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Abstract. 

Timed Petri nets can be used to model and analyse scheduling problems. To support 
the modelling of scheduling problems, we provide a method to map tasks, resources 
and constraints onto a timed Petri net. By mapping scheduling problems onto Petri 
nets, we are able to use standard Petri net theory. In this paper we will show that we 
can use Petri net based tools and techniques to find conflicting and redundant prece­
dences, upper- and lowerbounds for the makespan, etc. This is illustrated by a Petri 
net based analysis of the notorious lOx 10 problem due to Fisher and Thompson [9]. 

Keywords: Scheduling, Timed Petri nets, Analysis of Petri nets. 

1 Introduction 

During the last two decades, much research has been done simultaneously on Petri nets 
and scheduling problems. The results achieved in both research areas have been applied 
to production systems,logistic systems and computer systems. Although scheduling tech­
niques and Petri nets focus on the same application domains, there has been little effort to 
put these activities in gear with each other. The aim of this paper is to provide a link be­
tween Petri nets and scheduling problems. 

The optimal allocation of scarce resources to tasks over time has been the prime subject 
of research on scheduling problems. Despite the inherent complexity of many scheduling 
problems, effective algorithms have been developed. However, most researchers focussed 
on the effectiveness of the algorithms, discarding the issue of flexibility. 
Research on Petri nets addresses the issue of flexibility; many extensions have been pro­
posed to facilitate the modelling of complex systems. Typical extensions are the addition 
of 'colour', 'time' and 'hierarchy' (cf. Jensen et al. [12, 13] and Van der Aalst [1]). Petri 
nets extended with these features are suitable for the representation and study of the com­
plex industrial systems of the 90's. These Petri nets inherit all the advantages of the clas­
sical Petri net, such as the graphical and precise nature, the firm mathematical foundation 
and the abundance of analysis methods. Moreover, adequate computer tools have been put 
on the market. These tools support both the modelling and analysis of scheduling prob­
lems. Therefore, it is interesting to investigate the application of Petri nets to scheduling. 

As we will show, it is relatively easy to map scheduling problems onto timed Petri nets. 
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However, the application of Petri net based analysis techniques to a scheduling problem 
represented by a timed Petri net is far from trivial! Therefore, we report 7 useful results. 
Each of these results shows how a specific aspect of a scheduling problem can be analysed 
by applying a standard Petri net based analysis technique. For example, we will show that 
we can find conflicting and redundant precedences, and upper- and lowerbounds for the 
makespan of a scheduling problem. 

The remainder of this paper is organized as follows. Section 2 describes the type of schedul­
ing problems we are going to address. Next, we define a timed Petri net model. This Petri 
net model has been extended with a timing concept. Section 4 is devoted to the mapping of 
scheduling problems onto timed Petri nets. The usefulness of the Petri net analysis tech­
niques in the context of scheduling is discussed in section 5. Section 6 discusses the flex­
ibility of the approach presented in this paper. Finally, this approach is applied to the no­
torious 10 x 10 problem due to Fisher and Thompson (9). 

2 The general scheduling problem 

Scheduling is concerned with the optimal allocation of scarce resources to tasks over time 
(Lawler et al. (14)). Scheduling techniques are used to answer questions that arise in 
production planning, project planning, computer control, manpower planning, etc. Many 
techniques have been developed for a variety of problem types. To fix the terminology, 
we begin by defining the 'general scheduling problem'. Many problem types fit into this 
definition. Moreover, some extensions are discussed in section 6. 
In essence, scheduling boils down to the allocation of resources to tasks over time. Some 
authors refer to resources as 'machines' or 'processors' and tasks are also called 'opera­
tions' or 'steps of ajob'. Resources are used to process tasks. However, it is possible that 
the execution of a task requires more that one resource, i.e. a task is processed by a resource 
set. Moreover, there may be multiple resource sets that are capable of processing a specific 
task. The processing time of a task is the time required to execute the task given a specific 
resource set. By adding precedence constraints it is possible to formulate requirements 
about the order in which the tasks have to be processed. We will assume that resources are 
always available, but we shall not necessarily assume the same for tasks. Each task has a 
release time, i.e. the time at which the task becomes available for processing. This leads 
to the following definition. 
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Definition 1 
A scheduling problem is a 6-tuple SP = (T, R, PRE, TS, RT, PT) satisfying the fol­
lowing requirements. 

(i) T is a finite set of tasks. 

(ii) R is a finite set of resources. 

(iii) PRE s::; TxT is a partial order, the precedence relation. 

(iv) T S is the time set. 

(v) RT E T -+ T S is a function which defines the release time of each task. 

(vi) PT E (T x P(R)) f> TS defines for each task t: ' 

(a) the resource sets capable of processing task t and 

(b) the processing time required to process t by a specific resource set. 

This definition specifies the data required to formulate a scheduling problem. The tasks 
are denoted by T and the resources are denoted by R. The precedence relation PRE is 
used to specify precedence constraints. If task t has to be processed before task t', then 
(t, t') E PRE, Le. the execution of task t has to be completed before the execution of 
task t' may start. TS is the time set. Nand R+ U {a} are typical choices for TS. The 
release time RT( t) of a task t specifies the time at which the task becomes available for 
processing, i.e. the execution oft may not start before time RT(t). Function PT specifies 
two things, (I) the resource sets capable of processing task t: 

{rs E P(R) I (t, rs) E dom(PT)} 

and (2) the processing time required to process t by a specific resource set r s: 

PT((t,rs)) 

To clarify this definition we present a small example. 

Example: a job-shop 
Consider a job-shop where two jobs { J1, J2} have to be processed by two machines { M1, M2}. 
Job J1 requires two operations A and B. Operation A is processed by machine M1 fol­
lowed by operation B processed by machine M2. The processing time of both operations 
is equal to 3 minutes. Job J2 requires only one operation C. This operation can be pro­
cessed by one machine M1 or both machines at the same time (Le. M1 and M2). Pro­
cessing operation C by machine M1 takes 5 minutes, processing operation C by machine 
M1 and machine M2 takes only 2 minutes. Both jobs J1 and J2 enter the jobshop at time 
zero. 

1 A f+ B denotes the set of all partial functions from A to B. peA) is the powerset of A. 

3 



The corresponding scheduling problem SP = (T, R, PRE, TS, RT, PT) is specified as 
follows: 

T - {JIA, JIB, J2c} 

R - {Ml,M2} 

PRE - {(JI A, JIB)} 

TS - R+ U {O} 
RT(JIA) - RT(JIB) = RT(J2c) = 0 

dom(PT) - {(JIA, {Ml}), (JIB, {M2}), (J2c, {Ml}), 

(J2c, {Ml, M2})} 

PT( (JI A, {Ml}» - 3 

PT(JIB,{M2}» - 3 

PT( (J2c, {Ml}» - 5 

PT(J2c , {Ml, M2}» - 2 

Each operation corresponds to a task. The precedence relation specifies the constraint that 
the operations in job Jl have to be processed in a specific order. The domain of function 
PT signifies the resource sets able to process a specific operation. The processing times 
are also specified by PT. 

Assumptions 
Although definition 1 is quite general we have made a number of assumptions about the 
structure of a scheduling problem: 

1. No resource may process more than one task at a time. 

2. Each resource is continuously available for processing. 

3. No pre-emption. i.e. each operation. once started. must be completed without inter­
ruptions. 

4. The processing times are independent of the schedule. Moreover. the processing 
times are fixed and known in advance. 

A schedule is an allocation of resources to tasks over time. Such a schedule can be rep­
resented by a function sET ..... (P(R) x TS). i.e. for each task it is specified when it 
is processed by which resources. 1ft is a task and (rs, st) E s(t). then t is processed by 
resource set rs starting at time st. Note that given a schedule and a task t. we can define 
(1) st(t): the start time oft. (2) ct(t): the completion time oft and (3) ra(t): the resource 
set that is used to process t. 
A schedule sET ..... (P(R) x TS) isfeasible if the following constraints are satisfied: 

1. precedences are obeyed: V(t,t')EPRE ct(t) ::; st(t') 

2. release times are obeyed: VtET st(t) ~ RT(t) 
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3. valid resource sets are used: VtET (t, ra(t)) E dom(PT) 

4. a resource cannot be used to process multiple tasks at the same time: 
Vt,t'ET (ra(t) n ra(t') "I- 0) => (ct(t) ::; st(t') V ct(t') ::; st(t)) 

Consider the job-shop example: schedule Sj = {(JI A , ({MI}, 0)), (Jl B , ({M2}, 3)), 
(J2c, ({ MI}, 3))} is a feasible schedule. In the remainder we will only consider feasible 
schedules. 

Performance measures 
There are numerous objectives in scheduling. Therefore, there are dozens of sensible per­
formance measures. In this paper only a few of them are discussed. For summary of these 
measures, the reader is referred to French [10] and Baker [5]. 
First we define an additional concept: the due-date of a task. The due-date dt of a task t, 
is the desired completion time of t. 
The flow-time of a task t (Ft ) is the time between the release of t and the completion of t, 
i.e. Ft = ct(t) - RT(t). The lateness L t of a task t is defined as follows: L t = ct(t) - dt. 

The tardiness Tt of t only considers 'tardy' tasks, i.e. Tt = max(Lt, 0). Typical perfor­
mance measures are the average flow-time of tasks, the average lateness of tasks and the 
average tardiness of tasks. A related performance measure is the makespan of a set of tasks 
M = maxtET ct(t). In a job-shop the makespan is equal to the total production time. A 
straightforward objective is to minimize the makespan. Note that for the job-shop exam­
ple, schedule Sj has a makespan of 8. Since all other feasible schedules have a makespan 
of at least 8, schedule S j is optimal. 
There are many other reasonable objectives, e.g. minimize the number of tardy tasks, min­
imize the number of waiting tasks, etc. 

3 Timed Petri nets 

Historically speaking, Petri nets originate from the early work of Carl Adam Petri ([20]). 
Since then the use and study of Petri nets has increased considerably. For a review of the 
history of Petri nets and an extensive bibliography the reader is referred to Murata [18], 
The classical Petri net is a directed bipartite graph with two node types called places and 
transitions. The nodes are connected via directed arcs. Connections between two nodes 
of the same type are not allowed. Places are represented by circles and transitions by bars. 
Places may contain zero or more tokens, drawn as black dots. The number of tokens may 
change during the execution of the net. A place p is called an input place of a transition 
t if there exists a directed arc from p to t, P is called an output place of t if there exists a 
directed arc from t to p. 
We will use the net shown in figure I to illustrate the classical Petri net model. This Petri 
net models a machine which processes jobs and has two states (free and busy). There are 
four places (in,free, busy and out) and two transitions (start andfinish). In the state shown 
in figure I there are four tokens; three in place in and one in place free. The tokens in 
place in represent jobs to be processed by the machine. The token in place free indicates 
that the machine is free and ready to process a job. If the machine is processing a job, then 
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busy 

out 
finish 

free 

Figure 1: A Petri net which represents a machine. 

busy 

~}--
in out 

finish 
free 

Figure 2: Transition start has fired. 

there are no tokens infree and there is one token in busy. The tokens in place out represent 
jobs which have been processed by the machine. Transition start has two input places (in 
andfree) and one output place (busy). Transitionfinish has one input place (busy) and two 
output places (out andfree). 
A transition is called enabled if each of its input places contains at least one token. An 
enabled transition can fire. Firing a transition t means consuming tokens from the input 
places and producing tokens for the output places, i.e. t 'occurs'. 
Transition start is enabled in the state shown in figure I, because each of the input places 
(in andjree) contains a token. Transitionfinish is not enabled because there are no tokens 
in place busy. Therefore, transition start is the only transition that can fire. Firing transi­
tion start means consuming two tokens, one from in and one fromjree, and producing one 
token for busy. The resulting state is shown in figure 2. In this state only transitionfinish is 
enabled. Hence, transition finish fires and the token in place busy is consumed and two to­
kens are produced, one for out and one forfree. Now transition start is enabled, etc. Note 
that as long as there are jobs waiting to be processed, the two transitions fire alternately, 
i.e. the machine modelled by this net can only process one job at a time. 

Adding time 
For real systems it is often important to describe the temporal behaviour of the system, i.e. 
we need to model durations and delays. Since the classical Petri net is not easily capable 
of handling quantitative time, we add a timing concept. There are many ways to introduce 
time into the classical Petri net ([2)). In this paper a timing mechanism is used where time 
is associated with tokens, and transitions determine delays. 
Each token has a timestamp which models the time the token becomes available for con­
sumption. Since these timestamps indicate when tokens become available, a transition 
becomes enabled the earliest moment for which each of its input places contains a token 
which is available. The timestamp of a produced token is equal to the firing time plus the 
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firing delay of the corresponding transition. Consider the net shown in figure 1. If place 
in contains one token with timestamp 1 and place free contains a token with timestamp 0, 
then transition start becomes enabled at time 1. If the firing delay of start is equal to 3, 
then the produced token for place busy has timestamp 1 +3=4. 
Firing is atomic, i.e. the moment a transition consumes tokens from the input places the 
produced tokens appear in the output places. However, because of the firing delay it takes 
some time before the produced tokens become available for consumption. 
This results in the following definition of a timed Petri net. 

Definition 2 
A timed Petri net is a six tuple TPN = (P, T, J, 0, TS, D) satisfying the following re­
quirements: 

(i) P is a finite set of places. 

(ii) T is a finite set of transitions. 

(iii) JET -> P(P) is a function which defines the set of input places of each transi­
tion. 

(iv) 0 E T -> P(P) is a function which defines the set of output places of each tran­
sition. 

(v) T S is the time set. 

(vi) DE T -> TS is a function which defines the firing delay of each transition. 

The state of a timed Petri net is given by the distribution of tokens over the places and 
the corresponding timestamps. Firing a transition results in a new state. This way we can 
generate a sequence of states 80, 81, ... 8n such that 80 is the initial state and 8i+1 is the state 
reachable from 8i by firing a transition. Transitions are eager, i.e. they fire as soon as pos­
sible. If several transitions are enabled at the same time, then any of these transitions may 
be the next to fire. Therefore, in general, many firing sequences are possible. Let 80 be the 
initial state of a timed Petri net. A state is called a reachable state if and only if there ex­
ists a firing sequence 80, 81, ... 8 n which 'visits' this state. A terminal state is a state where 
none of the transitions is enabled, i.e. a state without successors. 

4 Mapping scheduling problems onto Petri nets 

To show that timed Petri nets can be used to model and analyse scheduling problems, we 
provide a translation from an arbitrary scheduling problem to a 'suitable' timed Petri net. 
This means that we have to map concepts such as tasks, resources and precedences onto 
places and transitions. 

Given a task t we identify three stages: (1) t is waiting to be processed, (2) t is being pro­
cessed and (3) t has been processed. Therefore, we identify two important 'milestones': 
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SPt 
i ~I ~ bPt 1---

: Sf, CIt , , 
CPt 

,-----------------------------, 

Figure 3: Task t. 

the start time and completion time of t. Basically, figure 3 shows how we model a task t in 
terms of a timed Petri net. Transitions stt and ctt represent the beginning and termination 
of t respectively. The places SPt. bpt and CPt correspond to the stages just mentioned. Ini­
tially, thereis one token in SPt with timestamp RT( t), the release time oft. Since the token 
in SPt becomes available at time RT(t), transition stt cannot fire before the release time 
of task t. The firing delay of stt is equal to the processing time of task t given a specific 
resource set. 

• )---;,..---;oo( 

SPt 
SIt 

bPt CPt 

Figure 4: Resource T. 

Each resource r is modelled by a place frr. Initially, frr contains one token. Figure 4 
shows a resource r which can be used to process a task t. Transition stt 'claims' the re­
source when the execution of t starts, transition ctt 'releases' the resource when t termi­
nates. 

0~~It-;ol 
SPt bPt 

o 
CPt 

SIt 

.1---

,-----------

'0: , , , , , , , , , , 
pre<t,,'>: 

CIt 

_'mIOf----+ll--' ~I--~Io 
bpt' CPt' 

ct,' 

Figure 5: Precedence constraint (t, t'). 

8 



Precedence constraints are modelled by adding extra places. Figure 5 shows the situation 
where task t precedes task t', i.e. the execution of task t has to be completed before the 
execution of task t' may start. Place pre(t,t') prevents stt' from firing until ctt fires. Note 
that places are used to model the stages of a task, resources and precedences. 

st<t, rII> bP<t,(rJ/> ct<t, rII> 

st<t,{rl,r2}> 

Figure 6: A task with three possible resource sets. 

Thus far, we ignored the fact that a task may be processed by one of multiple resource sets. 
Figure 6 shows how to model this situation. For each resource set r s capable of processing 
task t, we introduce a place bP(t,rs) and two transitions st(t,rs) and ct(t,rs). Figure 6 shows 
that task t can be processed by one of the following resource sets: {rl}, {r2} and{rl, r2}. 
Note that there is only one 'start place' SPt and one 'completion place' CPt. 

Consider the job-shop example given in section 2. Recall that there are three tasks: JI A , 

JIB and J2c and two resources: MI and M2. Task JI A and task JIB have to be pro­
cessed by MI and M2 respectively. Task J2c may be processed by MI or MI and M2. 
The corresponding Petri net is shown in figure 7. (The names of places and transitions 
have been omitted.) 

The following definition formalizes the 'recipe' just given. 
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Definition 3 
Given scheduling problem SP = (T, R, PRE, T S, RT, PT) we define the corresponding 
timed Petri netTPN = (P, T, Y, 0, TS, D) as follows: 

P = {bP(t,rs) I (t, rs) E dom(PT)} U 

{sPt It E T} U 

{cpt It E T} U 

{frr IrE R} U 

{pre(t,t') I (t, t') E PRE} 

T - {st(t,rs) I (t, rs) E dom(PT)} U 

{ct(t,rs) I (t, rs) E dom(PT)} 

and for any task t E T and resource set rs E P(R) such that (t, rs) E dom(PT): 

Y(st(t,rs) - {SPt} U 

{frrlrER" rErS}U 

{pre(t',t) It' E T " (t', t) E PRE} 

Y(ct(t,rs) - {bP(t,rs) } 
O( st(t,rs) - {bP(t,rs)} 

O( ct(t,rs) - {cpt} U 

{frrlrER" rErs}U 

{pre(t,t') I t' E T " (t, t') E PRE} 
TS - TS 

D( st(t,rs) - PT( (t, rs) 

D( ct(t,rs) - 0 

This definition shows how to model a scheduling problem in terms of a timed Petri net. 
The initial state of the net is as follows. For each task t, place SPt contains one token with 
timestamp RT(t). For each resource r, place frr contains one token with timestamp O. 
All other places are empty. 
We can give an upper bound for the size of the constructed timed Petri net T P N: ~T2UR + 
2~T + ~R + (~T)2 places and 2~T2UR transitions. However, a typical Petri net representing 
a scheduling problem with ~T tasks and ~R resources contains 4~T + ~R places and 2~T 
transitions. 

We can use the constructed timed Petri net to calculate feasible schedules. Each firing 
sequence resulting in a terminal state, represents a possible schedule. Note that these firing 
sequences have length 2~T + 1. Given such a firing sequence, the resulting terminal state 
is as follows. For each task t, place CPt contains one token with timestamp ct(t). For each 
resource r, place f r r contains one token with a timestamp equal to the completion time of 
the last task processed by r. All other places are empty. 
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JIB 

J2c 

Figure 7: The job-shop scheduling problem. 

It is easy to verify that the schedule represented by such a firing sequence is feasible, i.e. 

• precedences are obeyed: the places pre(t,t') take care of this, 

• release times are obeyed: transition st(t,ra) cannot fire before RT(t), 

• valid resources sets are used: transition st(t,rs) 'claims' all resources in the resource 
set rs, 

• resources cannot be used to process two tasks at the same time: transition st(t,rs) 

removes all tokens from the places frr with r E rs, these tokens are returned the 
moment task t is completed. 

Although each firing sequence of length 2~T + 1 corresponds to a feasible schedule, the 
opposite is not true, i.e. there are feasible schedules which do not correspond to any firing 
sequence. This is a consequence of the fact that transitions are eager to fire, i.e. they fire 
as soon as possible. If we omit this requirement, we have a one-to-one correspondence 
between the set of feasible schedules and the set of possible firing sequences (of length 
2~T + 1). 

5 Analysis 

After modelling a scheduling problem in terms of a timed Petri net, an obvious question is 
"What can we do with the Petri net model?". A major strength of Petri nets is the collection 
of supporting analysis methods. In this section we discuss the usefulness of these analysis 
methods in the context of scheduling. First, we will discuss the application of analysis 
techniques to derive structural properties of the net. Secondly, we will focus on methods 
to analyse the dynamic behaviour of the constructed timed Petri net. 
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5.1 Structural properties 

Several analysis methods have been developed to find and verify structural properties of 
classical Petri nets (cf. [17, 18, 21)). Here we discuss place and transition invariants. 
Place and transition invariants are powerful tools for studying structural properties of Petri 
nets. 
A place invariant (P-invariant) is a weighted token sum, i.e. a weight is associated with 
every token in the net. This weight is based on the location (place) of the token. A place 
invariant holds if the weighted token sum of all tokens remains constant during the execu­
tion of the net. Consider for example the net shown in figure 1. The following two place 
invariants hold for this net; (l)/ree + busy = 1 and (2) in + busy + out = 3. The first invari­
ant says thatthe total number of tokens in the places/ree and busy is equal to 1. This means 
that the machine is either free of busy. The second invariant states that the total number of 
tokens in the places in, busy and out is equal to 3, the initial number of tokens in in. This 
implies that no jobs' get lost' , i.e. a conservation of jobs. The support of an invariant is the 
set of places with a non-zero weight, e.g. the support of/ree + busy = 1 is {tree,busy}. 
Given a Petri net which corresponds to a scheduling problem, we find place invariants 
telling that there is a conservation of tasks and resources. These place invariants are rather 
trivial. However, we can also focus on place invariants having a support which is a subset 
of {bP(t,rs) I (t,rs) E dom(PT)} U {pre(t,t') I (t,t') E PRE}. If we find an invariant 
with such a support, then the weighted-token-sum in these places is constant. Since these 
places are empty in the initial state, the weighted-token-sum remains zero. Each place in 
the support of such an invariant will never contain tokens. Therefore, there are no feasible 
schedules because there are conflicting precedences. Moreover, there is a one-on-one cor­
respondance between conflicting precedences and place invariants with a support which is 
a subset of {bP(t,rs) I (t,rs) E dom(PT)}U{pre(t,t') I (t,t') E PRE}. 

Result 1: Place invariants can be used to find conflicting precedences. 

We can also use place invariants to find redundant precedence constraints. For details we 
refer to Peters [19]. 

Result 2: Place invariants can be used to remove redundant precedences. 

Transition invariants (T-invariants) are the duals of place invariants and the basic idea be­
hind them is to find firing sequences with no effects, i.e. firing sequences which reproduce 
the initial state. There are no transition invariants that hold for a net constructed by follow­
ing the 'recipe' discussed in section 4. Therefore, they are not interesting in the context of 
scheduling. 
Several algorithms have been developed to calculate place and transition invariants effi­
ciently (e.g. Martinez and Silva [17)). 

There are also techniques to verify whether a Petri net is connected. A net is said to be 
connected if and only if each place or transition is connected to any other place or transi­
tion, ignoring the direction of the arcs. If a net is not connected it can be decomposed into 
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a number of separate subnets. 
If a Petri net which corresponds to a scheduling problem is not connected, then we are able 
to split the scheduling problem into a number of 'independent' scheduling problems. 

Result 3: If possible, we can use the Petri net representation to split a scheduling problem 
into a number of 'independent' scheduling problems. 

Many other analysis methods have been developed for the analysis of specific structural 
properties. However, at this point they seem to be irrelevant in the context of scheduling. 
For more details, we refer to Peters [19]. 

5.2 Behavioural properties 

There are several methods to analyse the dynamic behaviour of a timed Petri net (cf. [2, 
3,6,7]). 

By computing the reachability graph, it is possible to analyse all possible firing sequences. 
Recall that for a net representing a scheduling problem, each of these firing sequences cor­
responds to a feasible schedule. Therefore, we can use the reachability graph to generate 
many feasible schedules. Unfortunately, the reachability graph cannot be used to generate 
all feasible schedules. In fact, we can only generate eager schedules. An eager schedule 
assigns resources to tasks as soon as possible, i.e. if a task can be executed by a specific 
resource set and each resource in this resource set is free, then the resource set is allocated 
to this task and the processing starts immediately. 

Result 4: We can use the reachability graph to find all eager schedules. 

If we consider all schedules generated by the reachability graph with respect to some per­
formance measure, then we are able to determine an optimal eager schedule. However, 
there may be non-eager schedules surpassing such an optimal eager schedule (see sec­
tion 7). If we omit the requirement that transitions fire as soon as possible, then we can 
use the reachability graph to determine a truly optimal schedule. However, if we omit the 
eagerness requirement, the reachability graph 'explodes'. In Carlier et al. [7] this problem 
is dealt with for a specific class of scheduling problems. 

In the remainder of this section we restrict ourselves to timed Petri nets with eager tran­
sitions, i.e. we do not consider non-eager schedules. Nevertheless, for large scheduling 
problems the reachability graph may still be too large. There are several approaches to 
(partially) solve this problem. Before discussing some of these approaches, we focus on 
the construction process of the reachability graph. 
The reachability graph of a timed Petri net is constructed as follows. We start with an initial 
state s. Then we calculate all states reachable from s by firing a transition. For each of 
these states we calculate the states reachable by firing a transition, etc. Each node in the 
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Figure 8: A reachability graph. 

reachability graph corresponds to a reachable state and each arc corresponds to the firing 
of a transition (see figure 8). 
One way to reduce the size of the reachability graph is to allow only a limited number of 
outgoing arcs for each node, i.e. if there are too many successor nodes, we only select a 
subset of them (randomly). 
Another approach is to omit the nodes which are not very 'promising', e.g. if a node cor­
responds to a partial schedule with a relatively large makespan, we do not consider its suc­
cessors. We can also omit nodes that correspond to a partial schedule which violates one 
ofthe due-dates. 
Finally, we can use heuristics to reduce the number of outgoing arcs, e.g. if we can allocate 
a resource to a large task or a small task, then we select the small task. Note that we can 
use the priority rules for rule based scheduling (cf. Haupt [11 D. Typical priority rules 
are: SPT (shortest processing time), MWKR (most work remaining), LWKR (least work 
remaining), DO (earliest due-date), etc. It is quite easy to extend the timed Petri net model 
defined in section 3 with priorities, i.e. a priority is assigned to each transition. If several 
transitions are enabled at the same time, then the transition with the highest priority will 
fire first. If several transitions having equal priorities are enabled at the same time, then 
any of these transitions may be the next to fire. Extending the timed Petri net model with 
priorities, facilitates the modelling of priority rules such as SPT, MWKR, LWKR, DO. 
Moreover, we can still use some of the standard Petri net tools. 
If we omit the nodes which are not very 'promising' or use heuristics like the SPT-rule, then 
we are able to construct a reachability graph of.limited size. We can use this reachability 
graph to find feasible schedules. Note that the makespan of these schedules represents an 
upperbound for the makespan of the scheduling problem. 

Result 5: By constructing only a part of the reachability graph, we can find upperbounds 
for the makespan of a scheduling problem. 

It is also possible to find a lowerbound for the makespan of a scheduling problem. Sim­
ply remove all Jrr-places and construct the reachability graph. By inspecting the termi­
nal states of the reachability graph, we can deduce a lowerbound for the makespan of the 
scheduling problem. Although the size ofthe reachability graph is limited, it may be worth-
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CPt 

CPt' 

Figure 9: Resource r can process multiple tasks at a time. 

while to use the ATCFN analysis method (Van der Aalst [2]) to find the same lowerbound. 

Result 6: We can also find a lowerbound for the makespan of a scheduling problem. 

It is also possible to use simulation to analyse the dynamic behaviour of a timed Petri 
net which models a scheduling problem. Such a timed Petri net can be simulated by ran­
domly selecting an enabled transition to be fired. Each subrun results in a terminal state 
which corresponds to a feasible schedule. In case of deterministic processing times it is 
not worthwhile to use simulation. However, if we want to test the robustness of a schedule, 
simulation may be useful. 

Result 7: We can use simulation to test the robustness of a schedule. 

The results mentioned in this section show that we can use standard Petri-net techniques 
to analyse a scheduling problem. Therefore, we can use standard Petri-net tools to analyse 
scheduling problems. We have developed a tool which automatically translates a schedul­
ing problem into a timed Petri net. We have experimented with two Petri-net based analysis 
tools: IAT and INA.IAT is part of the ExSpect workbench and allows for the calculation 
of invariants and (condensed) reachability graphs ([2,4]). INA is an analysis tool which 
allows for many analysis methods. INA can be used to determine more than 40 different 
properties (Starke [22]). Note that we use standard Petri net tools without developing new 
software! 

6 Extensions 

In section 2 we defined what we mean by a scheduling problem. Although definition 1 is 
quite general, we made a number of assumptions. However, only few scheduling problems 
encountered in practise obey each of these assumptions. Therefore, we are interested in 
the relaxation of some of these assumptions. In this section we show the impact of these 
relaxations on the corresponding Petri net. 
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First of all, we assumed that each resource can process only one task at a time. If this as­
sumption is dropped, then we have to deal with resources having a specific capacity and 
tasks requiring only a part of this capacity. It is easy to model this in terms of a Petri net. 
Consider two tasks t and t' and a resource r. Both tasks have to be processed by r. Re­
source r has a capacity of 6, task t requires a capacity of 2 and task t' requires a capacity of 
3. Figure 9 shows how this can be modelled in terms of a timed Petri net. Initially, place 
frr contains 6 tokens. There are two input arcs from frr to sp, indicating that task t re­
quires 2/6 of the capacity ofr, i.e. transition st, can only fire if there are at least two tokens 
in place f r r. Processing t starts with the consumption of two tokens from f r r (by st,) and 
finishes with the production of two tokens for f r r (by ctt). 

We also assumed that each resource is continuously available for processing. It is easy to 
introduce 'release times' for resources; initially the token in a place f r r has a timestamp 
equal to the release time of the resource r. Dealing with time-windows for the availability 
of resources is more complicated but not impossible. 

If we allow pre-emption, then a task t is no longer represented by the subnet shown in fig­
ure 3. To handle this relaxation we have to split tasks into smaller tasks. Each subtask 
corresponds to a phase in the processing of task t. A task is allowed to pre-empt the mo­
ment it switches from one phase to another. 

In section 2 we assumed that processing times are known and fixed, i.e. the scheduling 
problem is deterministic. The approach described in this paper can easily be extended to 
non-deterministic scheduling problems by using another timed Petri net model. There are 
timed Petri net models with stochastic delays (cf. Marsan et al. [16, 15]) or delays de­
scribed by intervals (cf. Van de Aalst [2, 3] and Berthomieu and Diaz [6]). By mapping 
the scheduling problem onto such a Petri net model, we can handle problems for which 
uncertainty is a dominant factor. 

The approach presented in this paper allows for many other extensions, e.g. more sophis­
ticated precedence constraints, set-up times, coupling, etc. In fact, most of the results pre­
sented in section 6 also hold for the relaxations discussed in this section. 

7 Case: 10 x 10 

We will use the notorious scheduling problem described by Fisher and Thompson in [9] to 
illustrate our approach. This job-shop scheduling problem is concerned with the allocation 
of 10 machines over 10 jobs each requiring 10 operations, i.e. lOx 10 operations have to 
be processed by 10 machines. Each row in table 1 corresponds to a job and lists a sequence 
of machines (M) and processing times (PT). The first operation required by job 0 has to be 
processed by machine 0 and the processing time is 29 time units. The second operation is 
processed by machine 1 and the processing time is 78 time units, etc. The problem is to 
find a schedule such that the rnakespan, i.e. the maximal flow-time, is minimal. Although 
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Job ill. M PT M PT M PT M PT M PT M PT M PT M 

• • 29 1 78 2 , 3 36 4 4' , II • 62 7 " • 44 , 21 
1 • 43 2 90 4 " , II 3 69 1 28 • 46 , 46 7 72 • 30 
2 1 91 • " 3 39 2 74 • 90 , I. 7 12 • 89 , ., 4 33 
3 1 81 2 " • 71 4 99 • , • " 7 " 3 98 , 22 , 43 
4 2 14 • • 1 22 , 

" 3 26 4 69 • 21 7 4' , 72 • " , 2 84 1 2 , " 3 " • 48 , 72 • 47 • " 4 • 7 " • 1 46 • 37 3 " 2 13 • 32 , 21 , 32 • 89 7 30 4 " 7 2 31 • .. 1 46 , 74 4 32 6 .. • 19 , 48 7 36 3 79 

• • " 1 69 3 " 
, 

" 2 " 
, II • 40 7 89 4 26 • 74 , 1 " • 13 2 61 • 7 • .. , " , 47 3 " 4 90 7 " 

Table 1: The 10 x 10 scheduling problem: 10 x 10 operations have to be processed by 10 
machines. 

this problem was formulated in 1963, it has defied solution for more than twenty years. In 
1989, Carlier and Pinson [8] proved 930 to be the minimal makespan. 

First, we formulate the 10 x 10 problem in terms of the terminology given in section 2. 
There are 100 tasks, 10 for each job. There are 10 resources, one for each machine. There 
are 90 precedences, 9 for each job. Each task has a release time equal to O. Each task 
requires a specific machine to be processed and the processing times are as indicated in 
Fisher and Thompson [9]. 
Then, we map the scheduling problem onto a timed Petri net (see definition 3). We have 
used the Petri net based tool ExSpect ([4D to construct this net automatically. The corre­
sponding timed Petri net contains 400 places and 200 transitions. 

We will use IAT, one of the analysis tools of ExSpect ([2, 4 D, to analyse the constructed 
timed Petri net. IAT is based on a number of Petri net based analysis techniques (e.g. place 
and transition invariants, reachability graphs, reduction techniques, etc.). 
The constructed net is connected, i.e. the lOx 10 problem cannot be split into a number of 
smaller problems (see section 5). Moreover, there are no place invariants with a support 
which is a subset of {bp(t,ro) I (t, rs) E dom(PT)} U {pre(t,t') I (t, t') E PRE}, i.e. 
there are no conflicting precedences. These results are not very surprising for this well­
structured scheduling problem. Moreover, in this case we are much more interested in 
schedules with a small makespan. 
It is very easy to calculate an upper bound for the minimal makespan of the lOx 10 prob­
lem; simply generate a reachability graph where each node is allowed to have only one 
successor. In this case we find one terminal state. This state corresponds to a feasible 
schedule. The first upper bound we found was 1190, IAT calculates this upper bound in 15 
seconds. If we had been able to calculate the entire reachability graph we could have cal­
culated an optimal non-eager schedule. Unfortunately, in this case the reachability graph 
is too large to construct. We also used priority rules to obtain a smaller reachability graph. 
This resulted in smaller upper bounds. However, even the best priority rules we have tested 
result in schedules with a makespan of more than 1100. 
We used the ATCFN analysis method (Van der Aalst [2D to calculate a lower bound of 691 
for the makespan of any feasible schedule. This takes about 14 seconds. 

We also tested an approach which adds extra precedence constraints. This approach re­
sulted in a schedule with a makespan equal to 1023. For any two tasks t and t' we added 
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the precedence constraint that t has to complete before t' starts if and only if (1) there is 
more work remaining for the job where t belongs to than the work remaining for the job 
where t' belongs to and (2) the processing time of t is rather small. Without going into 
details, we postulate that this approach outachieves the priority rules used in rule based 
scheduling. However, it does not lead to schedules having a makespan close to 930. It 
takes about 22 seconds to calculate the schedule with a makespan of 1023. 
Note that we obtained these results by using standard Petri net tools, i.e. without develop­
ing special purpose algorithms or software. 

8 Conclusion 

The approach presented in this paper shows that it is possible to model many scheduling 
problems in terms of a timed Petri net. In fact, we have formulated a recipe for mapping 
scheduling problems onto timed Petri nets. This recipe shows that the Petri net formalism 
can be used to model tasks, resources and precedence constraints. 

By mapping a scheduling problem onto a timed Petri net, we are able to use Petri net theory 
to analyse the scheduling problem. We can use Petri net based analysis techniques to de­
tect conflicting precedences, determine lower and upper bounds for the minimal makespan, 
etc. By inspecting (parts of) the reachability graph, we can generate many feasible sched­
ules. Although it is likely that these analysis techniques will never beat the scheduling 
algorithms described in literature, we can use standard Petri net tools without developing 
new software. 

Last but not least, we hope that the link between scheduling and Petri nets will stimulate 
furtherresearch in scheduling and Petri net analysis. On the one hand, Petri net based anal­
ysis techniques have to be improved to deal with the computational complexity of schedul­
ing problems. On the other hand, modelling scheduling problems in terms of timed Petri 
nets will bring new scheduling problems not considered by existing solution approaches. 
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