

Petri net based scheduling

Citation for published version (APA):
Aalst, van der, W. M. P. (1995). Petri net based scheduling. (Computing science reports; Vol. 9523). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/439ef9d1-0da8-44ca-b7cd-63d0a54bdc80

Eindhoven University of Technology
Department of Mathematics and Computing Science

ISSN 0926-4515

All rights reserved
editors: prof. dr. J.C.M. Baeten

prof. dr. M. Rem

Petri net based scheduling

by

W.M.P. van der Aalst

Computing Science Report 95(23
Eindhoven, July 1995

95/23

Petri net based scheduling

W.M.P. van der Aalst
Department of Mathematics and Computing Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands, telephone: -31 40474295,

fax: -31 40463992, e-mail: wsinwa@win.tue.nl

Abstract.

Timed Petri nets can be used to model and analyse scheduling problems. To support
the modelling of scheduling problems, we provide a method to map tasks, resources
and constraints onto a timed Petri net. By mapping scheduling problems onto Petri
nets, we are able to use standard Petri net theory. In this paper we will show that we
can use Petri net based tools and techniques to find conflicting and redundant prece
dences, upper- and lowerbounds for the makespan, etc. This is illustrated by a Petri
net based analysis of the notorious lOx 10 problem due to Fisher and Thompson [9].

Keywords: Scheduling, Timed Petri nets, Analysis of Petri nets.

1 Introduction

During the last two decades, much research has been done simultaneously on Petri nets
and scheduling problems. The results achieved in both research areas have been applied
to production systems,logistic systems and computer systems. Although scheduling tech
niques and Petri nets focus on the same application domains, there has been little effort to
put these activities in gear with each other. The aim of this paper is to provide a link be
tween Petri nets and scheduling problems.

The optimal allocation of scarce resources to tasks over time has been the prime subject
of research on scheduling problems. Despite the inherent complexity of many scheduling
problems, effective algorithms have been developed. However, most researchers focussed
on the effectiveness of the algorithms, discarding the issue of flexibility.
Research on Petri nets addresses the issue of flexibility; many extensions have been pro
posed to facilitate the modelling of complex systems. Typical extensions are the addition
of 'colour', 'time' and 'hierarchy' (cf. Jensen et al. [12, 13] and Van der Aalst [1]). Petri
nets extended with these features are suitable for the representation and study of the com
plex industrial systems of the 90's. These Petri nets inherit all the advantages of the clas
sical Petri net, such as the graphical and precise nature, the firm mathematical foundation
and the abundance of analysis methods. Moreover, adequate computer tools have been put
on the market. These tools support both the modelling and analysis of scheduling prob
lems. Therefore, it is interesting to investigate the application of Petri nets to scheduling.

As we will show, it is relatively easy to map scheduling problems onto timed Petri nets.

1

However, the application of Petri net based analysis techniques to a scheduling problem
represented by a timed Petri net is far from trivial! Therefore, we report 7 useful results.
Each of these results shows how a specific aspect of a scheduling problem can be analysed
by applying a standard Petri net based analysis technique. For example, we will show that
we can find conflicting and redundant precedences, and upper- and lowerbounds for the
makespan of a scheduling problem.

The remainder of this paper is organized as follows. Section 2 describes the type of schedul
ing problems we are going to address. Next, we define a timed Petri net model. This Petri
net model has been extended with a timing concept. Section 4 is devoted to the mapping of
scheduling problems onto timed Petri nets. The usefulness of the Petri net analysis tech
niques in the context of scheduling is discussed in section 5. Section 6 discusses the flex
ibility of the approach presented in this paper. Finally, this approach is applied to the no
torious 10 x 10 problem due to Fisher and Thompson (9).

2 The general scheduling problem

Scheduling is concerned with the optimal allocation of scarce resources to tasks over time
(Lawler et al. (14)). Scheduling techniques are used to answer questions that arise in
production planning, project planning, computer control, manpower planning, etc. Many
techniques have been developed for a variety of problem types. To fix the terminology,
we begin by defining the 'general scheduling problem'. Many problem types fit into this
definition. Moreover, some extensions are discussed in section 6.
In essence, scheduling boils down to the allocation of resources to tasks over time. Some
authors refer to resources as 'machines' or 'processors' and tasks are also called 'opera
tions' or 'steps of ajob'. Resources are used to process tasks. However, it is possible that
the execution of a task requires more that one resource, i.e. a task is processed by a resource
set. Moreover, there may be multiple resource sets that are capable of processing a specific
task. The processing time of a task is the time required to execute the task given a specific
resource set. By adding precedence constraints it is possible to formulate requirements
about the order in which the tasks have to be processed. We will assume that resources are
always available, but we shall not necessarily assume the same for tasks. Each task has a
release time, i.e. the time at which the task becomes available for processing. This leads
to the following definition.

2

Definition 1
A scheduling problem is a 6-tuple SP = (T, R, PRE, TS, RT, PT) satisfying the fol
lowing requirements.

(i) T is a finite set of tasks.

(ii) R is a finite set of resources.

(iii) PRE s::; TxT is a partial order, the precedence relation.

(iv) T S is the time set.

(v) RT E T -+ T S is a function which defines the release time of each task.

(vi) PT E (T x P(R)) f> TS defines for each task t: '

(a) the resource sets capable of processing task t and

(b) the processing time required to process t by a specific resource set.

This definition specifies the data required to formulate a scheduling problem. The tasks
are denoted by T and the resources are denoted by R. The precedence relation PRE is
used to specify precedence constraints. If task t has to be processed before task t', then
(t, t') E PRE, Le. the execution of task t has to be completed before the execution of
task t' may start. TS is the time set. Nand R+ U {a} are typical choices for TS. The
release time RT(t) of a task t specifies the time at which the task becomes available for
processing, i.e. the execution oft may not start before time RT(t). Function PT specifies
two things, (I) the resource sets capable of processing task t:

{rs E P(R) I (t, rs) E dom(PT)}

and (2) the processing time required to process t by a specific resource set r s:

PT((t,rs))

To clarify this definition we present a small example.

Example: a job-shop
Consider a job-shop where two jobs { J1, J2} have to be processed by two machines { M1, M2}.
Job J1 requires two operations A and B. Operation A is processed by machine M1 fol
lowed by operation B processed by machine M2. The processing time of both operations
is equal to 3 minutes. Job J2 requires only one operation C. This operation can be pro
cessed by one machine M1 or both machines at the same time (Le. M1 and M2). Pro
cessing operation C by machine M1 takes 5 minutes, processing operation C by machine
M1 and machine M2 takes only 2 minutes. Both jobs J1 and J2 enter the jobshop at time
zero.

1 A f+ B denotes the set of all partial functions from A to B. peA) is the powerset of A.

3

The corresponding scheduling problem SP = (T, R, PRE, TS, RT, PT) is specified as
follows:

T - {JIA, JIB, J2c}

R - {Ml,M2}

PRE - {(JI A, JIB)}

TS - R+ U {O}
RT(JIA) - RT(JIB) = RT(J2c) = 0

dom(PT) - {(JIA, {Ml}), (JIB, {M2}), (J2c, {Ml}),

(J2c, {Ml, M2})}

PT((JI A, {Ml}» - 3

PT(JIB,{M2}» - 3

PT((J2c, {Ml}» - 5

PT(J2c , {Ml, M2}» - 2

Each operation corresponds to a task. The precedence relation specifies the constraint that
the operations in job Jl have to be processed in a specific order. The domain of function
PT signifies the resource sets able to process a specific operation. The processing times
are also specified by PT.

Assumptions
Although definition 1 is quite general we have made a number of assumptions about the
structure of a scheduling problem:

1. No resource may process more than one task at a time.

2. Each resource is continuously available for processing.

3. No pre-emption. i.e. each operation. once started. must be completed without inter
ruptions.

4. The processing times are independent of the schedule. Moreover. the processing
times are fixed and known in advance.

A schedule is an allocation of resources to tasks over time. Such a schedule can be rep
resented by a function sET (P(R) x TS). i.e. for each task it is specified when it
is processed by which resources. 1ft is a task and (rs, st) E s(t). then t is processed by
resource set rs starting at time st. Note that given a schedule and a task t. we can define
(1) st(t): the start time oft. (2) ct(t): the completion time oft and (3) ra(t): the resource
set that is used to process t.
A schedule sET (P(R) x TS) isfeasible if the following constraints are satisfied:

1. precedences are obeyed: V(t,t')EPRE ct(t) ::; st(t')

2. release times are obeyed: VtET st(t) ~ RT(t)

4

3. valid resource sets are used: VtET (t, ra(t)) E dom(PT)

4. a resource cannot be used to process multiple tasks at the same time:
Vt,t'ET (ra(t) n ra(t') "I- 0) => (ct(t) ::; st(t') V ct(t') ::; st(t))

Consider the job-shop example: schedule Sj = {(JI A , ({MI}, 0)), (Jl B , ({M2}, 3)),
(J2c, ({ MI}, 3))} is a feasible schedule. In the remainder we will only consider feasible
schedules.

Performance measures
There are numerous objectives in scheduling. Therefore, there are dozens of sensible per
formance measures. In this paper only a few of them are discussed. For summary of these
measures, the reader is referred to French [10] and Baker [5].
First we define an additional concept: the due-date of a task. The due-date dt of a task t,
is the desired completion time of t.
The flow-time of a task t (Ft) is the time between the release of t and the completion of t,
i.e. Ft = ct(t) - RT(t). The lateness L t of a task t is defined as follows: L t = ct(t) - dt.

The tardiness Tt of t only considers 'tardy' tasks, i.e. Tt = max(Lt, 0). Typical perfor
mance measures are the average flow-time of tasks, the average lateness of tasks and the
average tardiness of tasks. A related performance measure is the makespan of a set of tasks
M = maxtET ct(t). In a job-shop the makespan is equal to the total production time. A
straightforward objective is to minimize the makespan. Note that for the job-shop exam
ple, schedule Sj has a makespan of 8. Since all other feasible schedules have a makespan
of at least 8, schedule S j is optimal.
There are many other reasonable objectives, e.g. minimize the number of tardy tasks, min
imize the number of waiting tasks, etc.

3 Timed Petri nets

Historically speaking, Petri nets originate from the early work of Carl Adam Petri ([20]).
Since then the use and study of Petri nets has increased considerably. For a review of the
history of Petri nets and an extensive bibliography the reader is referred to Murata [18],
The classical Petri net is a directed bipartite graph with two node types called places and
transitions. The nodes are connected via directed arcs. Connections between two nodes
of the same type are not allowed. Places are represented by circles and transitions by bars.
Places may contain zero or more tokens, drawn as black dots. The number of tokens may
change during the execution of the net. A place p is called an input place of a transition
t if there exists a directed arc from p to t, P is called an output place of t if there exists a
directed arc from t to p.
We will use the net shown in figure I to illustrate the classical Petri net model. This Petri
net models a machine which processes jobs and has two states (free and busy). There are
four places (in,free, busy and out) and two transitions (start andfinish). In the state shown
in figure I there are four tokens; three in place in and one in place free. The tokens in
place in represent jobs to be processed by the machine. The token in place free indicates
that the machine is free and ready to process a job. If the machine is processing a job, then

5

busy

out
finish

free

Figure 1: A Petri net which represents a machine.

busy

~}--
in out

finish
free

Figure 2: Transition start has fired.

there are no tokens infree and there is one token in busy. The tokens in place out represent
jobs which have been processed by the machine. Transition start has two input places (in
andfree) and one output place (busy). Transitionfinish has one input place (busy) and two
output places (out andfree).
A transition is called enabled if each of its input places contains at least one token. An
enabled transition can fire. Firing a transition t means consuming tokens from the input
places and producing tokens for the output places, i.e. t 'occurs'.
Transition start is enabled in the state shown in figure I, because each of the input places
(in andjree) contains a token. Transitionfinish is not enabled because there are no tokens
in place busy. Therefore, transition start is the only transition that can fire. Firing transi
tion start means consuming two tokens, one from in and one fromjree, and producing one
token for busy. The resulting state is shown in figure 2. In this state only transitionfinish is
enabled. Hence, transition finish fires and the token in place busy is consumed and two to
kens are produced, one for out and one forfree. Now transition start is enabled, etc. Note
that as long as there are jobs waiting to be processed, the two transitions fire alternately,
i.e. the machine modelled by this net can only process one job at a time.

Adding time
For real systems it is often important to describe the temporal behaviour of the system, i.e.
we need to model durations and delays. Since the classical Petri net is not easily capable
of handling quantitative time, we add a timing concept. There are many ways to introduce
time into the classical Petri net ([2)). In this paper a timing mechanism is used where time
is associated with tokens, and transitions determine delays.
Each token has a timestamp which models the time the token becomes available for con
sumption. Since these timestamps indicate when tokens become available, a transition
becomes enabled the earliest moment for which each of its input places contains a token
which is available. The timestamp of a produced token is equal to the firing time plus the

6

firing delay of the corresponding transition. Consider the net shown in figure 1. If place
in contains one token with timestamp 1 and place free contains a token with timestamp 0,
then transition start becomes enabled at time 1. If the firing delay of start is equal to 3,
then the produced token for place busy has timestamp 1 +3=4.
Firing is atomic, i.e. the moment a transition consumes tokens from the input places the
produced tokens appear in the output places. However, because of the firing delay it takes
some time before the produced tokens become available for consumption.
This results in the following definition of a timed Petri net.

Definition 2
A timed Petri net is a six tuple TPN = (P, T, J, 0, TS, D) satisfying the following re
quirements:

(i) P is a finite set of places.

(ii) T is a finite set of transitions.

(iii) JET -> P(P) is a function which defines the set of input places of each transi
tion.

(iv) 0 E T -> P(P) is a function which defines the set of output places of each tran
sition.

(v) T S is the time set.

(vi) DE T -> TS is a function which defines the firing delay of each transition.

The state of a timed Petri net is given by the distribution of tokens over the places and
the corresponding timestamps. Firing a transition results in a new state. This way we can
generate a sequence of states 80, 81, ... 8n such that 80 is the initial state and 8i+1 is the state
reachable from 8i by firing a transition. Transitions are eager, i.e. they fire as soon as pos
sible. If several transitions are enabled at the same time, then any of these transitions may
be the next to fire. Therefore, in general, many firing sequences are possible. Let 80 be the
initial state of a timed Petri net. A state is called a reachable state if and only if there ex
ists a firing sequence 80, 81, ... 8 n which 'visits' this state. A terminal state is a state where
none of the transitions is enabled, i.e. a state without successors.

4 Mapping scheduling problems onto Petri nets

To show that timed Petri nets can be used to model and analyse scheduling problems, we
provide a translation from an arbitrary scheduling problem to a 'suitable' timed Petri net.
This means that we have to map concepts such as tasks, resources and precedences onto
places and transitions.

Given a task t we identify three stages: (1) t is waiting to be processed, (2) t is being pro
cessed and (3) t has been processed. Therefore, we identify two important 'milestones':

7

SPt
i ~I ~ bPt 1---

: Sf, CIt , ,
CPt

,-----------------------------,

Figure 3: Task t.

the start time and completion time of t. Basically, figure 3 shows how we model a task t in
terms of a timed Petri net. Transitions stt and ctt represent the beginning and termination
of t respectively. The places SPt. bpt and CPt correspond to the stages just mentioned. Ini
tially, thereis one token in SPt with timestamp RT(t), the release time oft. Since the token
in SPt becomes available at time RT(t), transition stt cannot fire before the release time
of task t. The firing delay of stt is equal to the processing time of task t given a specific
resource set.

•)---;,..---;oo(

SPt
SIt

bPt CPt

Figure 4: Resource T.

Each resource r is modelled by a place frr. Initially, frr contains one token. Figure 4
shows a resource r which can be used to process a task t. Transition stt 'claims' the re
source when the execution of t starts, transition ctt 'releases' the resource when t termi
nates.

0~~It-;ol
SPt bPt

o
CPt

SIt

.1---

,-----------

'0: , , , , , , , , , ,
pre<t,,'>:

CIt

_'mIOf----+ll--' ~I--~Io
bpt' CPt'

ct,'

Figure 5: Precedence constraint (t, t').

8

Precedence constraints are modelled by adding extra places. Figure 5 shows the situation
where task t precedes task t', i.e. the execution of task t has to be completed before the
execution of task t' may start. Place pre(t,t') prevents stt' from firing until ctt fires. Note
that places are used to model the stages of a task, resources and precedences.

st<t, rII> bP<t,(rJ/> ct<t, rII>

st<t,{rl,r2}>

Figure 6: A task with three possible resource sets.

Thus far, we ignored the fact that a task may be processed by one of multiple resource sets.
Figure 6 shows how to model this situation. For each resource set r s capable of processing
task t, we introduce a place bP(t,rs) and two transitions st(t,rs) and ct(t,rs). Figure 6 shows
that task t can be processed by one of the following resource sets: {rl}, {r2} and{rl, r2}.
Note that there is only one 'start place' SPt and one 'completion place' CPt.

Consider the job-shop example given in section 2. Recall that there are three tasks: JI A ,

JIB and J2c and two resources: MI and M2. Task JI A and task JIB have to be pro
cessed by MI and M2 respectively. Task J2c may be processed by MI or MI and M2.
The corresponding Petri net is shown in figure 7. (The names of places and transitions
have been omitted.)

The following definition formalizes the 'recipe' just given.

9

Definition 3
Given scheduling problem SP = (T, R, PRE, T S, RT, PT) we define the corresponding
timed Petri netTPN = (P, T, Y, 0, TS, D) as follows:

P = {bP(t,rs) I (t, rs) E dom(PT)} U

{sPt It E T} U

{cpt It E T} U

{frr IrE R} U

{pre(t,t') I (t, t') E PRE}

T - {st(t,rs) I (t, rs) E dom(PT)} U

{ct(t,rs) I (t, rs) E dom(PT)}

and for any task t E T and resource set rs E P(R) such that (t, rs) E dom(PT):

Y(st(t,rs) - {SPt} U

{frrlrER" rErS}U

{pre(t',t) It' E T " (t', t) E PRE}

Y(ct(t,rs) - {bP(t,rs) }
O(st(t,rs) - {bP(t,rs)}

O(ct(t,rs) - {cpt} U

{frrlrER" rErs}U

{pre(t,t') I t' E T " (t, t') E PRE}
TS - TS

D(st(t,rs) - PT((t, rs)

D(ct(t,rs) - 0

This definition shows how to model a scheduling problem in terms of a timed Petri net.
The initial state of the net is as follows. For each task t, place SPt contains one token with
timestamp RT(t). For each resource r, place frr contains one token with timestamp O.
All other places are empty.
We can give an upper bound for the size of the constructed timed Petri net T P N: ~T2UR +
2~T + ~R + (~T)2 places and 2~T2UR transitions. However, a typical Petri net representing
a scheduling problem with ~T tasks and ~R resources contains 4~T + ~R places and 2~T
transitions.

We can use the constructed timed Petri net to calculate feasible schedules. Each firing
sequence resulting in a terminal state, represents a possible schedule. Note that these firing
sequences have length 2~T + 1. Given such a firing sequence, the resulting terminal state
is as follows. For each task t, place CPt contains one token with timestamp ct(t). For each
resource r, place f r r contains one token with a timestamp equal to the completion time of
the last task processed by r. All other places are empty.

10

JIB

J2c

Figure 7: The job-shop scheduling problem.

It is easy to verify that the schedule represented by such a firing sequence is feasible, i.e.

• precedences are obeyed: the places pre(t,t') take care of this,

• release times are obeyed: transition st(t,ra) cannot fire before RT(t),

• valid resources sets are used: transition st(t,rs) 'claims' all resources in the resource
set rs,

• resources cannot be used to process two tasks at the same time: transition st(t,rs)

removes all tokens from the places frr with r E rs, these tokens are returned the
moment task t is completed.

Although each firing sequence of length 2~T + 1 corresponds to a feasible schedule, the
opposite is not true, i.e. there are feasible schedules which do not correspond to any firing
sequence. This is a consequence of the fact that transitions are eager to fire, i.e. they fire
as soon as possible. If we omit this requirement, we have a one-to-one correspondence
between the set of feasible schedules and the set of possible firing sequences (of length
2~T + 1).

5 Analysis

After modelling a scheduling problem in terms of a timed Petri net, an obvious question is
"What can we do with the Petri net model?". A major strength of Petri nets is the collection
of supporting analysis methods. In this section we discuss the usefulness of these analysis
methods in the context of scheduling. First, we will discuss the application of analysis
techniques to derive structural properties of the net. Secondly, we will focus on methods
to analyse the dynamic behaviour of the constructed timed Petri net.

11

5.1 Structural properties

Several analysis methods have been developed to find and verify structural properties of
classical Petri nets (cf. [17, 18, 21)). Here we discuss place and transition invariants.
Place and transition invariants are powerful tools for studying structural properties of Petri
nets.
A place invariant (P-invariant) is a weighted token sum, i.e. a weight is associated with
every token in the net. This weight is based on the location (place) of the token. A place
invariant holds if the weighted token sum of all tokens remains constant during the execu
tion of the net. Consider for example the net shown in figure 1. The following two place
invariants hold for this net; (l)/ree + busy = 1 and (2) in + busy + out = 3. The first invari
ant says thatthe total number of tokens in the places/ree and busy is equal to 1. This means
that the machine is either free of busy. The second invariant states that the total number of
tokens in the places in, busy and out is equal to 3, the initial number of tokens in in. This
implies that no jobs' get lost' , i.e. a conservation of jobs. The support of an invariant is the
set of places with a non-zero weight, e.g. the support of/ree + busy = 1 is {tree,busy}.
Given a Petri net which corresponds to a scheduling problem, we find place invariants
telling that there is a conservation of tasks and resources. These place invariants are rather
trivial. However, we can also focus on place invariants having a support which is a subset
of {bP(t,rs) I (t,rs) E dom(PT)} U {pre(t,t') I (t,t') E PRE}. If we find an invariant
with such a support, then the weighted-token-sum in these places is constant. Since these
places are empty in the initial state, the weighted-token-sum remains zero. Each place in
the support of such an invariant will never contain tokens. Therefore, there are no feasible
schedules because there are conflicting precedences. Moreover, there is a one-on-one cor
respondance between conflicting precedences and place invariants with a support which is
a subset of {bP(t,rs) I (t,rs) E dom(PT)}U{pre(t,t') I (t,t') E PRE}.

Result 1: Place invariants can be used to find conflicting precedences.

We can also use place invariants to find redundant precedence constraints. For details we
refer to Peters [19].

Result 2: Place invariants can be used to remove redundant precedences.

Transition invariants (T-invariants) are the duals of place invariants and the basic idea be
hind them is to find firing sequences with no effects, i.e. firing sequences which reproduce
the initial state. There are no transition invariants that hold for a net constructed by follow
ing the 'recipe' discussed in section 4. Therefore, they are not interesting in the context of
scheduling.
Several algorithms have been developed to calculate place and transition invariants effi
ciently (e.g. Martinez and Silva [17)).

There are also techniques to verify whether a Petri net is connected. A net is said to be
connected if and only if each place or transition is connected to any other place or transi
tion, ignoring the direction of the arcs. If a net is not connected it can be decomposed into

12

a number of separate subnets.
If a Petri net which corresponds to a scheduling problem is not connected, then we are able
to split the scheduling problem into a number of 'independent' scheduling problems.

Result 3: If possible, we can use the Petri net representation to split a scheduling problem
into a number of 'independent' scheduling problems.

Many other analysis methods have been developed for the analysis of specific structural
properties. However, at this point they seem to be irrelevant in the context of scheduling.
For more details, we refer to Peters [19].

5.2 Behavioural properties

There are several methods to analyse the dynamic behaviour of a timed Petri net (cf. [2,
3,6,7]).

By computing the reachability graph, it is possible to analyse all possible firing sequences.
Recall that for a net representing a scheduling problem, each of these firing sequences cor
responds to a feasible schedule. Therefore, we can use the reachability graph to generate
many feasible schedules. Unfortunately, the reachability graph cannot be used to generate
all feasible schedules. In fact, we can only generate eager schedules. An eager schedule
assigns resources to tasks as soon as possible, i.e. if a task can be executed by a specific
resource set and each resource in this resource set is free, then the resource set is allocated
to this task and the processing starts immediately.

Result 4: We can use the reachability graph to find all eager schedules.

If we consider all schedules generated by the reachability graph with respect to some per
formance measure, then we are able to determine an optimal eager schedule. However,
there may be non-eager schedules surpassing such an optimal eager schedule (see sec
tion 7). If we omit the requirement that transitions fire as soon as possible, then we can
use the reachability graph to determine a truly optimal schedule. However, if we omit the
eagerness requirement, the reachability graph 'explodes'. In Carlier et al. [7] this problem
is dealt with for a specific class of scheduling problems.

In the remainder of this section we restrict ourselves to timed Petri nets with eager tran
sitions, i.e. we do not consider non-eager schedules. Nevertheless, for large scheduling
problems the reachability graph may still be too large. There are several approaches to
(partially) solve this problem. Before discussing some of these approaches, we focus on
the construction process of the reachability graph.
The reachability graph of a timed Petri net is constructed as follows. We start with an initial
state s. Then we calculate all states reachable from s by firing a transition. For each of
these states we calculate the states reachable by firing a transition, etc. Each node in the

13

Figure 8: A reachability graph.

reachability graph corresponds to a reachable state and each arc corresponds to the firing
of a transition (see figure 8).
One way to reduce the size of the reachability graph is to allow only a limited number of
outgoing arcs for each node, i.e. if there are too many successor nodes, we only select a
subset of them (randomly).
Another approach is to omit the nodes which are not very 'promising', e.g. if a node cor
responds to a partial schedule with a relatively large makespan, we do not consider its suc
cessors. We can also omit nodes that correspond to a partial schedule which violates one
ofthe due-dates.
Finally, we can use heuristics to reduce the number of outgoing arcs, e.g. if we can allocate
a resource to a large task or a small task, then we select the small task. Note that we can
use the priority rules for rule based scheduling (cf. Haupt [11 D. Typical priority rules
are: SPT (shortest processing time), MWKR (most work remaining), LWKR (least work
remaining), DO (earliest due-date), etc. It is quite easy to extend the timed Petri net model
defined in section 3 with priorities, i.e. a priority is assigned to each transition. If several
transitions are enabled at the same time, then the transition with the highest priority will
fire first. If several transitions having equal priorities are enabled at the same time, then
any of these transitions may be the next to fire. Extending the timed Petri net model with
priorities, facilitates the modelling of priority rules such as SPT, MWKR, LWKR, DO.
Moreover, we can still use some of the standard Petri net tools.
If we omit the nodes which are not very 'promising' or use heuristics like the SPT-rule, then
we are able to construct a reachability graph of.limited size. We can use this reachability
graph to find feasible schedules. Note that the makespan of these schedules represents an
upperbound for the makespan of the scheduling problem.

Result 5: By constructing only a part of the reachability graph, we can find upperbounds
for the makespan of a scheduling problem.

It is also possible to find a lowerbound for the makespan of a scheduling problem. Sim
ply remove all Jrr-places and construct the reachability graph. By inspecting the termi
nal states of the reachability graph, we can deduce a lowerbound for the makespan of the
scheduling problem. Although the size ofthe reachability graph is limited, it may be worth-

14

CPt

CPt'

Figure 9: Resource r can process multiple tasks at a time.

while to use the ATCFN analysis method (Van der Aalst [2]) to find the same lowerbound.

Result 6: We can also find a lowerbound for the makespan of a scheduling problem.

It is also possible to use simulation to analyse the dynamic behaviour of a timed Petri
net which models a scheduling problem. Such a timed Petri net can be simulated by ran
domly selecting an enabled transition to be fired. Each subrun results in a terminal state
which corresponds to a feasible schedule. In case of deterministic processing times it is
not worthwhile to use simulation. However, if we want to test the robustness of a schedule,
simulation may be useful.

Result 7: We can use simulation to test the robustness of a schedule.

The results mentioned in this section show that we can use standard Petri-net techniques
to analyse a scheduling problem. Therefore, we can use standard Petri-net tools to analyse
scheduling problems. We have developed a tool which automatically translates a schedul
ing problem into a timed Petri net. We have experimented with two Petri-net based analysis
tools: IAT and INA.IAT is part of the ExSpect workbench and allows for the calculation
of invariants and (condensed) reachability graphs ([2,4]). INA is an analysis tool which
allows for many analysis methods. INA can be used to determine more than 40 different
properties (Starke [22]). Note that we use standard Petri net tools without developing new
software!

6 Extensions

In section 2 we defined what we mean by a scheduling problem. Although definition 1 is
quite general, we made a number of assumptions. However, only few scheduling problems
encountered in practise obey each of these assumptions. Therefore, we are interested in
the relaxation of some of these assumptions. In this section we show the impact of these
relaxations on the corresponding Petri net.

15

First of all, we assumed that each resource can process only one task at a time. If this as
sumption is dropped, then we have to deal with resources having a specific capacity and
tasks requiring only a part of this capacity. It is easy to model this in terms of a Petri net.
Consider two tasks t and t' and a resource r. Both tasks have to be processed by r. Re
source r has a capacity of 6, task t requires a capacity of 2 and task t' requires a capacity of
3. Figure 9 shows how this can be modelled in terms of a timed Petri net. Initially, place
frr contains 6 tokens. There are two input arcs from frr to sp, indicating that task t re
quires 2/6 of the capacity ofr, i.e. transition st, can only fire if there are at least two tokens
in place f r r. Processing t starts with the consumption of two tokens from f r r (by st,) and
finishes with the production of two tokens for f r r (by ctt).

We also assumed that each resource is continuously available for processing. It is easy to
introduce 'release times' for resources; initially the token in a place f r r has a timestamp
equal to the release time of the resource r. Dealing with time-windows for the availability
of resources is more complicated but not impossible.

If we allow pre-emption, then a task t is no longer represented by the subnet shown in fig
ure 3. To handle this relaxation we have to split tasks into smaller tasks. Each subtask
corresponds to a phase in the processing of task t. A task is allowed to pre-empt the mo
ment it switches from one phase to another.

In section 2 we assumed that processing times are known and fixed, i.e. the scheduling
problem is deterministic. The approach described in this paper can easily be extended to
non-deterministic scheduling problems by using another timed Petri net model. There are
timed Petri net models with stochastic delays (cf. Marsan et al. [16, 15]) or delays de
scribed by intervals (cf. Van de Aalst [2, 3] and Berthomieu and Diaz [6]). By mapping
the scheduling problem onto such a Petri net model, we can handle problems for which
uncertainty is a dominant factor.

The approach presented in this paper allows for many other extensions, e.g. more sophis
ticated precedence constraints, set-up times, coupling, etc. In fact, most of the results pre
sented in section 6 also hold for the relaxations discussed in this section.

7 Case: 10 x 10

We will use the notorious scheduling problem described by Fisher and Thompson in [9] to
illustrate our approach. This job-shop scheduling problem is concerned with the allocation
of 10 machines over 10 jobs each requiring 10 operations, i.e. lOx 10 operations have to
be processed by 10 machines. Each row in table 1 corresponds to a job and lists a sequence
of machines (M) and processing times (PT). The first operation required by job 0 has to be
processed by machine 0 and the processing time is 29 time units. The second operation is
processed by machine 1 and the processing time is 78 time units, etc. The problem is to
find a schedule such that the rnakespan, i.e. the maximal flow-time, is minimal. Although

16

Job ill. M PT M PT M PT M PT M PT M PT M PT M

• • 29 1 78 2 , 3 36 4 4' , II • 62 7 " • 44 , 21
1 • 43 2 90 4 " , II 3 69 1 28 • 46 , 46 7 72 • 30
2 1 91 • " 3 39 2 74 • 90 , I. 7 12 • 89 , ., 4 33
3 1 81 2 " • 71 4 99 • , • " 7 " 3 98 , 22 , 43
4 2 14 • • 1 22 ,

" 3 26 4 69 • 21 7 4' , 72 • " , 2 84 1 2 , " 3 " • 48 , 72 • 47 • " 4 • 7 " • 1 46 • 37 3 " 2 13 • 32 , 21 , 32 • 89 7 30 4 " 7 2 31 • .. 1 46 , 74 4 32 6 .. • 19 , 48 7 36 3 79

• • " 1 69 3 "
,

" 2 "
, II • 40 7 89 4 26 • 74 , 1 " • 13 2 61 • 7 • .. , " , 47 3 " 4 90 7 "

Table 1: The 10 x 10 scheduling problem: 10 x 10 operations have to be processed by 10
machines.

this problem was formulated in 1963, it has defied solution for more than twenty years. In
1989, Carlier and Pinson [8] proved 930 to be the minimal makespan.

First, we formulate the 10 x 10 problem in terms of the terminology given in section 2.
There are 100 tasks, 10 for each job. There are 10 resources, one for each machine. There
are 90 precedences, 9 for each job. Each task has a release time equal to O. Each task
requires a specific machine to be processed and the processing times are as indicated in
Fisher and Thompson [9].
Then, we map the scheduling problem onto a timed Petri net (see definition 3). We have
used the Petri net based tool ExSpect ([4D to construct this net automatically. The corre
sponding timed Petri net contains 400 places and 200 transitions.

We will use IAT, one of the analysis tools of ExSpect ([2, 4 D, to analyse the constructed
timed Petri net. IAT is based on a number of Petri net based analysis techniques (e.g. place
and transition invariants, reachability graphs, reduction techniques, etc.).
The constructed net is connected, i.e. the lOx 10 problem cannot be split into a number of
smaller problems (see section 5). Moreover, there are no place invariants with a support
which is a subset of {bp(t,ro) I (t, rs) E dom(PT)} U {pre(t,t') I (t, t') E PRE}, i.e.
there are no conflicting precedences. These results are not very surprising for this well
structured scheduling problem. Moreover, in this case we are much more interested in
schedules with a small makespan.
It is very easy to calculate an upper bound for the minimal makespan of the lOx 10 prob
lem; simply generate a reachability graph where each node is allowed to have only one
successor. In this case we find one terminal state. This state corresponds to a feasible
schedule. The first upper bound we found was 1190, IAT calculates this upper bound in 15
seconds. If we had been able to calculate the entire reachability graph we could have cal
culated an optimal non-eager schedule. Unfortunately, in this case the reachability graph
is too large to construct. We also used priority rules to obtain a smaller reachability graph.
This resulted in smaller upper bounds. However, even the best priority rules we have tested
result in schedules with a makespan of more than 1100.
We used the ATCFN analysis method (Van der Aalst [2D to calculate a lower bound of 691
for the makespan of any feasible schedule. This takes about 14 seconds.

We also tested an approach which adds extra precedence constraints. This approach re
sulted in a schedule with a makespan equal to 1023. For any two tasks t and t' we added

17

the precedence constraint that t has to complete before t' starts if and only if (1) there is
more work remaining for the job where t belongs to than the work remaining for the job
where t' belongs to and (2) the processing time of t is rather small. Without going into
details, we postulate that this approach outachieves the priority rules used in rule based
scheduling. However, it does not lead to schedules having a makespan close to 930. It
takes about 22 seconds to calculate the schedule with a makespan of 1023.
Note that we obtained these results by using standard Petri net tools, i.e. without develop
ing special purpose algorithms or software.

8 Conclusion

The approach presented in this paper shows that it is possible to model many scheduling
problems in terms of a timed Petri net. In fact, we have formulated a recipe for mapping
scheduling problems onto timed Petri nets. This recipe shows that the Petri net formalism
can be used to model tasks, resources and precedence constraints.

By mapping a scheduling problem onto a timed Petri net, we are able to use Petri net theory
to analyse the scheduling problem. We can use Petri net based analysis techniques to de
tect conflicting precedences, determine lower and upper bounds for the minimal makespan,
etc. By inspecting (parts of) the reachability graph, we can generate many feasible sched
ules. Although it is likely that these analysis techniques will never beat the scheduling
algorithms described in literature, we can use standard Petri net tools without developing
new software.

Last but not least, we hope that the link between scheduling and Petri nets will stimulate
furtherresearch in scheduling and Petri net analysis. On the one hand, Petri net based anal
ysis techniques have to be improved to deal with the computational complexity of schedul
ing problems. On the other hand, modelling scheduling problems in terms of timed Petri
nets will bring new scheduling problems not considered by existing solution approaches.

References

[1] W.M.P. VAN DER AALST, Modelling and Analysis of Complex Logistic Systems,
in Integration in Production Management Systems, H.I. Pels and J.C. Wortmann,
eds., vol. B-7 ofIFIP Transactions, Elsevier Science Publishers, Amsterdam, 1992,
pp.277-292.

[2] --, Timed coloured Petri nets and their application to logistics, PhD thesis, Eind
hoven University of Technology, Eindhoven, 1992.

[3] --, Interval Timed Coloured Petri Nets and their Analysis, in Application and The
ory of Petri Nets 1993, M. Ajmone Marsan, ed., vol. 691 of Lecture Notes in Com
puter Science, Springer-Verlag, New York, 1993, pp. 453-472.

18

[4] W.M.P. VAN DER AALST AND A.W. WALTMANS, Modelling Flexible Manufac
turing Systems with EXSPECT, in Proceedings of the 1990 European Simulation
Multiconference, B. Schmidt, ed., NUrnberg, June 1990, Simulation Councils Inc.,
pp. 330-338.

[5] K.R. BAKER, Introduction to Sequencing and Scheduling, Wiley & Sons, 1974.

[6] B. BERTHOMIEU AND M. DIAZ, Modelling and verification of time dependent sys
tems using Time Petri Nets, IEEE Transactions on Software Engineering, 17 (1991),
pp. 259-273.

[7] J. CARLIER, P. CHRETIENNE, AND C. GIRAULT, Modelling scheduling problems
with Timed Petri Nets, in Advances in Petri Nets 1984, G. Rozenberg, ed., vol. 188 of
Lecture Notes in Computer Science, Springer-Verlag, New York, 1984, pp. 62-82.

[8] J. CARLIER AND E. PINSON, An algorithmfor solving the job-shop problem, Man
agement Science, 35 (1989), pp. 164-176.

[9] H. FISHER AND G.L. THOMPSON, Probabilistic learning combinations of local job
shop scheduling rules, in Industrial Scheduling, IF. Muth and G.L. Thompson, eds.,
Prentice Hall, 1963.

[10] S. FRENCH, Sequencing and Scheduling: An Introduction to the Mathematics of the
Job-Shop, Wiley & Sons, 1982.

[11] R. HAUPT, A survey of priority rule-based scheduling, OR Spectrum, 11 (1989),
pp.3-16.

[12] K. JENSEN, Coloured Petri Nets. Basic concepts, analysis methods and practical
use., EATCS monographs on Theoretical Computer Science, Springer-Verlag, New
York, 1992.

[13] K. JENSEN AND G. ROZENBERG, eds., High-level Petri Nets: Theory and Applica
tion, Springer-Verlag, New York, 1991.

[14] E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN, AND D.B. SHMOYS, Se
quencing and scheduling: Algorithms and complexity, in Handbooks in Operations
Research and Management Science, Volume 4: Logistics of Production and Inven
tory, S.C. Graves, AH.G. Rinnooy Kan, and P. Zipkin, eds., North-Holland, Amster
dam, 1993.

[15] M. AJMONE MARSAN, G. BALBO, A. BOBBJO, G. CHJOLA, G. CONTE, AND
A. CUMANI, On Petri Nets with Stochastic Timing, in Proceedings of the Interna
tional Workshop on Timed Petri Nets, Torino, 1985, IEEE Computer Society Press,
pp.80-87.

[16] M. AJMONE MARSAN, G. BALBO, AND G. CONTE, Performance Models ofMul
tiprocessor Systems, The MIT Press, Cambridge, 1986.

19

[17] J. MARTINEZ AND M. SILVA, A simple andfast algorithm to obtain all invariants of
a generalised Petri Net, in Application and theory of Petri nets: selected papers from
the first and the second European workshop, C. Girault and W. Reisig, eds., vol. 52
ofInformatik Fachberichte, Berlin, 1982, Springer-Verlag, New York, pp. 301-310.

[18] T. MURATA, Petri Nets: Properties, Analysis and Applications, Proceedings of the
IEEE,77 (1989), pp. 541-580.

[19] N. PETERS, Analysis of scheduling problems by means of INAlExSpect, Master's the
sis, Eindhoven University of Technology, Eindhoven, 1994.

[20] C.A. PETRI, Kommunikation mit Automaten, PhD thesis,lnstitut fUr instrumentelle
Mathematik, Bonn, 1962.

[21] W. REISIG, Petri nets: an introduction, Prentice-Hall, Englewood Cliffs, 1985.

[22] P.H. STARKE,INA: Integrierter Netz Analysator, Handbuch, 1992.

20

Computing Science Reports

In this series appeared:

93/01

93f[Yl

93/03

93/04

93/05

93/06

93/fJ/

93/08

93/09

93/10

93/11

93/12

93/13

93/14

93/15

93/16

93/17

93/18

93/19

93/20

93/21

93/22

93/23

93/24

93/25

93/26

93/27

93/28

93/29

93/30

R. van Geldrop

T. Verhoeff

T. Verhoeff

E.H.L Aarts
I,H.M. Karst
P.I. Zwietering

J.C.M. Baeten
C. Verhoef

J.P. Veltkamp

P.O. Moerland

1. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

J.C.M. Baeten
J.A. Bergstra

J.C.M. Baeten
J.A. Bergstra
R.N. Bol

H. Schepers
J. Hooman

D. Alstein
P. van der Stok

C. Verhoef

0-1. Houben

F.S. de Boer

M. Codish
D.Dams
G. File
M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Gerth

W.M.P. van der Aalst

T. KIoks and D. Kratsch

F. Kamareddine and
R. Nederpelt

R. Post and P. De Bra

J. Deogun
T. KIoks
D. Kratsch
H. Milller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algoritluns: a case study into the synergy of program
ming methods, p. 36.

A cootinuous version of the Prisoner's Dilenuna, p. 17

Quicksort for linked lists, p. 8.

Detenninistic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour. p. 29

Exercises in Multiprogramming, p. g]

A Fonnal Detenninistic Scheduling Model for Hard Real-Time Executions in
DEDOS, p. 32

Systems Engineering: a Fonna! Approach
Part I: System Concepts, p. 72

Systems Engineering: a Fonnal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Fonna! Approach
Part ill: Modeling Methods, p. 101.

Systems Engineering: a Fonna! Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Fonnal Approach Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real· Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real· Time Reliable Multicast in the DEDOS system,
p.19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.2l.

A Process Algebra of Concurrent Constraint Programming, p. 15.

Freeness Analysis for Logic Programs. And Correctness, p. 24

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Time Distributed Systems.
p.31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine A .calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Pennutation and Other Graphs,
p. 11.

93131 W. KOrver

93132 H. ten Eikelder and
H. van Geldrop

93{33 1... Loyens and 1. Moonen

93134 I.C.M. Baeten and
I.A. Bergstra

93135 W. Ferrer and
P. Severi

93136 I.C.M. Baeten and
I.A. Bergstra

93{37 J. Brunekreef
J·P. Katoen
R. Koymans
S. Mauw

93138 C. Verhoef

93139 W.P.M. Nuijten
E.H.L Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

93/40 P.D.V. van der Slok
M.M.M,P J. Qaessen
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Walsen

93/45 E.J. Luit
1.M.M. Martin

93/46 T. KIoks
D. Kratsch
1. Spinrad

93/47 W. v.d. Aalst
P. De Bra
GJ. Houben
Y. Komaluy

93/48 R. Gerth

94/01 P. America
M. van def Kammen
R.P. Nederpelt
O.S. van Roosmalen
H.C.M. de Swart

94/02 F. Kamareddine
R.P. Nederpell

94/03 L.B. Hartman
K.M. van Hee

94/04 I.CM. Baeten
I.A. Bergstra

94/05 P. Thou
I. Hooman

94/06 T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

94/07 K.R. Apt
R. Bol

94/08 O.S. van Roosmalen

94/09 I.C.M. Baeten
I.A. Bergstra

Derivation of delay insensitive and speed independent CMOS circuits, using
directed commands and production rule sets, p. 40.

On the Correcrness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

ll.IAS, a sequential language for parallel matrix computations, p. 20.

Real Time Process Algebra with Infmitesimals, p.39.

Abstract Reduction and Topology. p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra, p. 17.

lob Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transfonners, p. 11.

Automatic Verification of Regular Protocols in P{f Nets, p. 23.

A taxomomy of finite automata construction algoritluns, p. 87.

A taxonomy of finite automata minimization algorithms, p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refmement, p. 20.

The object-oriented paradigm, p. 28.

Canonical typing and II-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Fonnal Specification and Compositional Verification of
an Atomic Broadcast Prolocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

,-.,

94/10 T. verhoeff

94/11 1. Peleska
C. Huizing
C. Petersohn

94/12 T. Kloks
D. Kralsch
H. Miiller

94/13 R. Seljee

94/14 W. Peremans

94/15 RJ.M. Vaessens
E.H.L Aarts
J.K. Lenstra

94/16 R.C. Backhouse
H. Doornbos

94/17 S.Mauw
M.A. Reniers

94/18 F. Kamareddine
R. Nederpelt

94/19 B.W. Watson

94/20 R. Bloo
F. Kamareddine
R. NedelJ"'lt

94{ll B.W. Watson

94/22 B.W. Watson

94123 S. Mauw and M.A. Reniers

94/24 D. Dams
O. Grumberg
R. Gerth

94/25 T. KIoks

94/26 R.R. Hoogerw<x>rd

94/27 S. Mauw and H. Mulder

94/28 C. W .A.M. van Overveld
M. Verhoeven

94/29 1. Hooman

94/30 I.C.M. Baeten
I.A. Bergstra
Gh. ~efanescu

94i31 B.W. Watson
R.E. Watson

94/32 JJ. Vereijken

94/33 T. Laan

94/34 R.8100
F. Kamareddine
R. Nederpelt

94/35 J.C.M. Baeten
S. Mauw

94/36 F. Kamareddine
R. NedelJ"'lt

94/37 T. Basten
R. Bo1
M. Voorhoeve

94/38 A. Bijlsma
C.S. Scholten

The testing Paradigm Applied to Network Structure. p. 31.

A Comparison of Ward & Mellor's Transfonnation
Schema with State- & Activitycharts. p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in Deductive Databases, p. 34.

Ups and Downs of Type Theory. p. 9.

Job Shop Scheduling by Local Search, p. 2i.

Mathematical Induction Made Calculational. p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refining Reduction in the Lambda Calculus, p. IS.

The perfonnance of single·keyword and multiple·keyword pattern matching
algorithms, p. 46.

Beyond p-Reduction in Cllurch's ,\ ---+, p. 22.

An introduction to the Fire engine: A C++ toolkit for F'mite automata and Regular
Expressions.

The design and implementation of the ARE engine:
A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving VCfL·, 3CfL· and CTL·, p. 28.

On the foundations of functional progranuning: a progranuner's point of view, p.
54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of [mite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer·Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A fonnalization of the Ramified Type Theory, p.40.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and II--conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point·free substiwtion, p. 10.

94/39 A. Blokhuis
T. KIoks

94/40 D. AIstein

94/41 T. KIoks
D. KralSch

94/42 J. Engelfriel
JJ. Vereijken

94/43 R.C. Backhouse
M. Bijsterveld

94/44 E. Brinksma J, Davies
R. Gerth S. Graf
W. Janssen B. Jonsson
S. Katz a.Lowe
M. Poe! A. Pouell
C. Rump J. Zwiers

94/45 GJ. Houben

94/46 R. Bloo
F. Kamareddine
R. Nederpelt

94/47 R.8100
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Constructi on Group

94/49 I.CM. Baeten
lA. Bergslra

94/50 H. Geuvers

94/51 T. KIoks
D. Kratsch
H. MUller

94/52 W. Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

95/01 JJ. Lukkien

95/02 M. Hezem
R. Bo1
J.F. Groote

95/03 I.C.M. Baeten
C. Verhoef

95/04 1. Hidders

95/05 P. Severi

95/06 T.W.M. Vossen
M.G.A. Verhoeven
H.M.M. ten Eikelder
E.H.L Aarts

95/07 G.A.M. de Bmyn
O.S. van Roosmalen

95/08 R. B100

95/09 J.C.M. Baeten
I.A. Bergstra

95/10 R.C. Backhouse
R. Verhoeven
O.Weber

On the equivalence covering number of splitgraphs, p. 4.

Distributed Consensus and Hard Real.Time Systems, p. 34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 1.

Category Theory as Coherently Constructive Lattice
Theory: An illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratieve Logistiek", p. 43.

The A -cube with classes of tenns modulo conversion,
p.16.

On II-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Nonnalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a small CommWlicationLibrary, p.16.

Formalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

An Isotopic Invariant for Planar Drawings of Ccrutected Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Strong Normalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

Mathlpad: A System for On-Line Prepararation of Mathematical
Documents, p. 15

95/11 R. Seljee

95/12 S. Mauw and M. Reniers

95/13 B.W. Watson and G. Zwaan

95/14 A. Poose, C. Verhoef,
S.F.M. Vlijmen (ed,.)

95/15 P. Niebert and W. Penczek

95/16 D. Dams, O. Grumberg. R. Gerth

95/17 S. Mauw and E.A. van der Meulen

95/18 F. Kamareddine and T. Laan

95/19 I.C.M. Baeten and I.A. Bergstra

95f}.O F. van Raamsdonk and P. Severi

95f}.l A. van Deursen

95f}.2 B. Arnold, A. v. Deursen, M. Res

Deductive Database Systems and integrity constraint checking, p. 36-

Empty Interworkings and Refinement
Semantics of Interworkings Revised. p. 19.

A taxonomy of sublinear multiple keyword pattern matching algorithms, p. 26.

De proceeding" ACP'95, p.

On the Connection of Partial Order logics and Partial Order Reductioo Methods.
p. 12.

Abstract htteJPretation of Reactive Systems: Preservation of CI'L*, p. 27.

Specification of lools for Message Sequence Clarts, p. 36.

A Reflection 00 Russell's Ramified Types and Kripke's Hierarchy of Truths,
p.14.

Discrete Time Process Algebra with Abstraction. p. 15.

On Nonnalisation. p. 33.

Axiomatiring Early and Late Input by Variable Elimination, p. 44.

An Algebraic Specification of a Language for Describing Financial Products,
p. 11.

	Abstract
	1. Introduction
	2. The general scheduling problem
	3. Timed Petri nets
	4. Mapping scheduling problems onto Petri nets
	5. Analysis
	5.1 Structural properties
	5.2 Behavioural properties
	6. Extensions
	7. Case: 10 x 10
	8. Conclusion
	References

