constructed variable order for the sequential
pattern is worse than the parallel pattern’s.

8.4 Experiments of KPNer Using Two Heuristic Meth-
ods
In fact, there has been a heuristic method [49] to construct a
static variable order in OBDD and it is also used for some
Petri net analysis tools such as MARCIE [26]. Many experi-
ments [26] have proven that it has a good performance and
thus MARCIE can obtain the first place twice in the Model
Checking Contest @ Petri Nets 2015 and 2016 [27], [28].
Here, we compare it with our heuristic method. We first
introduce it. The heuristic process is related to net structure
only while ours is also related to the initial marking of a
net. First, let x1 < x2 < · · · < x|PS∪PK |, S be the set
of places already assigned to some variables and S = ∅
initially. Second, it computes weights W (p) for all places
p ∈ (PS ∪ PK) \ S according to the following formulas:

W (p) =
f(p)

|•p ∪ p•|

f(p) =
∑

t∈•p∧|•t|6=0

(g1(t)

|•t|

)
+

∑
t∈•p∧|t•|6=0

(g2(t)

|t•|

)
+

∑
t∈p•∧|•t|6=0

( |•t ∩ S|+ 1

|•t|

)
+

∑
t∈p•∧|t•|6=0

(h(t)

|t•|

)

g1(t) =

{
0.1 if |•t ∩ S| = 0

|•t ∩ S| otherwise

g2(t) =

{
0.1 if |t• ∩ S| = 0

2 · |t• ∩ S| otherwise

h(t) =

{
0.2 if |t• ∩ S| = 0

2 · |t• ∩ S| otherwise

Then the place p with the highest weight W (p) is as-
signed to the variable x|PS∪PK | and is added to S. It contin-
ues the second step, and then another place with the highest
weight is assigned to the variable x|PS∪PK |−1. Similarly, it
repeats the second step until the last place is assigned to
variable x1. Then the variable order is constructed.

In our tool KPNer, we replace our heuristic method with
this heuristic method and TABLE 4 shows its experimental
results for the benchmark in the two patterns. Obviously,
this heuristic method outperforms ours a little for the
sequential pattern, but is much worse than ours for the
parallel pattern. The memory of our PC overflows when
the number of cryptographers in the parallel pattern is 20
(1.615 × 108 states) due to the node explosion of OBDD.
But our method can encode about 101080 states of 1200
cryptographers and there is no overflow (see TABLE 3). We
think that this heuristic method is more suitable for those
KPNs with a low degree of concurrency. In this heuristic
process, it also pursuits to keep dependent places as close
as possible. However, it only considers net structure so
that those end places in the same structure are first close
to each other, which iteratively makes other places in the
same structure close. Therefore, it cannot guarantee that
dependent places are always as close as possible. Especially
for some completely concurrent systems, end places in the
same structure are close to each other in the first iteration,
and then some places in the same structure are close to each
other in the second iteration. It repeats the second step until
all those places in the same structure are close to each other.
There are almost no dependent places close to each other
in the constructed variable order. This is the reason why
it performs so poorly in the parallel pattern. However, the
number of these end places in the same structure is small in
the sequential pattern so that it can make dependent places
as close as possible in its heuristic process. This is the reason
why it performs better than ours in the sequential pattern.

In order to understand the (dis-)advantage of this heuris-
tic method, we also use the KPNs in Fig. 15 to illustrate it.
For Fig. 15 (a), a variable order constructed by this heuristic
method is xp32

< xp22
< xp12

< xp31
< xp21

< xp11
, and

the related OBDD for f1 is shown in Fig. 17 (a). For Fig. 15
(b), a variable order constructed by this heuristic method is
xp12

< xp11
< xp22

< xp21
< xp32

< xp31
, and the related

OBDD for f2 is shown in Fig. 17 (b). Obviously, the first
constructed order is much worse than ours (see Fig. 16 (a))
but the second constructed order is a little better than ours
(see Fig. 16 (b)). For this heuristic method, OBDD uses 23
nodes to encode f1 and uses 13 nodes to encode f2, while
ours are 11 and 17, respectively.
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TABLE 3
Experimental results of KPNer for the benchmark in parallel and sequential patterns using our heuristic method

No. of
cryptos

(n)

Parallel pattern Sequential pattern

|M| T11 (s) T12 (s) T13 (s) OBDD memory (B) |M| T11 (s) T12 (s) T13 (s) OBDD memory (B)
10 3.788× 109 < 0.001 0.14 < 0.001 1.711× 107 75783 < 0.001 0.031 0.032 1.392× 107

20 3.778× 1018 < 0.001 0.844 0.078 4.026× 107 1.615× 108 0.016 0.187 0.36 3.383× 107

30 2.964× 1027 0.031 1.922 0.312 3.917× 107 2.513× 1011 0.031 0.562 1.219 6.048× 107

40 2.094× 1036 0.093 3.422 0.656 4.001× 107 3.452× 1014 0.093 1.188 3.031 5.752× 107

100 INF 1.11 26.218 10.734 5.298× 107 INF 1.359 17.547 113.829 7.406× 107

200 INF 8.875 122.625 154.75 7.741× 107 INF 10.641 166.922 1224.36 2.064× 108

300 INF 29.64 299.189 557.843 1.092× 108 INF 35.5 539.438 4465.499 4.213× 108

400 INF 69.969 553.625 1356.422 1.471× 108 INF 85.687 1314.53 11326.015 7.714× 108

500 INF 136.547 879.219 2828.828 1.876× 108 INF 174.797 3150.7 25823.5 1.109× 109

600 INF 238.094 1310.19 4864.157 2.278× 108 INF 286.985 4501.11 42816.813 1.627× 109

700 INF 376.203 1727.67 7789.172 2.623× 108 INF 456.938 7134.03 Timeout –
800 INF 560.063 2339.58 12051.735 2.966× 108 INF 677.187 10664.9 Timeout –
900 INF 799.907 2897.12 16979.125 3.308× 108 INF 970.609 15823 Timeout –
1000 INF 1098.98 3637.41 23837.75 3.651× 108 INF 1375.31 27587.2 Timeout –
1100 INF 1455.59 4461.66 31624.157 4.002× 108 INF 1909.92 30046 Timeout –
1200 INF 1900.86 5274.44 41985.126 4.355× 108 INF 2282.92 36949.1 Timeout –
1300 INF 2441.74 6465.81 Timeout – – 3015.25 Timeout Timeout –

• The meanings of T11, T12 and T13 are the same with that in TABLE 2.
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Fig. 16. Two OBDDs based on our heuristic method: (a) the OBDD for f1; (b) the OBDD for f2.

9 CONCLUSION

This paper extends the work of our conference paper [24].
We consider more epistemic operators that can specify more
complex epistemic properties. We use OBDD to compress
the state space, improve our model checking algorithms
greatly and develop a tool KPNer. As shown in our experi-
ments, KPNer is more efficient in comparison with the state-
of-the-art CTLK model checker MCMAS. These advantages
are owed to the combination of the OBDD technique and
the structure characteristics of KPN. The combination can
be seen in Algorithms 1–4 and 6–12.

The following facts should be noted. The part of the
interacting/collaborating process in a KPN model is an
abstraction and simulation of the execution process of an
MAS, while the part of epistemic progress in the KPN
possibly does not describe any related variables or actions
of the MAS and some knowledge places are intentionally

added into it by a designer or checker (e.g., those knowledge
places in Fig. 1 do not correspond to any variable in such a
real protocol). But the latter can indeed reflect the epistemic
progresses of agents. More importantly, such a KPN with
knowledge places can be used to prove whether the inter-
acting/collaborating process of the system has some flaws
which can be utilized by attackers to carry out some attacks.

Our future work includes: 1) we plan to simplify CTLK
formulas and thus continually optimise our model checking
algorithms; 2) we study the automatical conversion from
a CTLK formula to its ENF; 3) we explore more complex
epistemic operators to specify and verify more complex
epistemic properties; and 4) we plan to add probability or
data into KPN so that they can simulate concurrent systems
more precisely and verify more design requirements.

The unfolding technique of Petri nets is also important
and efficient on alleviating the state explosion problem [19],
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TABLE 4
Experimental results of KPNer for the benchmark in parallel and sequential patterns using the heuristic method in [49]

No. of
cryptos

(n)

Parallel pattern Sequential pattern

|M| T11 (s) T12 (s) T13 (s) OBDD memory (B) |M| T11 (s) T12 (s) T13 (s) OBDD memory (B)
10 3.788× 109 0.015 3095.66 342.047 2.546× 109 75783 0.031 0.016 < 0.001 1.139× 107

20 – – – – Overflow 1.615× 108 0.172 0.078 0.109 1.53× 107

30 – – – – Overflow 2.513× 1011 0.594 0.172 0.234 2.926× 107

40 – – – – Overflow 3.452× 1014 1.375 0.406 0.704 4.63× 107

100 – – – – Overflow INF 20.062 4.688 11.687 6.071× 107

200 – – – – Overflow INF 160.72 47.359 181.827 1.157× 108

300 – – – – Overflow INF 548.968 160.719 958.75 2.367× 108

400 – – – – Overflow INF 1285.81 374.578 2671.202 4.057× 108

500 – – – – Overflow INF 2507.48 768.672 5119.187 6.201× 108

600 – – – – Overflow INF 4298.02 1271.03 9296.39 8.883× 108

700 – – – – Overflow INF 6879.7 2109.5 15927.813 1.205× 109

800 – – – – Overflow INF 10295.3 3213.2 25735.781 1.564× 109

900 – – – – Overflow INF 14915.8 4561.81 38845.391 1.965× 109

1000 – – – – Overflow INF 20708.7 6481.37 Timeout –
1100 – – – – Overflow INF 27420.8 8602.09 Timeout –
1200 – – – – Overflow INF 35027.5 10903.1 Timeout –
1300 – – – – Overflow – Timeout – – –

• The meanings of T11, T12 and T13 are the same with that in TABLE 2.
• Overflow means that the memory of our PC overflows.
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Fig. 17. Two OBDDs based on the heuristic method in [49]: (a) the OBDD for f1; (b) the OBDD for f2.

[20], [35], especially for Petri nets with a high concurrence
degree. We plan to study the unfolding-based CTLK ver-
ification. But some difficulties should be considered, e.g.,
how to compute the equivalent markings of given markings
through a finite complete prefix of the unfolding of a KPN?
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