
Petri Net Transformations for

Business Processes – A Survey

Niels Lohmann1, Eric Verbeek2, and Remco Dijkman3

1 Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
niels.lohmann@uni-rostock.de

2 Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
h.m.w.verbeek@tue.nl

3 Technische Universiteit Eindhoven
Department of Technology Management

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
r.m.dijkman@tue.nl

Abstract. InProcess-Aware Information Systems, business processes are
often modeled in an explicit way. Roughly speaking, the available busi-
ness processmodeling languages can bedivided into twogroups. Languages
from the first group are preferred by academic people but shunned by busi-
ness people, and include Petri nets and process algebras. These academic
languages have a proper formal semantics, which allows the corresponding
academic models to be verified in a formal way. Languages from the second
group are preferred by business people but disliked by academic people,
and include BPEL, BPMN, andEPCs. These business languages often lack
any proper semantics, which often leads to debates on how to interpret cer-
tain business models. Nevertheless, business models are used in practice,
whereas academic models are hardly used. To be able to use, for example,
the abundance of Petri net verification techniques on business models, we
need to be able to transform these models to Petri nets. In this paper, we
investigate anumberofPetri net transformations that already exist.For ev-
ery transformation, we investigate the transformation itself, the constructs
in the business models that are problematic for the transformation and the
main applications for the transformation.

1 Introduction

Today, Business Process Management (BPM) is becoming more and more im-
portant to the business, which explains the increased popularity of business
process modeling, and a plethora of similar but subtly different process model-
ing approaches has been proposed, including the Web Services Business Process
Execution Language (BPEL) [1], the Event-driven Process Chains (EPCs) [2],
the Yet Another Workflow Language (YAWL) [3], the Business Process Model-
ing Notation (BPMN) [4], process algebras [5] and Petri nets [6,7]. The result-
ing babel has raised the issue of comparing the relative expressiveness between

K. Jensen and W. van der Aalst (Eds.): ToPNoC II, LNCS 5460, pp. 46–63, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Petri Net Transformations for Business Processes – A Survey 47

languages and translating models defined in one language into equivalent models
defined in another language.

Academic people prefer languages like process algebras and Petri nets, as
these languages have proper formal semantics and, hence, one can check relevant
and interesting properties on corresponding models. Business people, however,
prefer languages like BPEL, EPCs, and BPMN, which more than often lack
these proper formal semantics. As a result, business processes found in practice
are modeled in a way that leaves room for interpretation. An exception to this
is YAWL, which has its roots in the academic world, but is actually used in
practice, and has a semantics in terms of reset nets (which will be explained
further on in this paper). YAWL supports the most frequent control-flow patterns
found in the current workflow practice. As a result, most workflow languages
can be mapped onto YAWL without loss of control-flow details, even languages
allowing for advanced constructs such as cancelation regions and OR-joins. If
we want to combine the best of both worlds, that is, to combine the ability
to calculate certain properties on a formal semantics and the actual, existing
in practice, business models, we need to transform these business models to
languages with a formal semantics. In this paper, we will cover a number of
transformations from business models in BPEL, EPCs, YAWL, and BPMN,
focusing on transformations onto Petri nets.

The remainder of this paper is organized as follows. Section 2 introduces the
concepts (like Petri nets and relevant properties). These concepts are presented
in an informal way, for a more formal description, we refer to the literature on the
transformations itself. This section also explains ‘workflow patterns’ (frequently
used constructs in business process modeling) and how these patterns can be
transformed into Petri nets. Finally, this section presents a running example,
which we use throughout the paper to illustrate the transformations. Sections 3,
4, 5 and 6 introduce the business modeling languages, their transformations
into Petri nets and the constructs that are difficult or impossible to transform.
Each transformation is explained by reference to the workflow patterns that the
language supports. For additional details on these transformations, we refer to
the existing literature on these transformations. Section 7 concludes the paper.

2 Preliminaries

This section first presents the different types of Petri net used to formalize the busi-
ness process modeling languages. Second, it explains some well-known patterns
from the area of business process modeling, their representation using Petri nets
and possible difficulties to represent them. Third, it presents an example business
process that wewill use throughout this paper to illustrate the modeling languages.

2.1 Petri Net Classes

We assume the standard definition of Petri nets [6,7] to consist of two finite
disjoint sets of places and transitions (graphically represented by circles and
squares) together with a flow relation (represented as directed arcs).



48 N. Lohmann, E. Verbeek, and R. Dijkman

A Petri net is called a workflow net [8] if it has a distinct source place, a
distinct sink place, and if all nodes lie on some path from this source place
to the sink place. Typically, a token in the source place signifies a new case,
whereas a token in the sink place signifies a completed case. All transitions in
the workflow net should contribute to forwarding some case from the new state
to the completed state.

A workflow net net is called sound [8] if any case can always complete in a
proper way (that is, without tokens being marooned) and if no transition is dead.
Note that the workflow net requirement is a structural requirement, whereas the
soundness requirement is a behavioral requirement. A workflow net is called
relaxed sound [9] iff every transition can help in forwarding some case from the
new state to the completed state. Note that this requirement is less strict than
the soundness requirement, as the option to complete properly might not be
guaranteed for every reachable marking.

A reset net [10] is a Petri net extended by reset arcs. A transition that is
connected to a place with a reset arc removes all tokens on that place upon
firing. Reset nets are more expressive than classical Petri nets: some forms of
verification are undecidable in reset nets, while they are decidable in classical
Petri nets.

An open net [11] is a Petri net extended with a set of interface places and
a set of desirable final markings. The interface places are partitioned to input
and output places. Open nets thereby extend classical workflow nets with an
asynchronous interface to explicitly model message exchange. An important cor-
rectness criterion for open nets is controllability [12]. An open net is controllable
if another open net exists such that their composition (where the communication
places of both nets have been glued) always ends up in a desired final marking.
Note that (relaxed) soundness does not imply controllability, or vice versa.

2.2 Workflow Patterns and Petri Nets

A collection of workflow patterns has been developed to analyze the expressive
power of languages for workflow and business process modeling. Patterns with
respect to the control-flow aspect, on which we focus in this paper, are described
in [13,14]. The expressive power of modeling languages can be explained in terms
of which patterns they support. (For an overview of support from languages in
this paper, see [14].) Therefore, we use the workflow patterns from [14] as a
frame of reference here. We show how some of them can be mapped to Petri
nets, or what the problems are when they cannot be mapped. This provides the
reader with information about which languages support which patterns and the
particularities of mapping these patterns to Petri nets. Hence, it gives a good
overview of the state-of-the-art in Petri net transformation of business process
modeling languages.

Figure 1 shows the mapping of some of the workflow patterns to Petri nets.
Transitions that represent tasks are given the labels A, B or C and transitions
that affect the flow of control, but that do not represent tasks are given more



Petri Net Transformations for Business Processes – A Survey 49

region

i1 A p1 B o1Sequence

Parallel Split

Synchronization

Exclusive Choice

i1 A

p1

p2

p1

C o1

p2

B

C

o1

o2

i1 A

i2 B

i1 A

p1 B

C

o1

o2p2

c?

T

F

Multi-choice

i1 A

p1 B

C

o1

o2p2

c?

1

2

1+2

start
region

normal 
end

start

cancel region

end

active

cancel

t

tskip

bypass
end

region

cancel region

Simple Merge

p1 C o1

i1 A

i2 B

Cancel Region

Cancel Region w/ reset nets

Fig. 1. Workflow patterns in Petri nets

descriptive labels. The so-called simple patterns can easily be represented in
Petri nets. These are:

– ‘Sequence’, a task is enabled after another task is completed;
– ‘Parallel Split’ (also called ‘AND-split’), all outgoing branches are enabled

at the same time;
– ‘Synchronization’ (also called ‘AND-join’), the process must wait for all in-

coming branches to complete before it can continue;
– ‘Exclusive Choice’ (also called ‘XOR-split’), the execution of one out of a

number of branches is chosen;
– ‘Simple Merge’ (also called ‘XOR-join’), the process continues when one

incoming branch completes.

Another pattern that can easily be represented by Petri net is the ‘Deferred
Choice’ pattern, which differs from the ‘Exclusive Choice’ pattern in the fact
that the branch is chosen by the environment rather than by the system itself.

Patterns that are harder to represent in Petri nets include the ‘Multi-choice’,
in which the execution of a number of branches is chosen, and the ‘Cancel Re-
gion’, in which the execution of a set of tasks is disabled. These patterns lead
to nets that become hard to read. For example, although the ‘Multi-choice’ in
Fig. 1 is still readable, it becomes hard to read when there any number out of



50 N. Lohmann, E. Verbeek, and R. Dijkman

Step 3Step 2Step 1
t

f

e

m

l

tskip

fskip

eskip

failu

Fig. 2. Example process modeled as a Petri net

three or four outgoing branches can be chosen. To make these patterns more
readable, another class of Petri net can be chosen. Figure 1 illustrates this for
the ‘Cancel Region’, which is both represented as a classical Petri net and as a
reset net.

Patterns that cannot be represented as a classical Petri net include the ‘Gen-
eral Synchronizing Merge’, which corresponds to a wait-and-see synchronizing
construct. To represent such patterns, we would need very sophisticated classes
of Petri nets, for which analysis might just be infeasible.

2.3 Example Process

We will illustrate each of the modeling techniques, using the same example pro-
cess. As example process we take an image editing process. First, the customer
uploads an image (u). Second, the following procedure is applied: The image is
finished (f) and concurrently a thumbnail is created (t). Afterwards the results
are evaluated (e). If a failure occurred or if the evaluation is negative, the pro-
cedure is repeated. Third, if the image is too big, it is stored temporarily and
only a link is sent to the customer (l); otherwise the image is sent by e-mail
(m). At any point during the second step, a failure occurs if the format in which
the figure is stored cannot be imported by the tool that are used to process the
image. The other steps are assumed to be infallible. Figure 2 shows the example
modeled as a workflow net.

3 BPMN

The Business Process Modeling Notation (BPMN) [4] is developed as a stan-
dard for business process modeling. This section briefly explains the language,
the main challenges when transforming BPMN models to Petri nets and the



Petri Net Transformations for Business Processes – A Survey 51

Legend

u

t

e

m

l

fail

f

Start event

End event

Error exception event –
Cancel Region

Task

XOR-split –
Exclusive Choice

XOR-join –
Simple Merge

AND-split –
Parallel Split

AND-join –
Synchonization

a b Sequence flow from – Sequence

[redo]
[image small 
enough]

[image too big]

Fig. 3. The example process as a BPMN process

transformation itself. The section focuses on BPMN version 1.0, because at the
time that the transformation was developed that was the current version. There-
fore, comments on BPMN apply to version 1.0 only.

3.1 Language

BPMN is a rich language that provides the modeler with a large collection of
object types to represent various aspects of a business process, including the
control-flow, data, resources and exceptions. BPMN is mainly meant for model-
ing business processes at a conceptual level, meaning that it is mainly intended
for drawing process models that will be used for communication between stake-
holders in the processes. As a consequence, formal rigor and conciseness were
not primary concerns when developing the BPMN specification.

The three types of BPMN objects that can be used to represent the control-
flow aspect of a process are activities, events, gateways. Many subtypes of these
objects exist. Control-flow objects can be connected by sequence flows, which
are directed arcs that represent the flow of control from one object to the next.
Figure 3 illustrates some of these objects, by representing the example process
in BPMN and by relating the object types to the workflow patterns explained
in Sect. 2.2.

3.2 Transformation Challenges

Due to the large number of object types that constitute BPMN it is hard to
define a mapping and show (or prove) that the mapping works for all possible
combinations of these object types. Especially, because the mapping of a com-
position of object types is not the same as the composition of the mapping of
those object types. This complicates, for example, defining mapping rules for
interruptions of sub-process invocations.



52 N. Lohmann, E. Verbeek, and R. Dijkman

BPMN frequently introduces shorthands and alternatives for representing cer-
tain constructs. For example, an activity with multiple incoming flows will start
as soon as the control is passed to one of these flows. Hence, an activity with
multiple incoming flows behaves similar to an activity that is preceded by an
XOR-join. This further complicates the mapping.

Version 1.0 of the BPMN standard contains inconsistencies and ambiguities.
We uncovered several while defining the mapping [15]. This illustrates that defin-
ing a mapping to a formal language can be useful to uncover flaws in an informal
language.

3.3 Transformation and Application

In prior work we defined a mapping from a restricted version of BPMN to work-
flow nets [15]. The restrictions include that the BPMN models must have a single
start and a single end event. Also, activities with multiple concurrent instances
and some types of gateways cannot be used (in particular OR-gateways, which
represent the ‘Multi-choice’ and ‘General Synchronizing Merge’ patterns). The
mapping focuses on the control-flow aspect of processes.

The mapping is developed by defining mappings for each activity, events and
gateway object type, similar to the way in which Petri net mappings are defined
for each workflow pattern in Sect. 2.2. When transforming a model, first each
object is mapped onto a partial Petri net and second the partial Petri nets
are composed into a complete model. Although this approach works for many
constructs, some constructs cannot simply be mapped and then composed. The
mapping from BPMN to workflow nets allows the soundness of these nets to be
analyzed (see Sect. 2).

To the best of our knowledge the only other mapping from BPMN to a formal
language is from BPMN to CSP [16].

4 EPCs

Event-driven Process Chains (EPCs) [2] were developed to provide an intuitive
modeling language to model business processes. This section briefly explains
ECPs, the main challenges when transforming EPCs to Petri nets and the trans-
formation itself.

4.1 Language

Like BPMN, EPCs are meant for modeling business processes at a conceptual
level: EPCs are not intended to be a formal specification of a business process.
Instead, it serves mainly as a means of communication. There are, however, some
conceptual differences between BPMN and EPCs:

– BPMN supports the ‘Cancel Region’, whereas EPCs do not, and
– EPCs supports the ‘General Synchronizing Merge’, whereas BPMN does not.



Petri Net Transformations for Business Processes – A Survey 53

Legend

Start u V

XOR

V

f

t

e

m

l

V

XOR

XOR

XOR

Finish
image

Create 
thumbnail

Evaluate

Send 
image

Send link

Image
sent

Link sent

redo

Image too big

Image small enough

thumbnail failed

finish failed

XOR

XOR

V

V

V

V
XOR-split –
Exclusive choice

XOR-join –
Simple merge

AND-split –
Parallel split

OR-split –
Multi-choice

AND-join –
Synchronization

OR-join –
Gen. Sync. Merge

Simple flow – Sequence

function functionevent

Start event End event

Fig. 4. The example process as an EPC

Three types of EPC objects can be used to model the control-flow aspect
of a process: functions, events, and connectors. In a natural way, these types
correspond to the BPMN activities, events, and gateways. However, EPCs do
not allow for exceptions, and it supports only a limited set of connectors, which
is shown by Fig. 4. Apart from the full set of connectors, this figure also shows an
the example process as an EPC, and it relates the object types to the workflow
patterns explained in Section 2.2.

4.2 Transformation Challenges

A main challenge in EPCs is the semantics of the constructs that support the
‘Simple Merge’ and ‘General Synchronizing Merge’ patterns, viz. the XOR-join
connector and the OR-join connector. Everybody agrees that the XOR-join con-
nector should be enabled if one of its inputs is enabled, but this agreement is
lacking in case more than one inputs is enabled. Some say that the XOR-join
should be executed for every single enabled input, while others say that the
connector should block if multiple inputs are enabled. An even bigger problem
is the OR-join connector, for which a definitive semantics has lead to exten-
sive discussions in literature and to different solutions, all of which fail for some
EPCs [17,18,19]. As a result, not everybody will agree on a given mapping, as
not everyone will agree with the semantics used by it.

Furthermore, an EPC allows for multiple start events and multiple final
events, but not all combinations of these events are possible. Although the pro-
cess designer might know the possible combinations, an EPC does not contain
this information.



54 N. Lohmann, E. Verbeek, and R. Dijkman

4.3 Transformation and Application

The transformation to workflow nets as introduced in [20] explicitly targets the
verification of EPCs, and assumes that an OR-join is enabled as soon as any of
its inputs are enabled, and that an XOR-join with multiple inputs enabled will
be executed multiple times. This transformation results in a safe1 workflow net,
as it introduces a so-called shadow place for every place, and uses a number of
(optional) EPC reduction rules prior to transforming the EPC.

As mentioned above, an EPC allows for multiple start events and multiple
final events. However, the EPC designer might be aware of the fact that cer-
tain combination of start events will not occur, and that the process will behave
in such a way that certain combinations of final events are impossible as well.
Clearly, this knowledge of the designer is vital for the verification, but unfor-
tunately not included in the EPC. Therefore, the verification approach in [20]
proposes to query the user for this information. First, the user has to select
which combinations of start events are possible. Second, based on this informa-
tion a state space is build that possibly contains multiple subsets of final events.
Third, the user has to select the subsets of final events that indeed are possible.
For the example process, three subsets of final events were detected (next to a
number of deadlock states that also include non-final events, which are assumed
to be ignored by default), from which one (the subset containing both Image
sent and Link sent, which appears to be possible) needs to be ignored. Fourth,
the soundness property is checked on the resulting state space. If the state space
corresponds to a sound net, then the EPC is correct: A desired subset of final
events will always be reachable. Otherwise, the relaxed soundness property is
checked, where an OR-join (OR-split) transition is allowed to be non-relaxed
sound if and only if its inputs (outputs) are covered by relaxed sound OR-join
(OR-split) transitions. If the state space is relaxed sound, then the EPC can
be correct, although it allows for undesirable behavior. Otherwise, the EPC is
incorrect, as certain parts of the EPC cannot lead to any desired subset of final
events, when executed.

The example EPC can be correct, but allows for undesired behavior. For
example, if Finish image fails, then Create thumbnail should fail as well to be able
to reach a desirable subset of final events (that is, {Link sent}, or {Image sent}).

5 BPEL

The Web Services Business Process Execution Language (BPEL) [1], is a lan-
guage for describing the behavior of business processes based on Web services.
That makes BPEL a language for the programming in the large paradigm. Its
focus is — unlike modifying variable values in classical programming languages
such as C or Java— the message exchange and interaction with other Web ser-
vices. Advanced concepts such as instantiation, a complex exception handling,
1 A net is safe if and only if every place in every reachable marking contains at most

one token. As a result, the set of reachable markings is finite.



Petri Net Transformations for Business Processes – A Survey 55

"Upload Image" "Finish image"

"Create thumbnail"

"Evaluate results"

"Send link"

"Send image"

too big

else

 "no failures"

Fig. 5. The example process as a BPEL process

and long running transactions are further features that are needed to implement
business processes.

5.1 Language

Activities organize the communication with partners, variable manipulation, etc.
They can be ordered using structured activities which makes BPEL similar to a
block-based language. To support the simple patterns depicted in Fig. 1, control
links can be used to express splits, choices and merges. Due to restrictions, BPEL
avoids the problems occurring with the OR-join.

Being an execution language, the exceptional behavior which also includes
cancelation of parts of the process is described in great detail in the BPEL
specification [1]. In addition, BPEL supports the concept of hierarchical scopes
that model local units to which a local exception management (implemented by
fault, termination, and compensation handlers) is bound.

Example Process. BPEL is an XML-based execution language without stan-
dardized graphical representation. Figure 5 shows a possible implementation of
the example process using BPEL, in a schematic way. The process “Image editing”
contains a sequence, which in turn contains receive “Upload image”, repeatUntil
“no failures”, and if “too big”, etc.

5.2 Transformation Challenges

The positive control flow of a BPEL process (i. e., the sheer business process)
can be straightforwardly mapped to Petri nets by defining a translation of each
of BPEL’s activity type. The biggest challenge is the transition from the positive
to the negative control flow. The BPEL specification defines the following steps
to be performed in case a fault occurs. (1) All running activities in the scope
of the faulty activity have to be stopped. (2) The fault handler of the scope is
called. (3) If the fault could be handled, the execution continues with the scope’s
successor. If the fault could not be handled, it is escalated to the parent scope.

This procedure requires a global state (i. e., all running activities are stopped)
to be reached before invoking a fault handler. Petri nets naturally model dis-
tributed systems with concurrently acting local components. The formalization



56 N. Lohmann, E. Verbeek, and R. Dijkman

of the enforcement of a global state with Petri nets is therefore cumbersome,
because it requires all components to synchronize. The stopping of originally
independently running activities can be achieved on two ways.

(a) The request to stop is propagated from the scope to each running activity.
(b) A global “variable” modeled by a place describes the “mode” of the scope;

that is, whether the scope’s internal activities should be executed or stopped.

Option (a) has the advantage that the BPEL process’s nature of a distributed
system is mirrored in the Petri net model: Activities embedded into a flow are
executed concurrently. However, this concurrency introduces a lot of intermedi-
ate states that model the situation in which a fault is detected by a scope yet
not fully propagated. With a global state like in (b), stopping can be modeled
more easily, but implicitly schedules originally concurrent activities.

A similar problem arises when modeling the dead-path elimination [1] which
requires to skip activities than cannot be executed due to their join condition.
Again, this can be achieved through propagation (of the information whether
a branch is executed or skipped) or global places (a global status place which
controls whether an activity is executed or skipped).

5.3 Transformation and Application

Though there exist many works to formalize BPEL using Petri nets (see [21] for
an overview), only two Petri net transformations are feature-complete; that is,
covering all mentioned activities and aspects of a BPEL process. These formal-
izations are from the Humboldt-Universität zu Berlin together with the Univer-
sity of Rostock (abbreviated with “HR”), and from the Queensland University
of Technology (“QUT”). A detailed comparison between these semantics can
be found in [22]. Here, it suffices to mention that the HR transformations uses
propagation (see Sect. 5.2) and selectively results in either a normal Petri net or
an open net, whereas the QUT transformation uses global places and results in
a workflow net.

HR Transformation to Petri nets. The HR transformation implemented in the
tool BPEL2oWFN [23] can be used to translate BPEL into a standard Petri
net without interface places. This Petri net can be analyzed for deadlocks or
other classical Petri net properties, soundness, as well as temporal logical for-
mulas. A case study is presented in [24] shows that the internal behavior of large
processes with nested scopes and complex exception handling can be analyzed
using the model checking tool LoLA [25]. Furthermore, the semantics could be
validated by proving deadlock-freedom of the patterns.

HR Transformation to Open Nets. With the explicitly modeled interface of the
open net, the communication behavior of the BPEL processes can be analyzed.
The tool Fiona [23] can check controllability [12], synthesize a partner pro-
cess which can be translated back to BPEL [26], or calculate the operating
guideline [27] of the net. This operating guideline characterizes all partners that
communicate deadlock-freely with the original net and can be used for service



Petri Net Transformations for Business Processes – A Survey 57

image

edited image

link

finish image

create thumbnail

results

(a)

image

edited image

link

finish image

create thumbnail

results

(b)

Fig. 6. The BPEL process transformed into an open net (a) and a synthesized partner
open net (b). To increase legibility, fault handling is not depicted.

discovery. An extension to formalize choreographies [28] further allows to apply
the mentioned analysis techniques to a choreography of many BPEL processes
instead of just a single process.

Figure 6(a) shows the result of transforming the BPEL process to an open
net. The net is controllable, and Fig. 6(b) shows a synthesized partner open
net. The composition of the open nets is free of deadlocks, and a desired final
marking of the composition always reachable.

QUT Transformation to Workflow Nets. The QUT transformation was devel-
oped to decide soundness on the resulting workflow net, using the WofBPEL
tool [29], which is a spawn-of of the workflow verification tool Woflan [30,31].
However, the transformation does not allow for improper completion and BPEL
processes by definition have the option to complete. Thus, the soundness check
boils down to a check on dead transitions. Next to the soundness check, the
WofBPEL tool can also check whether an incoming message can be handled by
multiple elements (which is considered an anomaly in BPEL) and can augment
the BPEL model with information on when to garbage collect queued messages.
Based on this information, the BPEL garbage collector can decide to remove for
a certain running instance certain incoming messages from the message queue
as it is certain that these messages cannot be handled anymore by the instance.

6 YAWL

The Yet Another Workflow Language (YAWL) [3] was originally conceived as a
workflow language that would support 19 of the 20 most frequent used patterns
found in existing workflow languages. As such, YAWL supports the ‘Multiple
Instance’ pattern, the ‘General Synchronizing Merge’ pattern, and the ‘Cancel



58 N. Lohmann, E. Verbeek, and R. Dijkman

region

u

f

t

fail

e

m

l

task

XOR-split –
Exclusive Choice

XOR-join –
Simple Merge

AND-split –
Parallel Split

OR-split –
Multi-choice

AND-join –
Synchronization

OR-join –
Gen. Sync. Merge

Simple flow –
Sequence task Cancel Region

Legend

image too big

image small enough

redo

redo

condi-
tion

Start condition

End condition

Fig. 7. The example process as a YAWL model

Region’ pattern. The only pattern not supported by YAWL is the ‘Implicit Ter-
mination’ pattern (A process implicitly terminates when there is no more work
to do and the process is not in a deadlock.), and the authors of YAWL deliber-
ately chose not to support this pattern. Lately, the patterns have been revised
and extended [14], and YAWL is being extended to support the new patterns

6.1 Language

In YAWL, two objects are used to model the control-flow aspect of a pro-
cess: tasks and conditions. Loosely speaking the former correspond to activities
(BPMN) and functions (EPC), and the latter to events (both BPMN and EPC).
The BPMN gateways and EPC connectors are modeled by specifying the join
and split behavior of a task. Like EPCs, YAWL supports AND, XOR, and OR
splits and joins. Unlike EPCs, the semantics of the OR-join is well-defined, and
an engine exists that supports the execution of any YAWL model. As such, a
YAWL model can both act as a conceptual model and an IT model. Figure 7
shows a possible implementation of the example process using YAWL.

6.2 Transformation Challenges

The formalization of YAWL is straightforward, as it has a proper formal seman-
tics. Challenges in YAWL include the OR-join and the cancelation regions. The
YAWL OR-join comes with a semantics that includes backwards reasoning and



Petri Net Transformations for Business Processes – A Survey 59

coverability in reset nets, which is impossible to capture in a classical Petri nets.
The cancelations regions are hard to capture (though possible) in classical Petri
nets, but are straightforward to capture when using reset nets.

6.3 Transformation and Application

YAWL comes with a transformation to reset nets, which is straightforward except
for the OR-join [32]. Furthermore, there is also a transformation to workflow nets
that covers the behavior of the YAWL model [33]: any behavior exhibited by the
YAWL model will also be present in the Petri net, but not vice versa. Finally,
there is a transformation (see [34]) that is used to obtain a Petri-net-based
simulation model (using CPN tools [35]) for an operational YAWL model. To
keep things simple for the time being, this transformation assumes that there
are no cancelation regions, and that an OR-join is enabled a soon as any of its
inputs are enabled.

The transformation to reset nets that comes with YAWL is used by the YAWL
engine to check which tasks are enabled [32]. For an AND-join task and an XOR-
join task this check is quite simple (a task is enabled if and only if any of the
corresponding transitions in the reset net is enabled), but for an OR-join task this
check is quite complex and involves a coverability check on any corresponding
input place in the reset net that is not marked. As coverability is decidable for
reset nets, this procedure is decidable as well.

This transformation is also used to verify YAWL models [36]. In the absence
of OR-joins, a YAWL model can be transformed to a reset net, which can (pos-
sibly) be verified for soundness. If the reset net is to complicated to be checked
successfully, a set of reduction rules is given to simplify the reset net prior to
checking soundness [37].

The transformation from [33] is also used to verify YAWL models, but is re-
stricted to relaxed soundness. If the state space is too complex to be constructed,
transitions invariants can be used to estimate relaxed soundness. This approach
is correct (errors reported are really errors), but not necessarily complete (not
every error might get reported).

The other transformation to workflow nets is used to transform an existing
YAWL model into a colored Petri net that can be simulated by CPN Tools. If
an event log from the given YAWL model is provided during the transforma-
tion, then relevant information such as organizational details and performance
characteristics are included in the resulting simulation model.

7 Conclusion

Many transformations to Petri nets currently exist, and several of these trans-
formations struggle with concepts that are hard to handle in Petri nets, like
OR-joins and exceptions, but other transformations simply can abstract from
these concepts, either because the source language does not support the concept
as well, or because the application of the transformation allows for the abstrac-
tion. For example, YAWL and EPCs do not support exceptions, and some of



60 N. Lohmann, E. Verbeek, and R. Dijkman

the YAWL and EPC transformations can abstract from the OR-join because the
relaxed soundness property allows this.

Our experience indicates that transforming an informal and complex language
like BPEL to a low-level Petri net language is quite difficult without first hav-
ing formalized the language in a proper way. Many BPEL constructs require a
dedicated and possibly complex solution in Petri net terms, and to keep these
solutions nicely orthogonal (we do not want one solution to obstruct a second)
is not an easy task. Therefore, it seems sensible to:

– first, formalize the language using, for example, a high-level Petri net lan-
guage, and

– second, transform the high-level formalization to the target low-level Petri
net language.

Almost all transformations have been implemented in tools, and most of these
tools are included in the ProM framework [38]. For example, the transformations
from EPCs has been implemented in regular ProM conversion plug-ins, and the
transformations from BPEL have been implemented in tools for which ProM
conversion wrapper plug-ins have been implemented. The transformations from
YAWL models to reset nets and the transformations from BPMN to workflow
nets have been implemented in separate tools and it is expected that these
transformations will be included in the ProM framework in the near future.

The applications of the different transformations differ. Several transforma-
tions are used to verify the business process at hand, others are also used for
the actual execution of the business process (the transformation from YAWL to
reset nets is a good example for this). Furthermore, some transformations exist
that aim to simplify the source language, examples include the EPC reductions
and the well-known Petri-net reduction rules by Murata [7].

Informal languages often describe alternatives and shorthands to represent
process parts that have the same (formal) semantics. For the four languages
described here this holds only for BPMN. Other OMG standards also make use
of alternatives and shorthands. In our experience alternatives and shorthands are
most efficiently dealt with by creating a ‘normal form’ version of the language
and defining the mapping for this normal form. Alternatives and shorthands
should first be translated to the normal form. They will then be mapped to the
formalism of choice automatically.

From the transformation of a very detailed language such as BPEL into a
simple formalism like Petri nets, we learned that the applications of techniques
well-known in the field of compiler theory greatly systematize and simplify the
transformation. In particular, using high-level Petri nets as intermediate formal-
ism to explicitly model data aspects yields a better understanding of BPEL.
Only when a low-level pattern is actually needed (e.g., for verification), we ab-
stract from data aspects. In addition static analysis [39] allows for an improved
translation by collecting information on the context of each activity. This in-
formation can be used to chose the best fitting pattern (e.g., depending on the
presence of handlers or the chosen verification goal) from a pattern repository.



Petri Net Transformations for Business Processes – A Survey 61

This flexible model generation [40] has been shown to yield very compact trans-
formation results, and can be similarly applied to all presented source languages.

References

1. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
OASIS Standard, April 11, 2007, OASIS (2007)

2. Keller, G., Nüttgens, M., Scheer, A.: Semantische Processmodellierung auf der
Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des In-
stituts für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland,
Saarbrücken (1992)

3. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage. Information Systems 30(4), 245–275 (2005)

4. OMG: Business Process Modeling Notation (BPMN) Version 1.0. OMG Final
Adopted Specification, Object Management Group (2006)

5. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge tracts in theoretical
computer science, vol. 18. Cambridge University Press, Cambridge (1990)

6. Reisig, W.: Petri Nets. In: EATCS Monographs on Theoretical Computer Science
edn. Springer, Heidelberg (1985)

7. Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

8. van der Aalst, W.M.P.: The application of Petri nets to workflow management.
The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

9. Dehnert, J.: A Methodology for Workflow Modelling: from Business Process Mod-
elling towards Sound Workflow Specification. PhD thesis, Technische Universität
Berlin, Berlin, Germany (2003)

10. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and un-
decidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS,
vol. 1443, pp. 103–115. Springer, Heidelberg (1998)

11. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3), 35–43 (2005)

12. Wolf, K.: Does my service have partners? Transactions on Petri Nets and Other
Models of Concurrency (accepted for publication) (2008)

13. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distributed and Parallel Databases 14(3), 5–51 (2003)

14. Russell, N., ter Hofstede, A., van der Aalst, W., Mulyar, N.: Workflow control-flow
patterns: A revised view. Report BPM-06-22, BPM Center (2006)

15. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Information & Software Technology (accepted for publication)
(2008)

16. Wong, P.Y., Gibbons, J.: A Process Semantics for BPMN. In: Liu, S., Maibaum, T.,
Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidelberg
(2008), http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmnsem.pdf

17. Rittgen, P.: Modified EPCs and their Formal Semantics. Technical report 99/19,
University of Koblenz-Landau, Koblenz, Germany (1999)

18. van der Aalst, W.M.P., Desel, J., Kindler, E.: On the Semantics of EPCs: A Vicious
Circle. In: EPK 2002, Trier, Germany, GI, pp. 71–80 (2002)

19. Kindler, E.: On the semantics of EPCs: A framework for resolving the vicious circle.
Data and Knowledge Engineering 56(1), 23–40 (2006)

http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmnsem.pdf


62 N. Lohmann, E. Verbeek, and R. Dijkman

20. van Dongen, B.F., Jansen-Vullers, M.H., Verbeek, H.M.W., van der Aalst, W.M.P.:
Verification of the SAP reference models using EPC reduction, state space analysis,
and invariants. Computers in Industry 58(6), 578–601 (2007)

21. Breugel, F.v., Koshkina, M.: Models and verification of BPEL (2006),
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

22. Lohmann, N., Verbeek, H.M.W., Ouyang, C., Stahl, C., van der Aalst, W.M.P.:
Comparing and evaluating Petri net semantics for BPEL. Computer Science Report
07/23, Eindhoven University of Technology, Eindhoven, The Netherlands (2007)

23. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL
processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 17–32. Springer, Heidelberg (2006)

24. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri nets. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 220–235. Springer, Heidelberg (2005)

25. Schmidt, K.: LoLA: A low level analyser. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000)

26. Lohmann, N., Kleine, J.: Fully-automatic translation of open workflow net models
into simple abstract BPEL processes. In: Modellierung 2008, GI. LNI, vol. P-127,
pp. 57–72 (2008)

27. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

28. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Verifi-
cation and participant synthesis. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007.
LNCS, vol. 4937, pp. 46–60. Springer, Heidelberg (2008)

29. Ouyang, C., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter Hofstede, A.H.M.,
Verbeek, H.M.W.: WofBPEL: A tool for automated analysis of BPEL processes.
In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 484–489. Springer, Heidelberg (2005)

30. Verbeek, H.M.W., van der Aalst, W.M.P.: Woflan 2.0: A Petri-net-based workflow
diagnosis tool. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825,
pp. 475–484. Springer, Heidelberg (2000)

31. Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P.: Diagnozing workflow pro-
cesses using woflan. The Computer Journal 44(4), 246–279 (2001)

32. Wynn, M.T., Edmond, D., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Achieving
a General, Formal and Decidable Approach to the OR-join in Workflow using Reset
nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 423–
443. Springer, Heidelberg (2005)

33. Verbeek, H.M.W., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Verifying work-
flows with cancellation regions and OR-joins: An approach based on relaxed sound-
ness and invariants. The Computer Journal 50(3), 294–314 (2007)

34. Rozinat, A., Wynn, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.:
Workflow simulation for operational decision support using yawl and prom. BPM
Center Report BPM-08-04, BPMcenter.org (2008)

35. CPN Group, University of Aarhus, Denmark: CPN Tools Home Page,
http://wiki.daimi.au.dk/cpntools/

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf
http://wiki.daimi.au.dk/cpntools/


Petri Net Transformations for Business Processes – A Survey 63

36. Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Verifying
workflows with cancellation regions and OR-joins: An approach based on reset nets
and reachability analysis. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM
2006. LNCS, vol. 4102, pp. 389–394. Springer, Heidelberg (2006)

37. Wynn, M.T., Verbeek, H.M.W., van der Aalst, W.M.P., ter Hofstede, A.H.M.,
Edmond, D.: Reduction rules for reset workflow nets. BPM Center Report BPM-
06-25, BPMcenter.org (2006)

38. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM framework: A new era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
444–454. Springer, Heidelberg (2005)

39. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

40. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WS-
BPEL processes using flexible model generation. Data Knowl. Eng. 64(1), 38–54
(2008)


	Petri Net Transformations for Business Processes – A Survey
	Introduction
	Preliminaries
	Petri Net Classes
	Workflow Patterns and Petri Nets
	Example Process

	BPMN
	Language
	Transformation Challenges
	Transformation and Application

	EPCs
	Language
	Transformation Challenges
	Transformation and Application

	BPEL
	Language
	Transformation Challenges
	Transformation and Application

	YAWL
	Language
	Transformation Challenges
	Transformation and Application

	Conclusion
	References


