
Petri Net Security Checker: Structural
Non-interference at Work

Simone Frau1,?, Roberto Gorrieri2 and Carlo Ferigato3

1 Information Security, ETH Zurich, 8092 Zurich, Switzerland
email: simone.frau@inf.ethz.ch

2 Dipartimento di Scienze dell’Informazione, Università di Bologna,
Mura A. Zamboni, 7, 40127 Bologna, Italy

email: gorrieri@cs.unibo.it
3 Joint Research Centre - European Commission,

Via E. Fermi, 1, 21027 Ispra (VA), Italy
email: carlo.ferigato@jrc.it

Abstract. Structural non-interference is a semi-static technique defined
over Petri nets to check the absence of illegal information flows. This
paper presents the main algorithmic features of this new technique and its
implementation in a software tool, called the Petri Net Security Checker.

1 Introduction

Non-interference has been defined in the literature as an extensional property
based on some observational semantics: the high part of a system does not in-
terfere with the low part if whatever is done at the high level produces no visible
effect on the low part of the system. The original notion of non-interference
in [10] was defined, using trace semantics, for system programs that are deter-
ministic. Generalized notions of non-interference were then designed to include
(nondeterministic) labeled transition systems and finer notions of observational
semantics such as bisimulation (see, e.g., [14, 6, 13, 15, 8]). The security prop-
erties in this class are based on the dynamics of systems; they are defined by
means of one (or more) equivalence check(s); hence, non-interference checking is
as difficult as equivalence checking, a well-studied hard problem in concurrency
theory.

One relevant property in this class is the bisimulation-based property BNDC
(Bisimulation Non-Deducibility on Composition) proposed by Focardi and Gor-
rieri some years ago [6, 8] on a CCS-like [12] process algebra. BNDC basically
states that a system R is secure if it is bisimilar to R in parallel with any high
level process Π w.r.t. the low actions the two systems can perform.

Intuitively, the many definitions of non-interference that have been proposed
try to capture the essence of information flow as an extensional property. On

? Frau’s work was mainly conducted at the Joint Research Centre of the European
Commission, Ispra.

the contrary, one may think that there are clear physical reasons for the occur-
rence of an information flow, that can be better understood if one exploits a
computational model where causality of actions and conflict among actions can
be modelled directly. Indeed, this is not the case of labeled transitions systems,
a typical example of an interleaving model, where parallelism is not primitive.

For this reason, in [1–3] Busi and Gorrieri have shown that these extensional
non–interference properties can be naturally defined also on Petri Nets, in partic-
ular on Elementary Nets [5], a well-known model of computation where causality
and conflict are primitive concepts. More interestingly, they address the prob-
lem of defining statically non-interference for Elementary Nets, by looking at the
structure of the net systems under investigation:

• in order to better understand the relationship between a flow of information
and the causality (or conflict) relation between the activities originating
such a flow, hence grounding more firmly the intuition about what is an
interference, and

• in order to find more efficiently checkable non-interference properties that are
sufficient (sometimes also necessary) conditions for those that have already
received some support in the literature, such as BNDC.

Structural non-interference is defined on the basis of the absence of partic-
ular places in the net. We identify two special classes of places: causal places,
i.e., places for which there are an incoming high transition and an outgoing
low transition; and, conflict places, i.e. places for which there are both low and
high outgoing transitions. Intuitively, causal places represent potential source of
interference because the occurrence of the high transition is a prerequisite for
the execution of the low transition. Similarly, conflict places represent potential
source of interference because if the low event is not executable, then we can
derive that a certain high transition has occurred. The absence of causal and
conflict places is clearly a static property that can be easily checked by a simple
inspection of the (finite) net structure; interestingly enough, this is a sufficient
condition to ensure BNDC.

In order to characterize more precisely BNDC, the notion of causal place
and conflict place is slightly refined, yielding the so-called active causal place and
active conflict place. These new definitions are based also on a limited exploration
of the state-space of the net (i.e. of its marking graph), hence, the absence of
such places is not a purely structural property, rather a hybrid property. When
active causal and active conflict places are absent, we get a property, called
Positive Place–Based Non–Interference (PBNI+ for short), which turns out to
be equivalent to BNDC (proof in [3]). This result is rather surprising because
the two properties are defined in a very different way.

1.1 Contribution of this paper

In this paper, we investigate the algorithmic properties of PBNI+. First we
show that, given an elementary net with p places, n transitions and f arcs,

the complexity of checking for the absence of potential causal/conflict places is
O(f + p). Then, once singled out potential causal/conflict places, the check that
such a potential place is active takes O(pn23p) in the worst case, because it is
necessary to build the whole marking graph (that is exponential in the size of the
net). Therefore, depending on the shape of the net, the complexity of PBNI+
varies in the range between O(f + p) and O(pn23p).

It is interesting to observe that BNDC was proved to be decidable in [11] over
labeled transitions systems with an algorithm that is exponential in the number
of the states. Even if the two models are different and so a comparison may
be unfair, we point out that our procedure for deciding BNDC is cubic in the
number of states of the marking graph of the net, which in turn is exponential
in the number of the places of the net.

These algorithms have been implemented in a software tool, called the Petri
Net Security Checker (PNSC for short), which provides functionalities for creat-
ing, editing and executing Petri nets, as well as automatically detecting places
that are potential/active and causal/conflict.

The paper is organised as follows. In Section 2 we recall the basic definitions
about Elementary Net systems, the dynamic non-interference property BNDC
and the structural property PBNI+. In Section 3 we discuss the complexity
of checking PBNI+. In Section 4 we describe the details of the PNSC tool, its
functionalities and its implementation, besides showing its application to a small
case study. Finally, some conclusive remarks are drawn in Section 5.

2 Background

2.1 Elementary Net Systems

Here we introduce basic definitions about the class of Petri Nets we use. Some
familiarity with Petri net terminology is assumed. More details in [5, 2].

Definition 1. A transition system is a triple TS = (St, E,→) where

• St is the set of states
• E is the set of events
• →⊆ St× E × St is the transition relation.

In the following we use s
e→ s′ to denote (s, e, s′) ∈→. Given a transition s

e→ s′,
s is called the source, s′ the target and e the label of the transition. A rooted
transition system is a pair (TS, s0) where TS = (St, E,→) is a transition system
and s0 ∈ St is the initial state.

Definition 2. An elementary net is a tuple N = (S, T, F), where

• S and T are the (finite) sets of places and transitions, such that S ∩ T = ∅
• F ⊆ (S × T) ∪ (T × S) is the flow relation, usually represented as a set of

directed arcs connecting places and transitions.

A subset of S is called a marking. Given a marking m and a place s, if s ∈ m
then we say that the place s contains a token, otherwise we say that s is empty.

Let x ∈ S ∪ T . The preset of x is the set •x = {y | F (y, x)}. The postset of
x is the set x• = {y | F (x, y)}. The preset and postset functions are generalized
in the obvious way to set of elements: if X ⊆ S ∪ T then •X =

⋃
x∈X

•x
and X• =

⋃
x∈X x•. A transition t is enabled at marking m if •t ⊆ m and

t• ∩m = ∅. The firing (execution) of a transition t enabled at m produces the
marking m′ = (m\ •t)∪ t•. This is usually written as m[t〉m′. With the notation
m[t〉 we mean that there exists m′ such that m[t〉m′.

An elementary net system is a pair (N,m0), where N is an elementary net
and m0 is a marking of N , called initial marking. With abuse of notation, we
use (S, T, F, m0) to denote the net system ((S, T, F),m0).

The set of markings reachable from m, denoted by [m〉, is defined as the least
set of markings such that

• m ∈ [m〉
• if m′ ∈ [m〉 and there exists a transition t such that m′[t〉m′′ then m′′ ∈ [m〉.

The set of firing sequences is defined inductively as follows:

• m0 is a firing sequence;
• if m0[t1〉m1 . . . [tn〉mn is a firing sequence and mn[tn+1〉mn+1 then also

m0[t1〉m1 . . . [tn〉mn[tn+1〉mn+1 is a firing sequence.

Given a firing sequence m0[t1〉m1 . . . [tn〉mn, we call t1 . . . tn a transition se-
quence. We use σ to range over transition sequences.

The marking graph of a net system N is the transition system

MG(N) = ([m0〉, T, {(m, t, m′) | m ∈ [m0〉 ∧ t ∈ T ∧m[t〉m′})

A net is transition simple if the following condition holds for all x, y ∈ T : if
•x = •y and x• = y• then x = y. A marking m contains a contact if there exists
a transition t ∈ T such that •t ⊆ m and not(m[t〉). A net system is contact–
free if no marking in [m0〉 contains a contact. A net system is reduced if each
transition can occur at least one time: for all t ∈ T there exists m ∈ [m0〉 such
that m[t〉. In the following we consider contact-free elementary net systems that
are transition simple and reduced.

2.2 A Dynamic Non-interference Property: BNDC

Our aim is to analyse systems that can perform two kinds of actions: high level
actions, representing the interaction of the system with high level users, and
low level actions, representing the interaction with low level users. We want to
verify if the interplay between the high user and the high part of the system can
affect the view of the system as observed by a low user. We assume that the
low user knows the structure of the system, and we check if, in spite of this, he
is not able to infer the behavior of the high user by observing the low view of

the execution of the system. Hence, we consider nets whose set of transitions is
partitioned into two subsets: the set H of high level transitions and the set L of
low level transitions. To emphasize this partition we use the following notation.
Let L and H be two disjoint sets: with (S, L,H, F,m0) we denote the net system
(S,L ∪H, F,m0).

Among the many non-interference properties defined by Focardi and Gorrieri
in [6–8], here we consider BNDC (Bisimulation Non-Deducibility on Composi-
tion). To properly define it over Petri nets, we need some auxiliary definitions:
the operations of parallel composition (in TCSP-like style [4]) and restriction (in
CCS-like style [12]), as well as a notion of low-view bisimulation.

Definition 3. Let N1 = (S1, L1, H1, F1,m0,1) and N2 = (S2, L2,H2, F2,m0,2)
be two net systems such that S1 ∩ S2 = ∅ and (L1 ∪ L2) ∩ (H1 ∪H2) = ∅. The
parallel composition of N1 and N2 is the net system

N1 | N2 = (S1 ∪ S2, L1 ∪ L2, H1 ∪H2, F1 ∪ F2,m0,1 ∪m0,2)

Note that synchronization occurs over those (low or high) transitions that
are shared by the two nets, i.e., a transition t that occurs both in N1 and N2 has
preset (postset), in N1 | N2, given by the union of the disjoint presets (postsets)
in N1 and N2, respectively.

Definition 4. Let N = (S,L, H, F, m0) be a net system and let U be a set of
transitions. The restriction on U is defined as N\U = (S, L′,H ′, F ′,m0), where:

L′ = L \ U
H ′ = H \ U
F ′ = F \ (S × U ∪ U × S)

The non-interference property we are going to introduce is based on some
notion of low observability of a system, i.e., what can be observed of a system
from the point of view of low users. The low view of a transition sequence is
nothing but the subsequence where high level transitions are discarded.

Definition 5. Let N = (S, L, H, F, m0) be an elementary net system. The low
view of a transition sequence σ of N is defined as follows:

ΛN (ε) = ε

ΛN (σt) =
{

ΛN (σ)t if t ∈ L
ΛN (σ) otherwise

Then, a variant of bisimulation [12] can be defined in such a way that only
the low behaviour is considered.

Definition 6. Let N1 = (S1, L1, H1, F1,m0,1) and N2 = (S2, L2,H2, F2,m0,2)
be two net systems. A low–view bisimulation from N1 to N2 is a relation R on
P(S1)× P(S2) such that if (m1, m2) ∈ R then for all t ∈ ⋃

i=1,2 Li ∪Hi:

• if m1[t〉m′
1 then there exist σ,m′

2 such that m2[σ〉m′
2, ΛN1(t) = ΛN2(σ) and

(m′
1,m

′
2) ∈ R

• if m2[t〉m′
2 then there exist σ,m′

1 such that m1[σ〉m′
1, ΛN2(t) = ΛN1(σ) and

(m′
1,m

′
2) ∈ R

If N1 = N2 we say that R is a low–view bisimulation on N1.

We say that N1 is low–view bisimilar to N2, denoted by N1
Λ≈bis N2, if there

exists a low–view bisimulation R from N1 to N2 such that (m0,1,m0,2) ∈ R.

Now we are ready to define BNDC.

Definition 7. Let N = (S, L, H, F,m0) be a net system. N is BNDC iff for all

high-level nets K = (SK , ∅,HK , FK , m0,K): N\H Λ≈bis (N | K)\(H \HK).

The left-hand term N\H represents the system N when isolated from high-
level users (hence, the low view of N in isolation), while the right-hand term
expresses the low view of N interacting with the (common transitions of the)
high environment K (note that the activities resulting from such interactions
are invisible by the definition of low view equivalence). BNDC is a very intuitive
property: whatever high level system K is interacting with N , the low effect
is unobservable. However, it is difficult to check this property because of the
universal quantification over high systems.

p1,1 p2,1

p2,2

p1,3 p2,3

p1,2

h2

h3

l2

l3

l1

s

h1

s

Fig. 1. The net system for a mutually exclusive access to a shared resource.

Example 1. As a simple case study and running example, consider the net in
Figure 1, which represents a mutually exclusive access to a shared resource (rep-
resented by the token in s) by a high-user (left part of the net) and a low-user
(right part of the net). Even if it might appear, at first sight, that the system
is secure (and indeed, it is BSNNI (Bisimulation Strong Nondeterministic Non-
Interference) [8]), actually it is not secure because a low level user can detect if
a high-level user has deadlocked the system. Indeed, if the high-level user repre-
sented in the net K in Figure 2 wants to interact with the user in Figure 1, then
a deadlock is reached after performing the sequence h1h2 and the low level user
can detect this because (s)he is not able to interact with the net. As a matter
of fact, BNDC is not satisfied, as K makes invalid the equivalence check in the
definition of BNDC.

?

MG(N\H)

l3{s, p1,1, p2,2}

{s, p1,1, p2,2}

{s, p1,1, p2,1}

l1

l2

{s, p1,1, p2,1, pk,1}

{s, p1,2, p2,2, pk,2}

{s, p1,3, p2,2, pk,3}

h2

h1

pk,1

pk,2

pk,3

K

{s, p1,2, p2,1, pk,2} {s, p1,1, p2,2, pk,1}

l1h1

l1 h1

l1 h1

l2

h2 l2

h2

l3

l3

MG((N | K)\(H \HK))

{s, p1,2, p2,3, pk,2}

{s, p1,1, p2,3, pk,1}{s, p1,3, p2,1, pk,3}

Fig. 2. The shared resource net system is not BNDC.

2.3 Structural Non-interference

Consider a net system N = (S,L, H, F, m0). Consider a low level transition l of
the net: if l can fire, then we know that the places in the preset of l are marked
before the firing of l; moreover, we know that such places become unmarked
after the firing of l. If there exists a high level transition h that produces a token
in a place s in the preset of l (see the system N1 in Figure 3), then the low level
user can infer that h has occurred if he can perform the low level transition l.
We note that there exists a causal dependency between the transitions h and l,
because the firing of h produces a token that is consumed by l. In this case we
will say s is a potential causal place.

l

s

h

N1

s

lh

N2

Fig. 3. Examples of net systems containing causal and conflict places.

Consider now the situation illustrated in the system N2 of Figure 3: in this
case, place s is in the preset of both l and h, i.e., l and h are competing for
the use of the resource represented by the token in s. Aware of the existence of
such a place, a low user knows that the high-level action h has been performed,
if he is not able to perform the low-level action l. Place s represents a conflict
between transitions l and h, because the firing of h prevents l from firing. In this
case we will call s a potential conflict place.

In order to avoid the definition of a security notion that is too strong, and
that rules out systems that do not reveal information on the high-level actions
that have been performed, we need to refine the concepts illustrated above.
In particular the potential causal place is an active causal place if there is an
execution where the token produced by the high level transition is eventually
consumed by the low level transition. Similarly, a potential conflict place is active
if the token that could be consumed immediately by a high level transition can
be later on also consumed by a low level transition. The formal definitions follow.

Definition 8. Let N = (S, L,H, F, m0) be an elementary net system. Let s be
a place of N such that s• ∩ L 6= ∅ (i.e., a token in s can be consumed by a low
transition).

The place s ∈ S is a potentially causal place if •s ∩H 6= ∅ (i.e., a token in
s can be produced by a high transition). A potentially causal place s is an active
causal place if the following condition holds: there exist l ∈ s• ∩ L, h ∈ •s ∩H,
m ∈ [m0〉 and a transition sequence σ such that m[hσl〉 and s 6∈ t• for all t ∈ σ.

The place s ∈ S is a potentially conflict place if s• ∩H 6= ∅ (i.e., the token
in s can be consumed also by a high transition). A potentially conflict place is
an active conflict place if the following condition holds: there exist l ∈ s• ∩ L,
h ∈ s• ∩ H, m ∈ [m0〉 and a transition sequence σ such that m[h〉, m[σl〉 and
s 6∈ t• for all t ∈ σ.

Definition 9. Let N = (S, L,H, F,m0) be an elementary net system. We say
that N is PBNI+ (positive Place Based Non-Interference) if, for all s ∈ S, s is
neither an active causal place nor an active conflict place.

The following non-trivial result, proved in [3], states that the behavioural
non-interference property BNDC is equivalent to the semi-static, structural prop-
erty PBNI+.

Theorem 1. Let N = (S, L,H, F, m0) be an elementary net system. Then N is
PBNI+ iff N is BNDC.

An obvious consequence is that if N has no potentially causal and potentially
conflict places, then N is BNDC. Hence, a simple strategy to check if N is BNDC
is to first identify potential causal/conflict places, a procedure that we show in
the next section to be of complexity O(f + p) in the size of the net (p is the
number of places and f of arcs). If no place of these sorts is found, then N is
PBNI+, hence BNDC. Otherwise, any such a candidate place should be better
studied to check if it is actually an active causal/conflict place, a procedure that
requires a limited exploration of the marking graph.

Observe that the net in Figure 1 of our running example is not PBNI+
because place s is an active conflict (and also active causal) place.

3 PBNI+ verification algorithms

Verification of PBNI+ requires two separate steps: first, detection of potential
causal places and potential conflict ones; then, checking if such places are active
(causal/conflict) places.

We assume to use certain data structures. Precisely, a Net will be a structure
containing an ordered list of places, an ordered list of transitions and a list
of places (subset of the above mentioned places list) representing the initial
marking. We also assume places in the initial marking list maintain the same
order they have in the places list, so that all operations on sets of places (such
as union, intersection and difference) can be done in O(p).

Each place (each transition) has associated its own preset and postset, that
are represented by lists of the opposite elements (transitions or places, respec-
tively). As for the initial marking list in a Net, we will assume the nodes in
the preset and postset lists appear in the same order they do in the lists they
are taken from, so to be able to perform all operations on sets in linear time
w.r.t. the number of nodes (O(p) or O(n), respectively). For convenience, we
will assume a Net also contains a list of arcs (as specified by the flow relation
F , |F | = f), thus that we can occasionally cycle on it in O(f) time rather than
O(np) (inherent upper bound for f).

3.1 Potential places detection

Detecting potential places is a purely structural procedure, easy and computa-
tionally light-weight. Let us consider detection of potential causal places in a net
N with p places and f arcs, and each place has three dedicated boolean vari-
ables for keeping track of the examined arcs: highPre, lowPost and highPost.
This consists of the following steps (each one annotated with an estimate of its
worst-case computational cost):

• for each arc a in the net N : – O(f) times
• if a’s source is a transition t – O(1)

• if t is high then set highPre of a’s target as true – O(1)
• else

• if t is low then set lowPost of a’s source as true – O(1)
• for each place p in the net N : – O(p) times

• if p’s highPre and lowPost are true, then add p to the set of computed
potential causal places – O(1)

Detection of potential conflict places differs slightly, in that it will only set
highPost instead of highPre.

As all inner instructions cost O(1), the final procedure cost will be the sum
of the two cycles, namely O(f + p).

3.2 Active places detection

Differently from the above, detection of active places is a complex (hence, also
heavier) procedure because it has to analyze – though partially – the dynamic
behaviour of the net.

First of all, we need a procedure to build the marking graph, i.e., the state
space of the net. 1 We represent such a graph as a list of structures. Each of
these structures is composed of a marking m, (where each marking is a set of
places represented in the same fashion as the initial marking in Net), and of
a list of pairs (t,m′), where t is an enabled transition and m′ is the marking
reached by firing t, i.e., m[t〉m′.

Under these modelling assumptions, the algorithm is composed of the fol-
lowing instructions (each annotated with an estimate of its worst-case, compu-
tational cost):

• create the marking list list with the initial marking as its only element –
O(1)

• for each marking m in list: – O(2p) times
• for each transition t: – O(n) times

• if t is enabled at m: – O(p)
· compute the marking m′ reachable from m by firing t – O(p)
· if m′ is not already in list, add (m′, emptylist) to list – O(2p)
· add to the list associated to m the new pair (t,m′) – O(1)

The procedure acts mostly as a breadth-first visit: we add first the initial
marking, and start a cycle exploring the graph. For each marking in the list,
we compute the marking every enabled transition leads to and add the corre-
sponding pair (enabled transition, reached marking) to the currently examined
marking. When we meet a new marking, we add it to the queue and this will be
examined later as the cycle proceeds.

Since the heaviest operation in the innermost cycle is checking whether the
marking graph already contains a marking (O(2p)), the procedure’s cost is bound
to the product of this by the weight of the nested cycles over the places and tran-
sitions of the net. Therefore the procedure’s final cost will be O(n22p) 2.
Notice also that this procedure can take any marking as initial marking, which
means that it can compute every possible subgraph rooted in the given marking.
Furthermore, also a procedure for creating a marking graph restricted on a set of
transitions can be easily obtained from the above. It is easy to see this trivially
involves including only one more check and does not change computational costs.

1 Notice that, since each marking is a set of places, the marking graph can contain up
to 2p states. Hence, the state space we are dealing with is inherently exponential in
the number p of places.

2 A further optimization could be using a search tree instead of a list for representing
the marking graph, once an appropriate order on the places is introduced such that
induces an order on the markings as well. That would reduce look up time from
O(2p) to O(p), and the whole procedure would cost O(np2p).

We can now introduce a procedure that searches for active causal places over
the net. Intuitively, we do the following steps:

• find potentially causal places – O(f + p)
• for each place s among these: – O(p) times

• scan the markings in the marking graph, and single out only those which
are reached through high transitions in •s. – O(22p)

• for each marking m among these: – O(2p) times
• create a new marking graph rooted in m and restricted on all tran-

sitions containing s in their postset – O(n22p)
• search among its markings for one enabling any low transition in s•.

If any is found, add s to the list of active causal places returned –
O(2p)

The active places so found perfectly comply with Definition 8. Indeed, for each
potential causal place we single out all markings reached through a high transi-
tion h in •s, that is m[h〉m′. Then, for each of these, we create a marking graph
rooted in m and restricted on all transitions belonging to •s. In such a marking
graph every marking is reached through a sequence of transitions that do not
produce new tokens in s (s 6∈ t• for all t ∈ σ), therefore if we find one that
enables a low transition l ∈s•, we have m′[σl〉, and hence m[hσl〉.

The procedure is as heavy as computing the restricted marking graph (O(n22p))
for each marking (O(2p)) and each place in the net (O(p)), therefore it has a final
cost of O(pn23p) (or O(p2n22p) if the optimization in footnote 2 is implemented).

Finally, a procedure verifying PBNI+ would just call the previous one and
the one to detect active conflict places (which, intuitively enough, has same
computational costs). Needless to say, procedure’s final cost, in the worst case,
is O(pn23p) as well. Note that, since the number of states is O(2p), the procedure
for verifying PBNI+ (hence BNDC) is actually cubic in the number of states.

Note, moreover, that in practice, the cost of checking PBNI+ is much lower:
(i) it might be the case that there are no potential causal/conflict places and
so in this case the complexity is O(f + p); (ii) the number of potential places
is usually small w.r.t. to p; and, in particular, (iii) the number of reachable
markings of the marking graph is generally much lower than 2p.

4 Petri Net Security Checker

The tool, named Petri Net Security Checker (PNSC for short) [9], was written
in Java [16], using the Eclipse development platform [17].
Figure 4 shows the tool’s interface, which provides the user, in a single working
environment, with different functionalities, that can be grouped into three main
categories: editing, execution and net properties checking.

4.1 Editing

First of all, PNSC allows the user to create, save and open Petri nets. For
these operations the tool uses the Petri Net Markup Language format [18],

Fig. 4. Petri Net Security Checker main window

the standard format for Petri nets interchange, thus ensuring compatibility with
external programs for further analysis of the nets (e.g. PIPE2 [19]).
By means of an intuitive toolbar, the user can draw the net. This includes ba-
sic operations as drawing places and (both high and low) transitions, draw arcs
between them and set the initial marking of the net. Furthermore, it is possible
to select portions of the net to carry out further operations as deleting, cutting,
copying and pasting.
Being designed for incremental editing of nets in conjunction with checking their
security, we developed different view modes to make comparison easier. In fact,
nets can be cloned and placed side by side to be edited and compared concur-
rently, as shown in Figure 5.

In addition, the tool keeps track of all editing steps, so that each one can be
undone/redone.

4.2 Execution

It is also possible to graphically simulate net executions (commonly referred to
as token game animation).

The user can either fire one of the currently enabled transitions (highlighted
in green as in Figure 4 and in Figure 5) by double clicking on it, or he can start
a timed random execution, which consists of firing, at regular time intervals, a
random transition among the enabled ones. In this case also, the tool keeps track
of all firing steps, so that it is possible to step back (and, afterwards, forward)
to previous (respectively, following) markings.

Fig. 5. Comparison mode

4.3 Properties check

Finally, the most distinctive functionalities of PNSC pertain to the verification
of the net’s properties.

First, it is possible to check whether a net is simple, reduced and contact
free3. Whenever one of these does not hold, all nodes that do not comply with
it are highlighted in grey (as in Figure 6).

Fig. 6. A not contact-free net

3 These checks are of minor complexity, namely O(np2), O(n2p) and O(pn2p), respec-
tively.

The main functionality of our tool though is finding both potential and ac-
tive causal/conflict places in the net, using the algorithms described in Section
3. When these checks are activated, potential causal/conflict places will be high-
lighted in orange, while active causal/conflict ones will be highlighted in red, as
shown in Figure 7, which depicts the net already discussed in Figure 1.

Fig. 7. Potential causal/conflict places will be highlighted in orange, active ones in red

Furthermore, for each potential/active place found it is possible to pinpoint
and highlight the transitions and markings involved in the causality or conflict
situation from the rest of the net, as in Figure 8, allowing a better inspection of
the problem.

Fig. 8. Focus on the active conflict situation

5 Conclusion

In this paper we presented the tool Petri Net Security Checker for building
Petri nets with transitions of two different confidentiality levels and check a
structural security property on them, namely PBNI+.

The tool can actually check also some behavioural security properties, such as
SBNDC and BSNNI [2]. Interestingly enough, PBNI+ is proved to be equivalent
to the behavioural property BNDC which is not obviously decidable; hence, the
algorithms we presented in Section 3 offer a decidability proof for BNDC over
Elementary Net Systems. The only paper we know offering a decidability result
for BNDC is [11] where an exponential (in the number of states) procedure
is presented for labeled transition systems. Our result is actually for a rather
different model (unlabeled elementary net systems) and so it might be unfair to
make a comparison; nonetheless, our decision procedure is cubic in the number
of states of the marking graph (in turn exponential in the number of places).

We considered, for theoretical reasons in the implementation of our tool,
only Elementary Net Systems, where places can contain at most one token. A
natural generalization of this approach is to consider Place/Transition systems,
where each place can contain more than one token. Such a class of nets is par-
ticularly interesting because the marking graph associated to a finite P/T net
system may be infinite. In [3] Busi and Gorrieri claim that PBNI+ can be easily
defined also on this richer class of nets and checked in a finite amount of time,
and keep on being the same as BNDC and SBNDC also for P/T net systems.
This is particularly interesting because bisimulation is not decidable over P/T
nets, hence BNDC as well as SBNDC are not checkable at all! This extension
would also possibly provide the first result of decidability of a behavioural infor-
mation flow security property, like BNDC, on a class of infinite state systems.
It is likely that an extension of PBNI+ to cover P/T nets also could be easily
followed by a corresponding extension of the tool.

Acknowledgements

The authors would like to thank the anonymous referees for helpful comments.

References

1. N. Busi and R. Gorrieri. A Survey on Non-Interference with Petri Nets. Advanced
Course on Petri Nets 2003, Springer LNCS 3098:328-344, 2004.

2. N. Busi and R. Gorrieri. Positive Non-Interference in Elementary and Trace
Nets. Proc. 25th Int.l Conf. on Application and Theory of Petri Nets, Springer
LNCS 3099:1-16, 2004.

3. N. Busi and R. Gorrieri. Structural Non-Interference in Elementary and Trace
Nets. Accepted for publication in Mathematical Structures in Computer Sci-
ence, 2008. Available at http://www.cs.unibo.it/∼gorrieri/Papers/bg08.ps on
2008/4/3.

4. S.D.Brooks, C.A.R.Hoare, A.W.Roscoe. A Theory of Communicating Sequential
Processes. Journal of the ACM 31(3):560-599, 1984.

5. J.Engelfriet and G. Rozenberg. Elementary Net Systems, Lectures on Petri Nets
I: Basic Models, Springer LNCS 1491, 1998.

6. R. Focardi, R. Gorrieri. A Classification of Security Properties. Journal of
Computer Security 3(1) pp.5-33, 1995.

7. R. Focardi, R. Gorrieri. The Compositional Security Checker: A Tool for the Veri-
fication of Information Flow Security Properties, IEEE Transactions on Software
Engineering 23(9):550-571, 1997.

8. R. Focardi, R. Gorrieri. Classification of Security Properties (Part I: Information
Flow), Foundations of Security Analysis and Design - Tutorial Lectures (R. Fo-
cardi and R. Gorrieri, Eds.), Springer LNCS 2171:331-396, 2001.

9. S. Frau. Uno strumento sotware per l’analisi di proprietà di sicurezza su reti di
Petri. Master thesis (in Italian), University of Bologna, March 2008.

10. J.A. Goguen, J. Meseguer. Security Policy and Security Models, Proc. of Sym-
posium on Security and Privacy, IEEE CS Press, pp. 11-20, 1982.

11. F. Martinelli. Partial Model Checking and Theorem Proving for Ensuring Secu-
rity Properties, Proc. of Computer Security Foundations Workshop, IEEE CS
Press, pp. 44-52, 1998.

12. R.Milner. Communication and Concurrency, Prentice-Hall, 1989.
13. A.W. Roscoe. CSP and Determinism in Security Modelling, Proc. of IEEE Sym-

posium on Security and Privacy, IEEE CS Press, pp. 114-127, 1995.
14. P.Y.A. Ryan. Mathematical Models of Computer Security, Foundations of Secu-

rity Analysis and Design - Tutorial Lectures (R. Focardi and R. Gorrieri, Eds.),
Springer LNCS 2171:1-62, 2001.

15. P.Y.A. Ryan, S. Schneider. Process Algebra and Noninterference, Proc. of 12th
Computer Security Foundations Workshop, IEEE CS Press, pp. 214-227, 1999.

16. Java Technology. Sun Microsystems. Available at http://java.sun.com/ on
2008/4/3.

17. Eclipse.org. Eclipse Foundation, Available at http://www.eclipse.org/ on
2008/4/3.

18. Available at http://www2.informatik.hu-berlin.de/top/pnml/download/about
/PNML LNCS.pdf on 2008/4/3.

19. Platform Independent Petri Net Editor. Available at http://pipe2.sourceforge.
net/ on 2008/4/3.

