
Petri net simulation of flexible

manufacturing systems

L. Chen & J. Johnson

Department of Computer Science, University of

Regina, Regina, Saskatchewan, Canada, S4S OA2

Abstract

Flexible manufacturing systems (FMS) are a class of systems exhibit-
ing concurrency, asynchronicity and distributedness. In this project the
Petri net is incorporated along with discrete events simulation to simulate
scheduling different types of job processes in FMS. In order to get high
throughput and uniform loading on each station in FMS, a Large-sized
Petri Net (LPN) model has succeeded in finding all the possible process
sequences for jobs in FMS. The SIM SCRIPT language is used to find, for
each job, the state of each workstation in all possible sequences and then
to select an optimal sequence for doing the job. In contrast with relying on
static optimization, in Petri net scheduling we are able to find the online
optimal sequence dynamically. The results suggest that Petri net schedul-
ing can be successfully employed to study online scheduling of FMS using
an expert systems approach. In addition, Large-sized Petri nets (LPN)
are developed. This kind of LPN can be formally established, graphically
represented and can be easily implemented by software. An algorithm for
analyzing LPN is developed.

1 Introduction

Flexible manufacturing systems (FMS) are discrete systems where the vari-
ables take integers and the materials are processed as pieces or sets. Since
the performance of the system design must be evaluated based on the ma-
chining of different kinds of workpieces which require different sequences of
operations and have significantly different machining times, it means that
the type of workpieces is a variable and the arrival rate of workpieces is
a random variable (e.g., Poisson distribution). Besides, the process time
for workpieces is also a random variable and the sequences of operations
are non-deterministic. Another feature of FMS is concurrency which means
that some actions need several conditions to be satisfied simultaneously arid
that some actions can be processed in parallel. This requires timing con-

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

50 Artificial Intelligence in Engineering

siderations which suggests that stochastic simulation is a suitable approach
for FMS evaluation and design.

There are many approaches for modeling or simulating FMS, each having
its own advantages and problems. Now we discuss the approaches which
will be used in the project.

1.1 Stochastic system simulation

The predominant theoretical approach to stochastic scheduling is that of
queuing theory. In this approach the jobs are assumed to arrive in a random
process with known distribution. They queue until their assigned machine
is free. Then a job is selected from the queue and assigned to that machine
according to some predetermined priority rule. The processing time for the
assigned job is assumed to be a random variable with a known distribution.
Stochastic modeling is used for simulating real time systems and for finding
sensitive system factors for optimization. The research done in this area
beholds open problems which do not appear to be able to be solved by this
method. One of the major problems with stochastic simulation is that a
predetermined priority on machine sequencing is required.

1.2 Petri Net simulation

A Petri net is defined as a bipartite directed multigraph consisting of a
set of vertices and bag of directed arcs. The term 'bipartite' means that
a set of vertices can be divided into two disjoint subsets P (Place) and T
(Transition). The structure C of a Petri net can be expressed by four kinds
of sets: place P, transition T, input I, and output 0, as C = (P,T,I,0) [1].

Thus, a Petri net consists of transitions and places with both multiple
inputs and outputs. When simulating a Petri net using a token (or marking),
a represented token in a place indicates that the corresponding condition is
'true'. A transition 'fires' when all of its input conditions are true, i.e., all
of its input places are marked with a token. The firing then removes one
token from each input place and deposits one token in each output place.

Petri net simulation is suitable for discrete and concurrent systems. The
dynamic behavior of sequences of operations in FMS can be represented
using Petri nets. Events such as cutting tool failure, machine breakdown,
and part-type changing can be explicitly shown in the model. The system
is simulated non-deterministically, i.e., the net provides different choices for
the simulated sequences. Research into using Petri nets for modeling FMS
shows that they have limited power for this purpose because they lack a
sense of time. Transitions 'fire' instantaneously, and there is no concept of
clock.

1.3 Combining Petri net with Stochastic modeling

We wish to combine stochastic modeling with the Petri net method to simu-
late FMS more accurately. There are many choices. One method is to build
the model by using a Timed Petri net (TPN) which incorporates petri net
transitions with a stochastic time distribution. When the simulated system
has large loading conditions, the TPN solution becomes harder to compute.
Also, writing concurrent simulation programs for a Petri net is more complex

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 5 1

than if a notion of time is excluded. Therefore we use an approach which
first uses a Petri net to get all possible sequences, and then uses stochastic
simulation to dynamically choose an optimal sequence for each job routing.
The SIMSCRIPT simulation language is used to write the stochastic sim-
ulation program because it can easily represent concurrent behaviors with
very simple yet powerful code. In addition, simulation statistics useful for
verifying our new Petri net variant are automatically generated by the SIM-
SCRIPT system. Petri net modeling affords efficiently for finding all the
possible scheduling sequences and therefore helps simplify the SIMSCRIPT
programming task.

2 Large-sized Petri net representation

The advantage of using Petri nets is that they provide graphical models with
formal methods of analysis. However, graphical representation of Petri net
(PN) models becomes difficult even for medium-sized systems since such
graphs tend to become inconveniently large.

2.1 Basic definitions

We first present basic definitions of Petri nets [1]. Following the basic defi-
nitions, we give definitions for Large-sized Petri nets representations.
In a Petri net C = (P, T, 7, 0) we have the set of places

f = {?i,P2,...,Pm} (77z> 0)

and the set of transitions

with
Pn T = o.

sef: input 7 : T — » P6 and P — » T6; output O : T — » P6
and P —> Tb (b means bags).
Mor&eof PeZH %ef: In order to reflect the execution of a Petri net, tokens
are used to mark the places of a Petri net in such a way that a place with
a token indicates the readiness of it for firing a transition. A marked Petri
net M = (C,/i) is a Petri net structure C = (P, T, /, 0) with a marking /z
where \L is a set of tokens. This is also sometimes written as

Petri net Graph: In the graphic representation of a Petri net a circle repre-
sents a place and a bar represents a transition. Tokens are represented by
small dots in the circles.

Now let us consider a Large-sized Petri net where many operations need
to share the same resource. If the resource is used by one operation then the
others have to wait until the resource is released. In classic PN represen-
tation this resource place would have many output arcs to the operations
which ask for it and many input arcs from the operations which release it.
This makes the PN graph difficult to understand. To solve this problem, we

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

52 Artificial Intelligence in Engineering

propose a Large-sized Petri net graph representation (LPN) as illustrated
in Figure 3. A resource in free state can be used by any operation. For
example, machine Ml in free state can be represented by the place P3 in
Figure 3. If there is a token in it, then the machine Ml is available for any
required operations.

All the resources in a free state place are separated from the main PN
graph. These places are indirectly connected with the main graph by labeled
input and output arrows which are its original input and output transitions.

Figure 1: An example of a large-sized petri net graph

2.2 Basic Rules for Using "LPN Representation

For representing an FMS in LPN, the following basic rules are used:
1. Put all the places which are resources in free state on top of main

Petri net.
2. Draw out all the paths of all the parts which need to be machined in

the same time period in the main PN.
3. For each part in the PN, if the part needs to use a resource, that is, it

must pass a transition, then that transition must have an input arrow from
the required resource place. In LPN we do not need to directly connect
that resource place with the transition. Instead we draw an arrow labeled
with that resource place number. Also when the part is finished with that
resource it must pass the other transition and at this transition we again
draw an arrow to the resource place labeled with the resource output.

4. Each resource has a number of input and output arrows labeled with
transition number which correspond to the main PN.

In handling different job types in the system at the same time, each type
of job has its own path in LPN, corresponding to the operation sequences
for that type of job. In an LPN all the paths begin with an initially marked

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 53

place and end at that place. There exists a one to one correspondence from
the cyclic firing sequences in LPN to the job operation sequences in FMS.

3 An algorithm for analyzing LPN

Some algorithms have been proposed for analyzing PN [5,13]. While this
place-transition-token representation is used to indicate the static behavior
of the system, the dynamic behavior of the system can be obtained by firing
transitions. The union of all reachable states is the state-transition graph.
The parts cycling through an FMS are then defined as sets of closed paths
in this graph. An algorithm has been developed to identify those paths as
well as deadlocks in the graph.

The following LPN notation is used in this algorithm:
LPN = (P,T,C,M,F) where
P = the set of places
T = the set of transitions
C = the incident matrix of LPN
M = the matrix of all changed states in a cyclic path.
F = the finite set of firing sequences

The incidence matrix C of the LPN is used to store the relations among
the nodes (transitions and places) and is defined as:

C = (C(t,p)) where Z E T, p E P such that:
C(t,p = -1 if p is an input place for transition t
C(t,p = 1 if p is an output place for transition t
C(t,p =0 otherwise.

M is a matrix to store all markings for the transition firing in a cyclic.
F is a list used to store the firing sequences while searching for a cycle.

A table is used to help develop the algorithm (See table of Figure 2). In
this table, the set of places, P, appears on the left side of the table and the
set of transitions, T, along the upper side of table. M(II,0) appears to the
left of P indicating the initial markings. C appears in the area created by
P and T.

The purpose of this algorithm is to search for all the possible cycles and
deadlocks in the graph. It works in a similar way to tree-searching algo-
rithm. The algorithm begins with a description of the initial system. The
successors of a node are determined by firing one of the applicable transi-
tions. The associated state description of each successor is checked to see if
it equals to one of the previous state descriptions in the path. If the current
state equals one of the previous states then a cycle is found. If there is a
node from it then no transition can be fired and this path is deadlocked. If a
deadlock or a cycle is not found, the process of firing transitions continues.
A stack is used for back tracing. Whenever a transition T{ is fired, we push
the current state onto the stack. When a cycle or deadlock is encountered,
the current firing list is printed out, and the searching will continue with a
node popped from the stack. The cycles and deadlocks are recorded so that
they will not be searched again. The searching procedure is continued until
the stack is empty, which means that all the possible cycles and deadlocks
in the graph have been reached.

As can be seen from the example shown in Figure 3, a cycle of transitions
Tl —> T2 —> T3 —» T6 —> T7 is first found by the algorithm, corresponding
to operation sequence of workstations 2, 3, 4, 5 of job type 1. Then the

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

54 Artificial Intelligence in Engineering

M(II,0)

1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

pV

PI
P2
P3
P4
P5
P6
P7
PS
P9
P10
PI1
P12
P13
P14
P15
P16
P17
P18
P19
P20

Tl T2 T3 T4 15 16 11 T8 T9 TIO Tl 1 Tl 2 Tl 3 Tl 4 Tl S Tl 6 Tl 7 Tl S Tl 9 T20

- 1 1 1 - 1 - 1 1 - 1 1
- 1 1 - 1 1 - 1 1

- 1 1 1 1 1 - 1 1 1
- 1 - 1 1 - 1 1 - 1 - 1 1

- 1 1 - 1 1
1 -1 -1

1 -1
1 -1

1 1 -1
1 -1

1 -1 -1
1 -1

I -1
1 1 -1

1 -1
1 - 1 - 1

1 1
1 -1

1 1 - 1
- 1 1 - 1 1 - ! 1

Figure 2: Table expression of incident matrix for large-sized petri net model

(P: places; T: transitions)

algorithm traces back to transition T6, and further to Tl, where a new
cycle of transitions Tl -» T4 -+ T5 -» T6 -+ T7 is found. This cycle gives
another operation sequence of workstations 2,1,4,5 of job type 1. The
algorithm continues until it finds all the cycles and deadlocks in the graph.

4 Simulation Example

The system has one AGV (automated guided vehicle) which moves the
workpieces around the system and travels at a speed of 5 feet/second. There
are five work-stations in the system, each of which has a number of machines.
The work-station layout is given as system parameters. One feature of the
system is the equal priority assigned to both the AGV and the work-stations.
Every type of job has equal processing priority. For simplicity, we assume
there are enough buffers for workpieces waiting in the queue of each work-
station. The workpieces are of three types. The parts of type-one have a
four phase operation schedule, the required sequence of work-stations is M2,
M3, M4, and M5; Alternating operation sequence is M2, Ml, M4, and M5.
Type-two parts also have a four phase operation schedule, one is Ml, M3,
M2, and M5, another is Ml, M4, M2, and M5. Type-three parts have a
three phase operation schedule, i.e., Ml, M2, and M4, or Ml, M3, and M4.
Furthermore, there is a requirement concerning the production mix that has
to be met: type-one parts must account for 50% of the overall production,
type-two for 30%, and type-three for 20%. The interarrival time for the
new arriving workpieces obeys an exponential distribution with mean value
of 0.15 hour. There is an I/O station for workpiece input and output from
the system. The system uses FIFO principle for workpiece processes. All
the work-stations and AGV can work concurrently.

For every moment of time the state of the system is represented by the
number and the distribution of marked places in the system. A system

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 55

activity element (place) could be either working or free at each moment.
For this reason we let the place nodes PI, P2, P3, P4, and P5 represent
work-stations 2, 3, 1, 4, and 5 which are at the free state; P20 represents
a new workpiece (regardless of its type) which is waiting for processing;
The remaining places (P6 - P19) stand for the specific matchings between
work-stations and job types. For example, P6 represents that work-station
2 is machining job-type 1.

When the system is about to change one state to another state, it needs
to check if the preconditions for this change are satisfied. If so then the
system will change into a new state. Transition nodes are defined as: Tl,
T2, T3, ... , T20 indicate which conditions should be satisfied and what
resources can be released at the moment when a job requires some operations
(resources). For example, T2 indicates that if work-station 3 is free and
work-station 2 has finished operation for processing job-type 1 then job-type
1 can be transferred to work-station 3 for processing. Meanwhile work-
station 2 is released, and can be used for the other jobs. Initially all work-
stations in the system are free and only one workpiece has arrived.

By using the foregoing description, we can draw a Large-sized Petri net
for the model system, as shown in Figure 3. Figure 2 gives the incidence
matrix corresponding to the LPN in Figure 3. The algorithm given in
section 2 is used to find all the possible cycles in the LPN graph. These
cycles correspond to all the possible operation sequences for all type of jobs,
and are taken as input data for the SIMSCRIPT simulation program.

4.1 Simulation results

The approach developed in this project is a dynamically optimal job routing
strategy. Usually the static optimal job routing is used as a system job
routing strategy. The routing strategy is called general job routing if a job
routing is randomly picked when there is no optimal routing. In order to
compare this approach with others we can use the same set of data to do
the modelling in different types of job routing strategies. The approach of
dynamic optimal routing gets higher throughput than any other method.
It is important to see that this approach results in a uniform load on each
work-station in FMS. In the dynamic optimal routing the average number
of jobs in the queue is 8 and for static optimal routing the average number
of jobs in the queue is 22. For general routing the number is as high as
32. Considering that there are only a limited number of buffers for each
work-station, a large number of jobs in the queue would cause a system
blockage. Also the average total job delay in the queue is shorter than in
the other strategies.

Furthermore this approach can be used for online scheduling for FMS.
If the type of job changes, the model of LPN can be modified by simply
adding a new path for the new type job, and the corresponding places and
transitions can be easily changed in the incidence matrix. Also if some work-
stations break down, then LPN incidence matrix will send a signal, which
will cause that path to deadlock and the job may be continued following
another job routing sequence. Another advantage of this approach is that
LPN programs find all the possible sequences and SIMSCRIPT can simulate
those results quickly.

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

56 Artificial Intelligence in Engineering

Throughput

AGV
utilization

workstation

1
2
3
4
5

Job type

1
2
3

dynamic optimal routing

208

0.434

average number
of jobs in the

queue

8.77
1.41
1.74
0.77
4.71

average total job
delay in queue

3.39
1.86
3.19

probability
of working

0.859
0.731
0.755
0.661
0.819

average total
transporter
delay

0.07
0.06
0.07

static optimal routing

191

0.400

average number
of jobs in the

queue

23.06
039
1.74
0.37
1.82

average total job
delay in queue

4.73
4.09
5.12

probability
of working

0.912
0.711
0.793
0.515
0.639

average total
transporter
delay

0.07
0.05
0.06

general routing

139

0.384

average number
of jobs in the

queue

0.66
0.20
11.37
32.80
1.14

average total job
delay in queue

6.53
7.87
792

probability
of working

0.635
0.472
0.898
0.951
0.607

average total
transporter
delay

0.06
0.06
0.07

Figure 3: Comparison of three types of job routing strategies

5 Conclusions

The approach of using Large-sized Petri net and stochastic simulation of
FMS provides a more flexible model for development. The Large-sized Petri
net (LPN) provides a method for graphically and rapidly simulating FMS.
Using the SIMSCRIPT language can substantially reduce both program-
ming and project time. By design, it offers language, program, and data
structures that make modeling much easier to develop and modify.

The purpose of using this approach is to find out the optimal online
dynamic job scheduling strategies. Simulation results have shown this ap-
proach more efficient than other job scheduling approaches.

References

[1] Peterson, J.L.,fWrz AW TYteon/ &W f/te
wood Cliffs (NJ), Prentice-Hall, 1981.

, Engle-

 Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

