
Petri nets and manufacturing systems:

An examples-driven tour

L. Recalde⋆, M. Silva, J. Ezpeleta⋆, and E. Teruel⋆

Dep. Informática e Ingenieŕıa de Sistemas, Centro Politécnico Superior de Ingenieros,
Universidad de Zaragoza, Maŕıa de Luna 3, E-50012 Zaragoza, Spain

{lrecalde,silva,ezpeleta,eteruel}@unizar.es

Abstract. There exists ample literature on Petri nets and its poten-
tial in the modelling, analysis, synthesis and implementation of systems
in the manufacturing applications domain (see for example [54, 15, 18];
moreover, in [65] an important bibliography is presented). This paper
provides an examples-driven perspective. Nevertheless, not only com-
plete examples from the application domain are considered. Manufac-
turing systems are frequently large systems, and conceptual complexity
often appears because of some particular “local” constructions.
The examples considered in this selected tour try to introduce in a pro-
gressive way some applied concepts and techniques. The starting point
is an assembly cell, for which models concerning several phases of the
design life-cycle are presented. Afterwards, some pull control and kan-
ban management strategies are modelled. Then, two coloured models
of production lines are presented. After that, a manufacturing system
with two cells is modelled, and the difficulty of the practical analysis
is shown. For very populated manufacturing systems or systems with
high cadence, relaxation of discrete event models leads to hybrid and
continuous approximations, an example of which will be introduced.

1 Motivation and objectives

Petri Nets (PNs) constitute a well known paradigm for the design and operation
of many systems allowing a discrete event view [53]. The purpose of this work is
to present, in a tutorial style, some examples in which manufacturing systems are
modelled, and analysed. Several books about PNs and the design and operation
of manufacturing systems have been published at the end of the last century [17,
15, 64, 17, 44, 65]. In the sequel, the reader is assumed to be introduced to the
main concepts in Petri Nets [50, 42].

Basically a case study driven perspective is provided in this work. Neverthe-
less, not only full examples from the application domain are considered. Man-
ufacturing systems are frequently large systems, and conceptual complexity ap-
pears because of some particular constructions that appear in part of the system.
The examples considered in this selected tour try to progressively present some
applied concepts and techniques.

⋆ Partially supported by project CICYT and FEDER TIC2001-1819

1

The starting point (Section 2) is a manufacturing cell in which some con-
veyors move parts that, processed into two different machines (M1 and M2),
are assembled and evacuated. The internal movements of the parts in the cell
are executed by an industrial robot. Moreover, due to a relatively high rate of
failures of a machine (M1), a buffer allows a partial decoupling with respect to
the assembly machine (hence, also with respect to M2). This store (or buffer) is
a capacity, and act like condensers in RC circuits: filtering high frequency per-
turbations (i.e., attenuating the effect of frequent short failures that usually lead
to many small unavailability periods). From an abstract perspective, this intro-
ductory example shows some interesting interleaving among cooperation (here,
the assembly of two different kinds of parts) and competition (for the shared
resource: the robot) relationships. In general terms, the intricate interleaving of
these two kinds of relationships leads to the kernel of the conceptual complexity
to master the behaviour of discrete event systems (DES). The presentation of
this introductory example is focused on the advantages of using different models
of the same PN modelling paradigm in order to deal with the different phases of
the design and operation that appear during the life cycle of the process.

In general terms, the control of manufacturing systems uses frequently some
pre-established strategies. Among them the push strategy (from the input to
the output: from the raw parts to the finished products), pull (from the out-
put backwards to the input: from the demand to the input of raw parts) and
kanban, that may represent many different kinds of tradeoffs between the above
mentioned basic strategies, are specially relevant. The purpose of Section 3 is to
show that this kind of control mechanisms (or management strategies) can be
appropriately modelled by means of PNs (see, for example [11]). Analysis and
optimisation of the obtained models can be done, but this topic is not considered
in detail in this section, since the main purpose is to show the practical modelling
power of the PN formalisms. This paper is mainly devoted to aspects related to
modelling, analysis and control design, and not on other topics, like simulation
or implementation issues, that although interesting and useful are not developed
here. However, simulation will be used in this particular section to illustrate the
comparison of different control techniques.

In many manufacturing systems a significant part of the apparent complexity
may derive from the existence of several subsystems having identical (similar)
behaviours, or from many parts having similar processing plans. Under these
conditions (i.e., having significant symmetries among components), the use of
high level PNs may be of interest. For this purpose two different examples are
presented. The first one (Section 4) concerns a manufacturing line for car as-
sembly in France. The basic model is constructed in a very systematic way, by
merging a coloured PN model of the stations where manufacturing operations
are performed and a coloured PN model for the transportation system. The
problem with this basic model is that deadlocks may appear. A quite simple
solution is presented, being directly implementable in PN terms, just by adding
a place (i.e., a constraint) appropriately marked. A step further is done through

2

the presentation of a closed line corresponding to an ovens production factory
sited in Zaragoza (Section 5).

In order to approach the limits of the actual knowledge in the theory and ap-
plication of PNs to manufacturing examples, two additional cases are introduced
in Section 6. In the first one (Section 6.1), the model of a Flexible Manufactur-
ing System (FMS) (held in the Department of Computer Science and Systems
Engineering of the University of Zaragoza) is established [25]. Even if modelling
can be done in this case in a “straightforward” way, analysis “requires”, in the
actual state of the art, some manipulations allowing the computation of sequen-
tialised views for the different process plans. In other words, it is not a direct
application of theory that brings some solutions, but an indirect-pragmatically
oriented engineering approach. Going in the same direction, in Section 6.2 mod-
elling with object nets is done: this leads to a powerful modelling approach [61].
Unfortunately, it usually happens that the higher the abstraction level the for-
malism allows, the more complicated its analysis becomes. However, it is always
possible to apply simulation techniques, which can give insight of some system
behaviours.

Discrete event “views” may be very convenient in many cases for manufactur-
ing systems. Nevertheless, in some other cases, either because of computational
complexity problems (due to state explosion) or because the system presents a
“regular” high cadence behaviour or is highly populated, fluidification or con-
tinuisation may be of interest [3, 51, 52]. A hybrid (partially continuised) model
of this category is presented in Section 7. For systems in which some parts are
“naturally perceived as continuous”, a different PN interpretation leads to hy-
brid modelling (PrTr-DAE). In the present state of knowledge, this last approach
uses simulation as the main analysis technique (besides the application of stan-
dard analysis techniques for the study of the underlying discrete model). Hybrid
models analysis techniques should much improve in the future. Finally, some
concluding remarks close this work.

2 Life cycle and an introductory example: An assembly

manufacturing cell

This introductory example deals with a system in which the process plan is
quite easy: Parts “A” and “B” should be produced (at machines M1 and M2 ,
respectively) and later assembled (a rendez-vous) in machine M3 to obtain a
final product that leaves the manufacturing cell. In this trivial cooperative sys-
tem, two additional elements are introduced. First, relatively important failures
and repairs are taken into account for M1 . With the idea in mind of partially
decoupling these accidents with respect to the operation of downstream ma-
chines (here M3), a buffer (inventory place, deposit) is introduced. If M1 fails,
the downstream machine, M3 , may continue working for a while consuming the
parts already in the buffer. If the upstream machine M1 is repaired before the
buffer is emptied, the failure will not affect the downstream line (here M3 , only).
Since M3 is an assembly machine, its stopping condition will propagate to the

3

upstream line (here M2). The buffer is a passive element. At this point, the full
systems only exhibit cooperative activities. A typical competition relationship is
introduced by means of the movement of parts inside the system. In this case a
robot, working in mutual exclusion (mutex), feeds M1 and M2 (from the con-
veyor belt), feeds the buffer (from M1), and moves parts A (from the buffer)
and B (from M2) to M3 . Thus this introductory example (Figure 1, that will
be explained more in detail in Section 2.1) has cooperation and competition rela-
tionships. If the competition for the use of the robot is ignored, the cooperative
parts can be described by a free-choice net system [56]. The addition of the
robot-idle place transforms the net into a simple or asymmetric choice.

2.1 Basic autonomous model: dealing with basic relationships at

the net level

The net in Figure 1 models both the plant and the work plan, from a coordination
viewpoint. In the initial state, all the machines and the robot are idle, and the
buffer is empty. The only enabled transitions are those that represent the start of
the loading operation of either M1 or M2 , but only one of them can occur (i.e.,
there is a conflict situation). The autonomous model leaves undetermined which
one will occur, it only states that these are the possibilities. Assume M1 is to be
loaded, what is represented by the occurrence of transition t1 . Then the marking
changes: one token is removed from each input place of the transition (R idle and
M1 idle) and one token is put into the output place (M1 loading). Notice that
tokens were required from two input places, meaning that the loading operation
requires that both the machine and the robot are ready: it is a synchronisation
of both. Now the only enabled transition is the one representing the end of the
loading operation, but the autonomous model leaves undetermined when will
this happen, it only states that it can only happen whenever loading is in course
(which allows to represent sequencing). At the firing, the token is removed from
M1 loading and tokens are put in M1 working and R idle. In this new marking,
both output transitions of M1 working are enabled in conflict (it may either
complete the work or fail), and also the start of the loading of M2 is enabled.
This latter transition and a transition from M1 can occur simultaneously, or
in any order (their enabling is independent), what allows to faithfully model
concurrency. Notice the correspondence of subnets and subsystems (M1 , M2 ,
M3 , B1 , and R), and the natural representation of their mutual interactions. (It
goes without saying that operation places could be refined to show the detailed
sequence of operations in each machine, etc.)

We have depicted as bars those transitions that represent control events,
while transitions depicted as boxes represent the end of an operation, or the
occurrence of a failure. At the present stage of autonomous systems, these draw-
ing conventions, and also the various labels, are literature: the dynamics of the
model is not affected by these details, which are intended to make clearer the
“physical” meaning of the model.

This autonomous model can be used for documentation/understanding pur-
poses, and also to formally analyse the indeterministic possible behaviours. Clas-

4

M3

M2M1

B1

R

N

loading

t1

down

working

blocked

unloading

tb

idle

slots

loading "A"

waiting "B" waiting "A"

loading "B"

working

blocked

t22

working

loading

t21

R
idle

M1

M2

B1 ready
"A" parts

M3

idle

free "A" free "B"

Fig. 1. An autonomous place/transition system that formally describes the logic be-
haviour of a manufacturing cell.

sical PN analysis techniques allow to efficiently decide that this system model is
bounded (i.e., finite state space), live (i.e., no action can become unattainable),
and reversible (i.e., from any state the system can evolve to its initial state).

5

Classical (and basic) reduction rules [49] allow to transform the model into
a marked graph:

1. Every path start loading −→ loading −→ end loading is a macrotransition.
Therefore it can be reduced to a single load transition, preserving the (pro-
jected) language, hence liveness, boundedness, reversibility, etc.

2. After the previous step, place R idle self-loops around the four load transi-
tions, and can be removed preserving the language (i.e., it was an implicit
place).

3. The places working and down in M1 and their connecting transitions form
a macroplace.

The resulting marked graph is strongly connected. Therefore, it is structurally
bounded (i.e., it is bounded for any initial marking, not just for the one that
is shown here), and it does not contain unmarked circuits, so it is live and
reversible.

2.2 The performance evaluation model: stochastic T-timed

interpretation and analysis

If the purpose of the model is to evaluate the performance of the manufacturing
cell, or to investigate different scheduling policies, then timing information (e.g.,
duration of operations, mean time between failures, etc.) can be incorporated to
the model, for instance specifying the delay in the firing of transitions. Diverse
timing specifications are possible (e.g., stochastic, deterministic, time intervals,
etc.), each one best suited for a particular purpose or degree of detail required.
In Figure 2 the firing delays are specified by their mean times.

In a preliminary design stage, where the issue is machine selection and dimen-
sioning of the system, a stochastic timing specification, such as that of generalised
stochastic PNs [1], is best suited. In the example we assume that the distribu-
tion of time delays corresponding to operations and movements is phase-type,
namely Erlang-3, while failures and repairs follow exponential distributions. All
other transitions are immediate, they fire as soon as they are enabled (so they
are prioritary w.r.t. timed transitions). Conflicts between timed transitions are
solved by race policy, while conflicts between immediate ones are solved in a
probabilistic fashion).

It was seen in Section 2.1 that this system is reversible. Therefore, the reach-
ability graph is strongly connected, and this allows to deduce ergodicity of the
stochastic process and irreducibility of the underlying Markov chain.

Markovian performance analysis can be used to assist in the dimensioning
of B1 , or to analyse its impact. With given failure and repair rates for M1 ,
throughput is plotted versus buffer size in Figure 3.

Economic considerations (in terms of throughput, required investment, and
work in progress) would allow to optimise the buffer size. The plots in Figure 4
show how the effect of the buffer varies depending on the nature of the failures.
Keeping the failure/repair ratio constant (i.e., the % of unavailability of the
machine due to a failure is constant), different situations can be observed:

6

N

Timing:

Operation: 6 t.u.

Robot movement: 1.6 t.u.

M1→B1 transfer: 0.6 t.u.

Synchronization: 0 t.u.

Failure: exp, mean 1/λ
fail

Repair: exp, mean 0.15/λ
fail

Fig. 2. A timed place/transition system that allows performance evaluation and opti-
misation of a manufacturing cell.

– Very unfrequent failures with very long repair times (left side of the plot).
The throughput is reduced, and is insensible to the buffer size, because the
repair time exceeds largely the time to empty the buffer.

7

Buffer capacity (N)

T
h
ro

u
g
h
p
u
t

Fig. 3. Performance evaluation of the cell in Figure 1 with respect to buffer capacity.

T
h

ro
u

g
h

p
u

t

Failure rate ()λ
f ail

Fig. 4. Performance evaluation of the cell in Figure 1 with respect to failure rate.

– On the other extreme, in the case of very frequent slight failures, a relatively
small buffer is able to filter out the high frequency perturbations represented
by the failures, and the throughput is equal to the throughput in the case of
no failures.

– When the order of magnitude of repair times are similar to the time re-
quired to empty the buffer, its size is most critical in order to increase the
throughput.

Notice that for the case N = 0 the model in Figure 1 should be changed,
removing B1 . That is, the “unloading” operation should be merged with the
“loadingA” and place slots removed since it becomes implicit. Then, M1 becomes
essentially identical to M2 , except for the presence of failures. It results in a more
tight coupling of the machines that leads to a significantly lower throughput.

2.3 On the optimal scheduling: Performance control

Assume that, after the optimisation of the design that involved performance
evaluation, the capacity of the buffer is fixed to two. Although the plant param-
eters are fixed, the actual performance of the system may vary depending on

8

how it is controlled. The scheduler is in charge of controlling the evolution by
enabling/disabling the transitions that initiate robot load operations (i.e., these
are the controllable transitions here).

M1

M2

M3 working

working

working

u
n
lo

ad
in

g

lo
ad

in
g
 "

A
"

lo
ad

in
g
 "

B
"

lo
ad

in
g

lo
ad

in
g

Cycle: 9.2 t.u.

Cycle: 10.8 t.u.(a)

(b)

Ready "A" parts in B1

0

1

2

Ready "A" parts in B1

0

1

2

Fig. 5. Effect of different scheduling policies in the manufacturing cell of Figure 1.

Figure 5 shows the Gantt charts of two possible scheduling policies assuming
deterministic timing and disregarding failures. In Figure 5(a) operations are
scheduled as soon as possible, solving eventual conflicts in the allocation of the
robot by fixed priorities (M2 is prioritary over M1). A periodic regime is quickly
reached, in which:

– The cycle time is 10.8 (i.e., throughput 0.0926 without failures).
– The buffer contains at most one part, so parts are not accumulated to be

used in the event of a failure.

The Gantt chart in Figure 5(b) shows the evolution when the scheduler pre-
vents interrupting M1 until it gets blocked, and interrupting M2 and M3 from
then on. This policy fills up the buffer to be prepared for eventual failures and
achieves a cycle time of 9.2 (i.e., throughput 0.1087) in normal operation, thus
the buffer allows to increase productivity in more than 11%. Let us check that
this policy can be proved to be optimal.

As already mentioned, let us consider the system without failures (i.e., remov-
ing the failure-repair loop). One way of reasoning to obtain the optimal schedule
for this system is as follows: the skeleton of the system is clearly a strongly con-
nected marked graph provided with a monitor place (idle state for the robot).
Thus the unique T-semiflow is x = 1 (i.e., a vector of 1s). This means that all
the transitions, in particular the four immediate in which the robot starts to
work, should be fired in the same proportion in any “long enough” sequence.

9

Even more, the steady state should be defined by repeating sequences in which
t1 , tb, t21 and t22 (i.e., all the transitions before the “loading” places) appear
once. Since those transitions are the only ones that may be in conflict, the
scheduling problem reduces to choosing the relative order in which they should
be fired. Given the repetitive behaviour of the steady state, in principle any
transition can be taken as the first, thus there exist at most 3! = 6 possibilities
to explore. Assume t22 is fired first. In this case nothing opposes to take t21
as the second one to fire, because there is a marked place (M2idle) connecting
the end of the first loading operation with the start of the second one (in other
words, by choosing t21 as the second one no constraint is added). Therefore, the
question now is to choose between t1 and tb. Before going to that question, let
us observe that firing an appropriate transient sequence the buffer can be filled,
at least partially. In doing that, the firing of t1 and tb are “decoupled” by a
finite sequence, i.e., both can be fired in any order, while keeping the goal of
computing an optimal schedule. If, after t21 , transition t1 is fired, the cycle of
use of the shared resource (the robot) is finished by firing tb (and later t22 for
a new cycle).

A general upper bound of the throughput (lower for the cycle time) of the
original system can be computed by means of a linear programming problem [9].
For this particular case, the lower bound for the cycle time is 9.2 time units.
Looking at Figure 5(b) it is clear that this lower bound can be reached with the
previous ordering. However, an alternative procedure can be used to prove it.

Introducing places {p2 , p3 , p4} to put an order in the use of the robot: t21 -
p2 -t1 , t1 -p3 -tb, tb-p4 -t22 (observe that p1 , for t22 -p1 -t21 , is equal to M2idle,
and so it is already present and marked), the place representing the idle state of
the robot becomes concurrently implicit [55], thus can be removed and a marked
graph is found. Under deterministic timing the exact cycle time for any marked
graph can be computed by means of the same linear programming problem
mentioned above [8]. The obtained value for this case is once again 9.2, thus
under deterministic timing and no failures, the set of added constraints, places
{p2 , p3 , p4}, constitute an optimal scheduler. The reason is that adding that
constraints (places p2 , p3 and p4) the lower bound for the cycle time is now
known to be reachable.

2.4 The controller: The marking diagram interpretation and

fault-tolerant implementation

Controlling an existing manufacturing system (MS) means constraining its evo-
lution in order to guarantee the desired logic behaviour or/and to optimise its
performances at operation. If the plant to be controlled is modelled as a PN, the
control decides the firing or not of enabled transitions. Usually, not every tran-
sition can be disabled (e.g., a failure, the completion of an operation, etc.), so
transitions can be classified as controllable or uncontrollable. Controllable points
are those at which the decision maker (e.g., a scheduler) influences the behaviour
of the system.

10

Typically, concerning the logic behaviour, it is important to avoid undesirable
or forbidden states, such as deadlocks, or to guarantee certain mutual exclusions,
while performance control aims to maximise throughput or a more general cost
function (e.g., involving also work in progress, machine utilisations, etc.), by de-
termining the firing epoch for transitions (scheduling). PNs with an appropriate
timed interpretation are very well suited to the modelling of scheduling problems
in parallel and distributed systems. PNs allow to model within a single formalism
the functional, temporal, and resource constraints. These determine the enabled
transitions, and then the scheduling problem is reducing the indeterminism by
deciding when to fire which transitions among the enabled ones. In scheduling
theory [12] it is conventionally assumed that tasks are to be executed only once.
Periodic or cyclic schedules [34] are seldom treated by the theory despite they
abound in practice. PN scheduling techniques allow to face these problems. The
same as for the analysis, enumerative, net-driven, and net-based approaches can
be found in the literature. The computational complexity of scheduling problems
leads in practice to sub-optimal solutions obtained using heuristics, artificial in-
telligence techniques, etc.

Usually, the control receives inputs from the plant, besides of emitting signals
to it, so it operates in closed loop (the plant and the control are composed in
parallel, in discrete event systems terminology). The same as PN can be used to
model and analyse an MS, its control can often be represented within the PN
formalism, perhaps incorporating an appropriate interpretation.

Coming back to the manufacturing example, if the model is meant as a spec-
ification for a logic controller, the firing of transitions must be related to the
corresponding external events or inputs, and the outputs that must be emitted
have to be specified. The inputs, which condition the evolution of the controller,
may come from plant sensors (e.g., when R finishes loading M2 it emits a signal
loaded M2) or from other levels in the control hierarchy (e.g., when the scheduler
decides — in view of the state of the system and the production requirements —
that M1 should be loaded, it sends sched M1). The outputs may command the
actuators (e.g., START M3 initiates the assembly sequence in M3) or send infor-
mation to other levels in the control hierarchy (e.g., REPAIR! raises an alarm to
call the attention of maintenance staff, or an interrupt that activates automatic
recovery; B1 CONT(m) updates the number of ready “A” parts in the production
database, etc.). The PN model in Figure 6 captures this information. Following
appropriate conventions in the specification (e.g., those imposed in the defini-
tion of Grafcet [15]), a model similar to this one could be used directly as a logic
controller program.

Once a suitable PN model for a controller has been obtained it has to be
implemented. Basically an implementation is a physical device which emulates
the behaviour expressed by the model. One advantage of using PNs as a specifi-
cation formalism is their independence w.r.t. the precise technology (pneumatic,
electronic, etc.) and techniques (hardwired, microprogrammed, etc.) of the final
implementation. Presently, in MS control, programmed implementations are the

11

loaded_M1

START_M1

N

sched_M1

LOAD_M1

sched_M2

LOAD_M2

TRANSFER

START_M3

loaded_M2

START_M2

done_M3

loaded_M3A loaded_M3B

transferred done_M2

done_M1
fail

repaired

REPAIR!

Signals:

inputs
 (from sensors, scheduler, etc.)

OUTPUTS
 (TO ACTUATORS, MONITORING, ETC.)

R_OFF

M1_ON

M2_ON

M3_ON

B1_CONT(m)

sched_M3A
LOAD_M3A

sched_M3B
LOAD_M3B

Fig. 6. A marking diagram that specifies the behaviour of the logic controller of a
manufacturing cell.

most usual, running on a wide range of computer systems (e.g., industrial PC’s,
programmable logic controllers, etc.).

12

The (programmed) implementation is affected by the selected PN formalism
(low or high level, different interpretations of the firing rule), the algorithmic ap-
proach (interpreted, where the PN model is a data structure, or compiled, where
a program is obtained from the given PN; centralised or parallel/distributed
schemas), and the computer architecture (high or low level programming lan-
guage; single or multi processor).

For the case of local controllers specified by low level PNs with input and
output signals (like that shown in Figure 6), a usual choice are interpreted im-
plementations (“token players”) [60, 48]. The basic schema is a cyclic program
that reads the inputs, computes the evolution of the marking, and generates the
outputs once and again. A major issue is the efficient computation of enabled
transitions. An example of an efficient technique for this purpose are represent-
ing places (see, for instance, [13]). The idea is to appropriately select one input
place per transition (its representing place). It is always possible (perhaps after
some net transformations) to classify places as either representing or synchroni-
sation places, where each of the former is the representing place of all its output
transitions. The marked representing places are kept in a list (we assume safe-
ness for simplicity), that is updated at each transition firing. In each cycle, only
the output transitions of marked representing places are tested for enabledness,
eventually checking the marking of some synchronisation places. A possible se-
lection of representing places for the net in Figure 6 are all but R idle, slots,
ready “A”parts, waiting “A”, and free “B” (thus, these would be the synchro-
nisation places).

The inherent parallelism captured by a PN model is somehow dismissed in
centralised implementations. Diverse parallel and distributed implementations
have been proposed (see, for instance, [13]). The structure theory of PNs allows
to identify certain components in a given net that are useful for distributing or
parallelising the implementation. Particularly, live and safe state machine com-
ponents lead to cyclic sequential processes that can be directly implemented, for
instance, as Ada tasks. In such case, other places can be represented as global
variables, semaphores, etc. Coming back to the example, we easily identify M1
and M2 as sequential tasks, M3 can be decomposed into two synchronised se-
quential tasks, slots and ready “A” parts are semaphores, and R idle is a mutual
exclusion semaphore.

In the implementation of higher control levels, some convergence has ap-
peared between the fields of PNs and artificial intelligence (see, for instance,
[40], [59]). In this sense, transitions play the role of rules while the working
memory can be split into several nodes corresponding to the respective input
places. With respect to classical PNs implementations, the search for enabled
transitions is carried out by the matching phase in the rule system, which can
take advantage from the partition into local working memories. For the selec-
tion phase transitions can be grouped into conflict sets by inspecting the net
structure, and each one can be provided with a particular resolution strategy.

An important issue when designing a control system is that of safety. Formal
modelling and analysis tools are needed to engineer safe computer-controlled

13

systems. For this task it is necessary to consider both the control system and
its environment, for which PNs are a suitable formalism [37]. When faults can
happen the controller should be able to detect them and even react appropriately
degrading system’s performance as little as possible.

Let us briefly concentrate here on the detection and recovery of faults in the
controller itself. Several techniques have been proposed to produce safe and/or
fault-tolerant PNs based controllers. We illustrate next one of these techniques
which are supported by PNs theory: the spy/observer schema.

OP

CP

I O

error

observer

o
b

se
rv

at
io

n
re

p
o

rt
s

ac
k

n
o

w
le

d
g

em
en

ts

OP

CP

I

OP

CP

O

voting

error

Version 1

Version 2

Fig. 7. Duplication versus observation.

In general, N-version programming techniques, that is, the controller is repli-
cated and a voting mechanism is introduced [4] can be used. A less expensive
schema is based on the idea of an observer [5] or spy [62], which accepts “nor-
mal” behaviours seen through some observable, or check, points. In Figure 7
duplication and observation schemas are compared. The observable points are
transitions whose firing is reported to the spy/observer (transitions are classi-
fied as observable or non-observable, dually to the classification into control-
lable and uncontrollable). The spy/observer can be modelled as a PN equivalent
to the original one w.r.t. observable transitions (non observable transitions are
considered silent and can be reduced). In the final implementation, the code
corresponding to the spy is merged with the code of the proper controller. An
observer is also employed in [19] for formal validation.

Coming back to the example, considering as observable all the synchronisa-
tion transitions in the net (i.e., those corresponding to the initiation of robot
operations, initiation of a transfer from M1 to M2 , and initiation of an assem-
bly in M3) the corresponding spy is shown in Figure 8. (Notice that this spy is
obtained applying the same reduction rules that were applied for the analysis.)

14

LOAD_M1

LOAD_M2TRANSFER

START_M3

LOAD_M3A LOAD_M3B

N

Fig. 8. A spy for the net in Figure 1.

3 Modelling some classical management strategies in

manufacturing: pull control and kanban

The primary goal of many manufacturing systems can be expressed in terms of
the maximisation of the production rate, the minimisation of the work-in-process
(WIP) inventory, and minimisation of the delivering delay (difference between
the date of a demand and the date of serving it). The above criteria usually
leads to some contradictory situations. For example, minimising WIP usually
lead to higher delivering delays, what may even represent losing some selling
opportunities (impatient clients).

Among the many imaginable strategies for the management of production
systems, push control is based on the idea of “advancing” tasks relative to pro-
duction as much as possible. Thus the behaviour of the production plant is
“externally” constrained by the raw materials available, and by the capacity of
buffers for storing finished products. Under this strategy, raw materials “push
the production”, and delivering delays are minimised at the expense of, even-
tually, important WIP costs. In many cases push-type behaviours use demand
forecasts to generate the production plans. On the contrary, under the basic
pull control strategy, the customers demands trigger the production, i.e., “pull
the production”. Thus the WIP cost is reduced to a minimum, at the expense
of more important delays for delivering, i.e., at the expense of decreasing the
quality of customer service.

In the manufacturing arena, it is well known that just in time (JIT) ap-
proaches lead to low WIP costs. In order to conciliate the above mentioned con-
tradictory performances, many hybrid push/pull control algorithms have been
proposed in the literature. Kanban systems allow to deal with different kinds of
those strategies, trying to smooth and balance material flows by using several

15

appropriately controlled intermediate inventories. In essence kanbans are cards
that circulate between a machine (or sequence of machines) and a downstream
buffer. When a withdrawal operation liberates a position of an intermediate
buffer, a card is recirculated in order to allow the production of a new part to
compensate “the previous loss” in the inventory site. The number of kanbans
around a machine(s)-buffer subsystem determines the buffer size. In a kanban
controlled system, production of parts is triggered in response to “intermediate
demands”. As already mentioned in the cell manufacturing example of Section 2,
the parts in any intermediate buffer try to “protect” the operation of downstream
machines from possible interruptions of upstream machines. If the repairing time
of the machine under failure is “not too big”, the buffer will not empty and the
failure will not affect the downstream machine. Therefore intermediate buffers
“can be perceived” as condensers in electrical circuits or resorts in mechanical
systems, allowing relatively uncoupled behaviours on production lines subsys-
tems. A certain number of questions arise in order to optimise the production:
Where to put the intermediate buffers?, How large?, Which strategies should be
used for control?, etc.

The point here is that at a general level, Petri nets –with some timed in-
terpretation, for example, Generalised Stochastic Petri Nets [1]– can be used
to model different designs and control strategies. By using appropriate perfor-
mance evaluation models, the optimisation of the strategy used to control the
material flow (i.e., making the more appropriate decisions), even the tuning of
its parameters, can be formally studied.

Single-output assembly manufacturing systems have usually, from the out-
put point of view, a tree-like topology. In the manufacturing domain, it is usual
to represent machines as circles and buffers as triangles (Figure 9). The (out-
put) root of the tree represents the finished goods buffer. In order to simplify
the presentation, let us assume a single level assembly stage and two previous
manufacturing stages (Figure 10).

Fig. 9. Topology of an assembly manufacturing system: machines are shown as circles
and buffers as triangles.

The basic schema of a production stage can be easily described in PNs terms
by means of the connected marked graph in Figure 11(a). According to that,

16

stage 1

stage 2

assembly
stage

Fig. 10. Two manufacturing stages (with their buffers) followed by an assembly stage
(with the finished products buffer).

production stages are composed of a raw parts container (raw) synchronised with
a demand for production (demand), followed by the waiting queue and machine
working place (dr), and the place representing the single machine (machine);
and finally its output buffer of finished parts (f). The transition in the self-loop
of the machine is timed (processing time of a part). Thus the utilisation rate of
the machine is given by the probability of non null marking in place dr (at least
one part needs to be processed).

raw

demand

dr

machine

f (finished)

(a)

dr

machine

f

(b)

Fig. 11. Basic schema of a production stage.

It is common in certain cases to assume that there are always enough raw
parts. This means that place raw can be removed because it is not a constraint
any more (it is never the unique that forbids the firing of its output transition).
In doing so, because the transition between places demand and dr is immediate,
both places can be merged into a single one (we keep the name dr). In Fig-
ure 11(b), the simplified model is presented. It will be a basic building block for
the models of this section. In order to simplify the drawing of nets, in the sequel
place machine will be removed, while it is assumed that the firing semantics of
the corresponding transitions is single server [8]. Transitions with single servers
semantics will be graphically denoted here as dashed timed transitions. Observe
that at this level it is assumed that the machines do not fail.

17

A basic pull control system (base stock control system, BSCS [11]) is presented
in Figure 12. It consists of two production stages (with k1 and k2 parts finished

dr1

machine1

f1θ1

k1

dr2

machine2

f2θ2

k2

dr3 machine3 f3

θ3

k3

delivering

customers

demands

Fig. 12. Production of parts A and B (stages 1 and 2) and final assembly (stage 3),
with a basic stock (pull) control system (BSCS) and assuming single server semantics.

in stage 1 and stage 2, respectively), feeding an assembly stage (initially with k3
finished parts). When a customer’s demand appears, places dr1 and dr2 receive a
(new) token, in order to produce another part for each stage. Customers demand
allows to serve finished parts, represented by tokens in place f3 , initially marked
with k3 tokens. A main problem in this basic schema is that the limitation of
the WIP is not assured in any of the three stages (two for production and one
for assembly, in the present case). It is not difficult to see that under saturation
of customers demands (i.e., under the hypothesis that there exists an infinite
number of customer demands), the production cycle time (the inverse of the
throughput) is bounded by the slower of the three machines:

θ = max{θ1, θ2, θ3}

Simultaneous kanban control system (SKCS) and independent kanban control
system (IKCS) are modelled in Figures 13 and 14. As happened before, in
both cases two production stages are followed by an assembly stage. Even under
saturation of customers demands, the capacity of the stages are k1, k2 and k3,
respectively, while the production cycle time under deterministic timing is once
again θ, i.e., defined by the slower machine (because all ki are greater than zero).
Under stochastic timing, θ is a lower bound for the cycle time (i.e., 1/θ is an
upper bound for the throughput).

The difference among SKCS and IKCS is that the first one feeds simultane-
ously the assembly stage and the new production order for the (two) previous
stages. In the second case, separate kanbans feed stages 1 and 2, while feeding
the assembly stage is automatic, when appropriate parts exists (in b1 and b2).

18

dr1 f1θ1

k1

dr2 f2θ2

k2

dr3 f3

θ3

k3

delivering

customers

demands

simultaneous

kanban

demand

Fig. 13. Simultaneous kanban control system (SKCS).

dr1 f1θ1

k1

dr2 f2θ2

k2

dr3 f3

θ3

k3

delivering

customers

demands

b1

b2

independent kanban 1

independent kanban 2

Fig. 14. Independent kanban control system (IKCS): Kanbans are independently gen-
erated for machine 1 and machine 2.

Obviously, in transient behaviours, the independent case can be better than the
simultaneous one.

A more elaborated kanban system is presented in Figure 15. It is the so called
independent extended kanban control system (IEKCS) [11]. Under saturation of
customers demands it behaves exactly like the above schemes (SKCS and IKCS).
Nevertheless, in this case different kanbans send simultaneously requests for the
production of primary parts (in stage 1 and stage 2), for an assembly to be
done, and for the delivery of a finished part. This may lead to some interesting

19

si
sf

delivering

customers

demands

bi

autorization
for assembly i

ki-si

kanban i

demand i

kf-sf

demand
for assembly i

demand
for delivery

f3

θ3

Fig. 15. Independent extended kanban control system (IEKCS).

behaviours, potentially reducing the WIP, while keeping a good reactivity to
demands.

These control policies have been simulated assuming in all cases that θ1 = 1,
θ2 = θ3 = 2, k1 = 2, k2 = 3, k3 = 2, and for IEKCS, s1 = s2 = s3 = 1.
A burst of 5 simultaneous demands is simulated at 30 t.u. The results for the
different control systems in Figures 12-15 are represented in Figure 16, where
(a) shows the marking of place demand (unsatisfied demand), (b) shows the
marking of place f3 (complete products in stock), and (c) shows the throughput
of the assembly station. Because the “delivering” transition is immediate, the
unsatisfied demand at 30 t.u. is equal to 5 minus the products in stock: 1 for
BSCS, 3 for SKCS and IKCS, and 4 for IEKCS. It can be seen that SKCS and
IKCS are in this case equivalent. BSCS is the first to “satisfy the demand” (the
marking of the place demand returns to zero), while IEKCS is the last one.
However, the stock of complete products in absence of demand is much larger
under BSCS (4), than under IEKCS (1). With respect to the throughput, SCKS,
IKCS and IEKCS, work on demand, so the throughput is zero before the demand.
Under BSCS, a first outburst of the production appears, since the intermediate
stocks f1 and f2 are used to produce the final assembly. In other words, the
system tries to complete as much products as it can, instead of keeping stocks of
intermediate elements. That is the reason why although the stock under BSCS
is 4 and under IEKCS is only 1, it does not take four more times to satisfy the
demand in the latter case, but only about twice.

Many other schemes of this type can be imagined. The important point at this
level is that modelling with PNs is frequently quite straightforward (if control
strategies do not depend too much on particular data), and analysis can provide
useful information about the behaviour of the intended control strategy.

20

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

BSCS

SKCS

IKCS

IEKCS

(a) Demand

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

BSCS

SKCS

IKCS

IEKCS

(b) Stock (marking of f3)

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BSCS

SKCS

IKCS

IEKCS

(c) Throughput of the assembling station
(labelled with θ3)

Fig. 16. Simulation of the different control policies in Figures 12-15.

4 A coloured model for a car manufacturing line

A relatively frequent characteristic of production systems is the existence of
symmetries due to the presence of subsystems that behave “in a similar way”.
Coloured PNs allow to exploit these symmetries and generate a more compact
model. Coloured Petri nets can also be extended, as in [30, 31], or abstraction
on the formalism (i.e., the underlying PN model) can be done in application
oriented interfaces, as in [63]. Here just basic coloured Petri nets will be used to
model some examples.

4.1 A car manufacturing system

The following example shows a coloured PN model of a realistic MS (part of a
flexible workshop of a car factory), taken from a case study [39].

The FMS shown in Figure 17 consists of:

– Several workstations (S1 to Sn). All the workstations behave in a similar
way: car bodies to be processed are loaded in table L (input buffer of capacity

21

Si

P

U L

S1Sn

T1TiTn

L

P

UFU

FP

FL

loadunload

input

output

next

T

FT

(n,x,out)

1

(1,x,in)

n

x

(x
,x

,i
n
)

(x
,x

,o
u
t)

x

xx

x x

x

xx

x

x x

x
x

xx+1

Stations

Transport

(y,x,z)(y,x+1,z)

Fig. 17. A flexible workshop that processes car bodies in several stations, and its
coloured PN model

one), then transferred to table P (actual processing), and then transferred
to table U for unloading (output buffer of capacity one). For simplicity, we
disregard the nature of the precise operations performed in the station, and
therefore, we represent a model of a generic workstation. A station behaves as
a pipeline with three stages: L, P , and U , represented by the corresponding
places, which can be active simultaneously. The complementary places FL,
FP , and FU represent, when marked, that the respective stage is free. The
colour domain of all these places is {1, . . . , n} for the stations. A token of
colour i in place P represents that workstation Si is processing. Transferring
a processed part from table P to table U in workstation Si requires one
i-token in P and FU , and puts one i-token in U and FP .

– An unidirectional transport system, consisting of several roller tables (T1
to Tn). Car bodies enter the system in table T1 and leave it from Tn,
after being processed in one station (the one decided by the scheduler). The
model for this transport system consists of two places, T and FT , for the
occupied and free tables, and transitions to represent the input or output
of a car body, a movement to the next table, and the load or unload of
a station. The colour domain of FT is {1, . . . , n} for the tables, and the
colour domain of T is ({1, . . . , n}, {1, . . . , n}, {in, out}), where the first field
identifies the table, the second one the destination station of the car body,
and the third one the status of the car body (in when not yet processed
and out when ready to leave the cell). Notice that, at the firing of transition
input , a destination station is assigned to the incoming car body. In net
terms, this means solving a conflict among the different firing modes of the
input transition. The destination is determined by the scheduler, possibly

22

taking into account the state of the system and the production requirements.
That is, the scheduler (placed at a higher level) controls the behaviour of
the coordination model represented by the coloured PN.

The complete net model is obtained merging the load and unload transitions
of the submodels for the workstations and the transport system. The loading of
Si from Ti is represented by the firing of transition load in mode i: it consumes
a token (i, i, in) from T and an i-token from FL and puts i-tokens in L and FT .
Similarly for the unloading, where the “status” colour of the token deposited
in T is out indicating that the car body in the corresponding table has been
processed.

4.2 On the control of the production line

Besides avoiding deadlocks, let us consider a control policy to improve the per-
formance.

ii+1

2

31

4

ii+1

1

2

3

Fig. 18. (a) Complete deadlock (b) Temporary deadlock.

Analysis of this system proves the existence of deadlocks: when all the tables
in a given station are occupied and a car body is waiting in the corresponding
table of the transport system to enter this station, a deadlock is reached, see
Figure 18(a). The deadlock can be avoided by making sure that no more than
three car bodies scheduled for the same station are present in the system at any
time. This can be enforced by limiting the number of firings of input in a given
mode w.r.t. the number of firings of output in that mode. This is implemented
by place O (for orders) in Figure 19(a), whose colour domain is {1, . . . , n} for
the destination stations, marked with three tokens of each colour.

Notice that, if O is marked with two tokens of each colour instead of three,
unnecessary stoppages in the transport system, that could reduce the through-
put, are avoided. These stoppages appear when a car body waits in front of
its destination station because this station is processing and the load table is
occupied, see Figure 18(b). We cannot proceed to load the third car body until
processing is completed, the processed car body is transferred to the table U ,

23

L

P

UFU

FP

FL

loadunload

xx

x x

x

xx

x

x x

x
x

inputoutput

next

T

FT

(n,x,out)

1

(1,x,in)

n

x

(x
,x

,i
n
)

(x,x,o
u
t)

x

xx+ 1

(y,x,z)(y,x+ 1,z)

x
x

O
(a) (b)

L

P

UFU

FP

FL

loadunload

xx

x x

x

xx

x

x x

x
x

inputoutput

next

T

FT

(n,x,out)

1

(1,x,in)

n

x

(x
,x

,i
n
)

(x,x,o
u
t)

x

xx+ 1

(y,x,z)(y,x+ 1,z)

x
x

O

x

Fig. 19. Adding place O to the net model in Figure 17, with a suitable marking, avoids
deadlocks and stoppages.

and the car body in table L is transferred to table P . In the meanwhile, other
car bodies may be prevented from advancing to their destination beyond that
station.

The first columns in Table 1 (observe the output) compare the steady state
throughput of these two control policies for different processing times in a three
cells workshop. All the cells are assumed to be equal, and the car bodies are
sent to all of them with the same probability. The transitions are assumed to
follow exponential distributions, of mean one for all the transport operations
(both inside and outside the cells). It can be seen that, if the processing is
fast with respect to the transport, the two policies are more or less equivalent.
However, if the processing takes “much time”, the throughput is better under
the most restrictive policy. Intuitively, since the processing needs more time
than the transportation, it is better to be sure that the parts can advance till
the processing station.

Finally, in the above control it was assumed that the scheduler controls transi-
tion input and observes just transition output . If it observed also the occurrences
of transition unload it might be possible to improve the performance of the con-
trol policy by allowing a limited number of unprocessed orders in the system (see
Figure 19(b)).

Table 1 compares the results of both control policies for the previous example.
It shows that if the number of orders allowed in the system for each machine
is 2, the throughput increases slightly when the unload transition is observed.
However, if three orders are allowed, the throughput decreases. Intuitively, with

24

Mean Observe the output Observe the unload
processing Throughput Throughput

time Three orders Two orders Increase Three orders Two orders Increase

1 0.2971 0.2984 0.45 % 0.2969 0.3002 1.11 %
5 0.2434 0.2763 13.54 % 0.2378 0.2809 18.14%
10 0.1669 0.2173 30.24 % 0.1617 0.2210 36.66%
15 0.1227 0.1671 36.17 % 0.1189 0.1690 42.12%
20 0.0964 0.1331 38.07 % 0.0935 0.1341 43.45%
50 0.0418 0.0578 38.51 % 0.0406 0.0579 42.70%

Table 1. Throughput comparison for the system in Figure 19(a), if place O is marked
with two or three tokens of each colour.

at most three orders for each machine the system was already saturated, and
allowing a greater number of car bodies only makes it worse.

5 On a production line for ovens

This section describes a new manufacturing system where the set of production
orders compete for a set of physical resources. The system is quite similar to
the one in the previous section. Here, the attention is focused on how to obtain
the coloured Petri net model, by first modelling the plant layout taking into
account the possible ways parts can flow through the system and the imposing
to each flowing part the execution of its associated process plan, which needs of
model refinement. Finally, it will be shown how to prevent deadlocks and how
the deadlock related control approach can be improved taking a more abstract
point of view.

5.1 System description

Figure 20(a) depicts the structure of a flexible manufacturing cell for the pro-
duction of microwave ovens (a more detailed description can be found in [24]).
The cell has an entry station, EntryStation, an exit station, ExitStation and
n workstations, w0, w1, . . . , wn−1. These workstations are loaded and unloaded
by a circular conveyor belt with a continuous movement in a unique direction.
The manufacturing of each oven is made according to its process plan. There
are several scales and models of ovens with their respective process plan. The
components of an oven arrive at EntryStation after having been previously
pre-assembled; once an oven reaches that point, it is fixed to a pallet that will
be inserted into the transport system when possible. One of such loaded pallets
must visit a set of workstations, according to the process plan of the part it
contains, and then leave the system through the ExitStation. The pallet goes
then to the pallet store, to be reused. The system has a total of K pallets.

As detailed in Figure 20(b), each workstation wi has an input buffer Ii and
an output buffer Oi. Both consist of two roller tables, each with capacity for one

25

Input

Buffer

Output

Buffer

Section A
i

Section B
i

Section B
i-1

ws
i

Sensor R
i

Sensor L
i

Input

Buffer

Output

Buffer

Section A
i

Section B
i

Section B
i-1

ws
i

Sensor R
i

Sensor L
i

(b)

EntryStation

(a)

ExitStation

pallet store

B
n-1

ws
n-i-1

ws
i

B
kEx

pallet store

B
n-1

ws
n-i-1

ws
i

B
kEx

Fig. 20. a) General plant representation of a cell for the manufacturing of microwave
ovens. b) Detailed view of the structure of a workstation and its related sections.

pallet. The pallets in each buffer follow a FIFO policy. A workstation can operate
with one pallet at a time. In order to control the system, the conveyor belt has a
set of sensors distributed as shown in Figure 20(b): R0, L0, . . . , Rn−1, Ln−1 and
Ex. Associated to these detection points there are mechanisms that, under the
control of the workshop coordination system, allow to carry out the following
transfer operations, schematised by means of arrows in Figure 20(b): introduc-
tion of a pallet from EntryStation, exit of a pallet from the Ex point towards
ExitStation, loading of a pallet in workstation wi by transferring it from posi-
tion Ri to the input buffer of wi, Ii, unloading of a pallet from the output buffer
of wi, Oi, to point Li of the conveyor belt. Each Ai or Bi section will have its
own capacity, which corresponds to the number of pallets the section can hold.

5.2 A coloured Petri net model of the coordination system

A first approach to the modelling of material flow is shown in Figure 21. Let us
explain the main elements in the model.

The transport system: The set of states a pallet can be in the transport
system is modelled by means of places B,R,A,L. Place B models the set
of B sections. Place A models the set of A sections, while places R and
L model sensor points between sections Bi−1 and section Ai and between
sections Ai and Bi, respectively. The colour domain of all these places is
WS = {w0, . . . , wn−1}, the set of workstations. The initial marking of each
one of these places is the multi-set 0, which means that, at the initial state,
no pallet is inside the system. Transitions tin and tout model the actions
by which a pallet with a new oven enters the system and a pallet with a
terminated oven leaves the system, respectively. Ordinary (non-coloured)
place AP models the set of free pallets, whose initial marking is K, the

26

number of available pallets. In the system, it is assumed that EntryStation
loads pallets into section Bn−1 and that ExitStation unloads pallets from
section Bk.

Places BC and AC, whose colour domain is also WS, model the capacities
of Bi and Ai sections, respectively. The initial marking of BC is the multi-
set

∑n−1

i=0
bi ·wi, being bi the capacity of section Bi. Analogously, the initial

marking of AC is the multi-set
∑n−1

i=0
ai ·wi, being ai the capacity of section

Ai. Places CR and CL represent that only one pallet can be in sensor points
Ri and Li, respectively. The initial marking of both places is

∑n−1

i=0
1 · wi.

Transition tbr models a pallet reaching an Ri sensor (the function labelling
the arc (tbr, R), w@1, represents the addition of 1, modulo the number of
sections, n). Transition tra models a pallet entering an Ai section, transition
tal models a pallet reaching an Li sensor. Finally, transition tlb models that
a pallet reaches a Bi section.

Transition tls (tus) models a pallet being loaded into (unloaded from) a
workstation.

The set of workstations: A pallet loaded into a workstation, by means of the
firing of transition tls, must, successively, visit the two input buffer positions
(places IP1 and IP2), to be processed in the workstation (place W), and
visit the two output buffer positions (places OP1 and OP2). The initial
marking of any of these places is the multi-set 0: there is no pallet in any
workstation.

Places IC1, IC2,WC,OC1 and OC2 impose the capacity constraints of be-
ing able to have at most one pallet in each one of the components of a
workstation. The initial marking of any of these places is AW =

∑n−1

i=0
1 ·wi.

IC1

W

OC1

IP1IP2

OP1 OP2

ti_12

to_12

ti_w

IC2

to_w

B
AP

t_lb

t_out

t_brR

L

t_al

t_inwwww

w

w

w w w w

w
w

w w

w

w

w w w

WC

w@1

w

A K

w

w

w

w

w
n-1

w

w

w

k

t_ra

w

w

w

w

w

w

w
t_us

t_ls

w

AC

BC

n-1

k

workstations transport system

OC2

w

w

w w

w@1

w

w
w

CR

CL

w

Fig. 21. A coloured Petri net model of flow of pallets in the system in Figure 20.

27

It is important to notice that, even if all the transitions in the model represent
system actions that change the system state, from the control point of view two
kinds of transitions are considered:

– Transitions whose firing is observable but not controllable. This is the case
of {tbr, tra, tal, tlb, ti12, to12}. Since the conveyor has a continuous movement
the firing of one of such transitions will be realised when a pallet reaches
or leaves the corresponding sensor. The events can be noticed and thus the
system state can be updated in the model.

– Transitions whose firing is decided and executed by the control system (con-
trollable transitions). These are the transitions that can be controlled in or-
der to ensure that every incoming part will be processed according to its asso-
ciated process plan, and also to impose some control policy in order to ensure
some desired properties, as deadlock freeness or to impose some scheduling
policies. This set of transitions is composed of {tls, tus, tin, tout, tiw, tow}.

5.3 Inclusion of the process plans

Each oven that enters the system must execute its associated process plan, which
consist of a sequence of operations to be executed in the system workstations.
This sequence is described by means of a sequence of pairs (o, w), where o de-
fines the operation to be executed, and w the workstation where such operation
must be done. The sequence of operations for an oven has been pre-established
by the system controller before loading the oven into the system. In the specifi-
cation level considered here, which concentrates on the material flow control, it
is possible to make abstraction of the operations to be executed, describing the
process plan as the ordered sequence of workstations to be visited by the oven.
Therefore, a process plan will have the following form: p = (w1

p;w2
p; . . . ;w

np

p),

where each wi
p, i ∈ {1 . . . np}, belongs to WS.

There exists a set of predefined process plans PP ⊂ WS+. Each part that
enters the system has an associated process plan belonging to PP . The first ele-
ment in the ordered sequence of workstations in the process plan corresponds to
the first workstation to be visited. In order to identify the state in the processing
of a part in the system, tuples of the form (p, i) ∈ PP×N will be used: p identifies
the process plan, while i identifies the position in the process plan sequence of
the next workstation to be visited. For instance, when an oven whose associated
process plan is p = (w1

p;w2
p; . . . ;w

np

p) enters the system, it will be identified by
means of the token (p, 1), meaning that w1

p is the next workstation to be visited.
When the oven is processed in w1

p, the tuple identifying the oven will be (p, 2);
when terminated, it will be identified by means of (p, np + 1).

According to this codification of the processing state of an oven in the system,
the model in Figure 21 must be transformed. Since the system layout is still the
same, only colour domains and functions in the arcs have to be changed. If in the
initial model a token in place A, for instance, was of the form w, just indicating
the concrete A-section where the pallet was, now a token in such place will be of
the form (p, i, w) indicating that there is a pallet in w A-section, containing an

28

oven whose associated process plan is p and that has to next visit workstation
wi

p. Accordingly, the colour domain of places modelling physical locations that
can contain pallets with ovens is PP × N × WS.

Notice that, in order to forbid a pallet to enter a workstation that is not
its next destination, predicate [wp

i = w] has been associated to transition tls.
Also, predicate [i = np + 1] has been associated to transition tout so that only
pallets containing ovens whose process plan has been completely executed can be
unloaded from the system. Notice also that the firing of transition tow transforms
a token of the form (p, i, w) into (p, i + 1, w), which corresponds to changing the
next destination workstation for the considered oven.

The resulting model is shown in Figure 22, where places modelling resource
capacity constraints have not been represented, for the sake of clarity. In any case,
they are exactly the same as in Figure 21.

W

IP1IP2

OP1 OP2

ti_12

to_12

ti_w

to_w

B
AP

t_lb

t_brR

L

t_al

t_in(p,i,w)(p,i,w)(p,i,w)(p,i,w)

(p,i,w) (p,i,w) (p,i,w)

(p,i,w)

A K

t_us

(p,i,w) (p,i,w)

(p,i,w)

(p,i,w)

(p,i,w@1)

(p,i,w) (p,i,w)

(p,i,w)

p
i[w =w]

t_ls

t_out

[i=n +1]p

(p,1,w)n-1

(p,i,w)k

(p,i,w)

(p,i,w)

(p,i+1,w)

t_ra

(p,i,w)

Fig. 22. A coloured Petri net model of the system in Figure 20 once the process plans
are considered (capacity constraints have not been represented, for the sake of clarity).

5.4 Preventing deadlocks. A first solution

If the control model in Figure 22 is directly implemented, the system can reach
deadlock situations. Let us consider, for instance, a reachable state in which a
workstation wi is full (input and output buffers are full and the workstation is
also processing an oven) and also the transport system is full of pallets that must
enter workstation wi. In this situation, no new pallet can enter the system, no
pallet in the conveyor can be loaded into workstation wi and no pallet can leave
it since the conveyor is full. All the deadlock situations are related to states in
which full stations require to unload pallets to the transport system, which is
full of pallets that must enter a full workstation.

29

An easy way of preventing such situations consists in ensuring that no more
than five pallets inside the system need to visit a given workstation. This is the
deadlock control implemented in the following. The implementation is based on
the following function, called workstation requirements, and defined as follows.
Let p = (w1

p;w2
p; . . . ;w

np

p) be a process plan, and let i ∈ {1, . . . , np + 1} be an
index associated to p. For the tuple (p, i) the following multi-set of workstations

is defined: wr(p, i) =
∑n−1

j=0
λj

pi
· wj , where λj

pi
is 1 if wj ∈ {wi

p, w
i+1
p , . . . , w

np

p }
(in the case of i = np +1 the addition is made over an empty set of workstations,
and it is assumed to be the empty multi-set). Notice that, in fact, wr(p, i) is the
characteristic function of the workstations to be visited by the oven from the
index i until the associated production plan is terminated. Notice also that if
i1 < i2, then wr(p, i1) ≥ wr(p, i2).

DPS

t_in

t_us

wr(p,1)

wr(p,i-1)-wr(p,i)

Fig. 23. The implementation of a deadlock prevention solution for the considered sys-
tem.

In order to implement such control policy in the Petri net model place DPS
(Deadlock Prevention Solution) is added, whose colour domain is WS and whose

initial marking is the multi-set
∑n−1

i=0
5 · wi (Figure 23 shows the Petri net el-

ements to be added to the model in Figure 22). For a pallet that enters the
system (firing transition tin) with an oven whose associated process plan is p,
the set of possible workstations the pallet must visit is “reserved”. This is im-
plemented by means of the function wr(p, 1) labelling the arc (DPS, tin). More-
over, each time a pallet leaves a workstation, if this oven does not need to visit
that workstation again in the future, the reservation must be released. This is
implemented by means of the arc (tus,DPS). As noticed previously, the label
wr(p, i − 1) − wr(p, i) is properly defined since i − 1 < i. Notice also that the
control is related to transitions tin and tus, which are both controllable.

5.5 Preventing deadlocks. A more accurate solution

The solution for deadlock prevention just proposed is of the same type as in
Section 4. However, taking a detailed look at an abstract view of the underly-
ing non-coloured model a more accurate solution can be adapted. Let us, for

30

instance, consider a process plan p = (w1;w2). Taking into account that with
an adequate control every pallet in the transport system can reach any worksta-
tion and also that every free position in the transport system can be used for
the downloading of any workstation, the ordinary Petri net in Figure 24 is an
abstract view of the processing of a part whose process plan is p.

t_ls,p,1 t_us,p,2 t_ls,p,2 t_us,p,3 t_out,pt_in,p

AP

TS

BRAL,p,2 BRAL,p,3BRAL,p,1

K

M

w_2,p,2

IWO_1 IWO_2

5 5

w_1,p,1

Fig. 24. An abstract point of the processing of a part whose associated process plan
is p = (w1, w2).

The meaning of the different elements in the model are the following. Place
TS in an abstraction of the whole transport system; its initial marking is M =∑n−1

i=0
ai + bi, the total number of available locations for parts in the conveyor.

Place IWO1, whose initial marking is 5, models the total capacity of workstation
w1, considering in it the input buffer, the output buffer and the workstation itself.
Places “BRAL, p, ∗” model the different states of a part of type p in the transport
system. Transitions “tls, p, ∗” model the different firings of transition tls when the
processing of a part of type p advances. Analogously for transitions “tus, p, ∗”.
Transition tin, p (tout, p) models the loading (unloading) of part of type p into
(from) the system. Considering the models of all the involved process plans, a
final model will be obtained by means of the fusion of the places in the models
of the process plans modelling the capacities of the resources they share.

The resulting Petri net belongs to a class of resource allocation systems
(RAS) which have been intensively studied in the literature, and for which a
wide set of different approaches for deadlock prevention and avoidance have been
developed. [23, 57] use an structure-based approach to synthesise the deadlock-
freeness related control. In both cases, the Petri net structure (siphons) is used to
characterise deadlock problems and also to obtain generalised mutual exclusion
solutions that forbid deadlock related stated. These mutual exclusion constraints
are implemented by means of the addition to the former uncontrolled model of
new places and arcs. Any of the solutions can be used to control the system here
considered. The implementation can be done as in [22], in an analogous way as

31

in the previous subsection, by means of the addition of a control place (as is the
case of place DPS previously used) and some related labelled arcs.

The use of any of these last approaches will yield, in general, more permissive
solutions than using the approach in section 5.4 (the less states of the uncon-
trolled system a control policy allows, the less permissive it is). However, they
have the drawback that since the control is based on a deep use of the abstract
unfolded model and the competition relations among the involved process plan
models, the addition of new process plans will require the re-computation of
the necessary control, making the approach less adaptable to changes in the
production than using the approach in section 5.4.

6 A pragmatically oriented approach

In some cases, analysing the “natural” model an engineer produces is not an easy
task. This is due to the fact that the resulting model can be complex. Analysis
techniques (mainly those techniques that do not use the reachability graph or
simulation, such as structure-based techniques or transformation techniques, for
instance) have some limitations for general Petri net models, becoming more
difficult when using high level Petri nets. In this section two new practical cases
are described. The first one uses ordinary Petri net models, but there are not
techniques able to control the natural model (deadlock-freeness related control
is once again the objective). This problem is then solved by the transformation
of the initial model into one with an equivalent behaviour, and for which control
techniques exist. The second case uses a different modelling approach, based
on the Nets-within-Nets paradigm as used in [61]. This paradigm falls into the
object-oriented modelling approach.

6.1 Modelling and deadlock avoidance for a two cells manufacturing

system

The objective is to model and control, avoiding deadlock states, the manufac-
turing system in the Department of Computer Science and Systems Engineering
of the University of Zaragoza. To do that, ordinary Petri nets have been selected
as the modelling tool. It could have been modelled also using coloured PNs, as
the previous examples. However, since the technique that is being used for the
control needs a non-coloured model, it has been decided to use ordinary nets
instead of building a coloured model and unfolding it afterwards.

The system and the modelling approach Figure 25 depicts the plant of
the manufacturing cell, consisting of six machines (M1 to M6) that process the
components, one buffer with place to store up to 16 intermediate products, and
two robots (R1 and R2). The process is organised in two rings, with the buffer
connecting them. A final product (Figure 26) is composed of a base on which
three cylinders are set. The base may be black or white, and there are three
types of cylinders: cylinders that are composed of a case, a piston, a spring,

32

and a cover (called “complete” cylinders), cylinders with just a case and a cover
(called “hollow” cylinders), and cylinders in one piece (called “solid” cylinders).
The cases and the solid cylinders may be red, black or metallic. Bases, pistons,
springs, covers, cases, and solid cylinders are considered as the raw materials.
An unbounded amount of raw material is assumed to feed the system. A set of
330 different products can be composed using these materials.

Fig. 25. A plan of the physical system.

The processing goes as follows: machine M1 takes a case from a feeder, and
verifies that it corresponds to the order, that is, if the colour is correct and
whether it is a case or a solid cylinder. If it is not correct, then it is discarded,
otherwise, it is put on a pallet, and the kind of processing that the part needs
is written on the pallet. If it is a solid cylinder, a switch is activated to carry it
directly to M4. Otherwise it goes to M2. Machine M2 puts the piston and the
spring, if the cylinder needs them, and then the part goes to M3, which adds
the cover. In M4 the parts are verified, the pallets are released and the parts
are put on a conveyor that moves them to the entrance of the buffer. Machine
M5 can temporarily store the cylinders in the buffer. When needed to assemble
the final product, M5 puts them in a conveyor that takes them to robot R1.
Machine M6 puts a base of the right colour on a pallet, and it is carried to robot
R1. The robot takes the three cylinders one by one and puts them on the base.
The product is then complete, and goes to robot R2, which takes it out of the
system.

The adopted modelling approach is as follows. Each possible production order
(corresponding to a type of product) has been modelled by means of a Petri net.
Then, a set of places, modelling the capacity constraints of the physical resources
involved in the production process (robots, intermediate store, pallets, etc.), have
been modelled.

Figure 27 shows the Petri net model of one of the products in the system
here considered: a product made of three complete cylinders is shown. Place
IDLE represents the state in which the production order has not been started,
the rest of “tagged” places model the system resources (resource places), while

33

Fig. 26. The kind of products that the system in Figure 25 produces.

M1

C1_2

M2

C2_3

M3

C3_4 INPUT_M4

M4 C_INPUT_STORE

STORE

C_OUTPUT_STORE

FREE_STORE
16

M5

M6 C6_R1

R1

LOAD

CL_U I_O_POSITION

IDLE

PALLETS_1

PALLETS_2

R2

Orders

_4

Fig. 27. A non-sequential RAS modelling the assembly of a product made of three
complete cylinders and a base.

the “non-tagged” places model the different states of the component elements
inside the system (state places). In the example the resources are of two kinds.
On the one hand there are machines, robots, and space in the intermediate
buffer (i.e, physical constraints). On the other, there are constraints that are not
strictly necessary but are advisable for the correct evolution of the system, for
example not to allow more than one pallet on each conveyor segment, that make
the conveyor segment to be considered as a resource with capacity one. The final
model will be obtained by means of the composition, by fusion of the common
places modelling system resources, of the models corresponding to the whole set
of products.

Deadlock avoidance control In order to have a completely automated system,
the objective now is to synthesise the control necessary to ensure that no dead-
locks can appear. As in Section 5.4, the system falls into the class of Resource
Allocation Systems: it is composed of a set processes which in their execution

34

must compete for the set of system resources. The complexity of dealing with
deadlocks strongly depends on the system structure. Different classes of RAS
systems have been defined in the literature. The features that distinguish these
classes refer to the process structure (wether the process is sequential or con-
current and whether routing flexibility is allowed or not, mainly) and the way
in which resources are allowed to be used and allocated/released (one-by-one
or as multi-sets). These characteristics define the class of Petri nets the model
belongs to. In the case of a process with a sequential nature (sequential RAS),
a state machine can be used to model it (places modelling constraints capacities
imposed by the physical or logical resources have then to be added); in the case
of non sequential processes, more sophisticated Petri net models are needed, in-
cluding fork/joint transitions (non-sequential RAS). In systems where resources
are allowed to be allocated/released as multi-sets, weights will appear in the arcs
related to places modelling resources, which means that the model will belong
to the class of generalised Petri nets. These elements will directly influence the
analysis and synthesis capabilities of the Petri net model.

An “easy” way of applying deadlock related control is based on the com-
putation of the reachability graph of the system model, to detect the deadlock
states and then to forbid them somehow. However, computing the reachabil-
ity graph of the whole system was not possible, because of its enormous size
(for instance, the reachability graph of just one production order as the one in
Figure 27 has 2442 states, while the reachability graph with two production or-
ders being concurrently executed had 241951 states; computing the reachability
graph in the case of three production orders was not possible). Therefore, some
deadlock prevention/avoidance strategy based on the model structure instead of
the reachability graph is needed.

In the case of sequential RAS many different solutions can be found in the
literature, adopting different points of view. See, for instance, [23, 35, 43, 26] as a
very short list of solutions. However, in our concrete case, there exist transitions
with more than one input state place (see Figure 27), which make our system
to belong to the non-sequential RAS class. Adopting a Petri net perspective [47,
28] propose deadlock avoidance solutions for sub-classes of assembly systems.
However, the present system falls out of these classes.

In the sequel, a different engineering strategy is adopted: to transform the
problem into one with known and applicable solutions. If a deadlock avoidance
strategy is adopted, any resource-related state change in the system must be
controlled in such a way that only if the reached state is proved to be safe (safe
means that it can be ensured that all the active processes can be terminated) the
change is allowed, otherwise it is forbidden. This means that the application of a
deadlock avoidance method imposes a kind of “sequentialisation” in the system
behaviour. Therefore, and concentrating on the execution of a production order,
substituting its model by the state machine corresponding to the reachability
graph of the production model itself is just a change in the model, but not in
the behaviour. Notice that doing so a sequential RAS model for the system is
obtained. Resource places of the initial model are added to this state machine

35

(they are implicit places and can be added without changing the behaviour)
and the final system model is obtained by means of the composition by fusion
of the places modelling system resources of the sequential models of the set
of products. The considered model belongs to the class of systems for which a
deadlock avoidance method is proposed in [26], which can be, then, applied to
control the considered system.

The control algorithm is based on an adaptation of the Banker’s algorithm [20,
33]. In order to consider a given state as safe, the Banker’s algorithm looks for
an ordering in the set of active processes such that the first process can termi-
nate using the resources granted to it plus the free ones, the second process can
terminate using the resources it holds plus the ones free upon the hypothetical
termination of the first process, and so on. The basic step is to know if a given
process is able to terminate using a given set of available resources. The solution
in [26] is a two steps algorithm. First, mark those state places of the state ma-
chine modelling the considered process and that require no more resources than
the free ones plus the ones in use by the process itself. Second, look for a path
of marked state places joining the place corresponding to the state the process
is in and the final state.

One important issue when applying deadlock avoidance approaches is the
time used to decide whether a given state is safe, since the procedure must
be called every time a state change engages new resources. Implementing the
control method the following results have been obtained. In the case of the non-
sequential RAS in Figure 27, the corresponding sequential model (the reacha-
bility graph of the net in that figure) has 2442 state places, 7814 transitions,
using each state up to 22 types of resources. Checking if an active process was
able to terminate using the free resources has been implemented. Its takes about
0.003 CPU seconds using a Pentium(4) processor at 1.7 GHz under Microsoft
Windows 2000 operating system (this computation uses a Depth First Search
algorithm, which is linear in the size of the unfolded system). If the whole sys-
tem is considered, and given that no more than 26 components can stay at the
same time in the system (considering the 10 pallets plus the 16 storage places in
Figure 26) and that a direct implementation of the algorithm in [26] grows in a
quadratic way with respect to the number of active production orders, the time
to know if a system state is safe takes about 2 CPU–seconds in the worst case.

In order to obtain more efficient solutions some approaches are currently
being studied trying to solve the problem for non-sequential RAS using directly
the initial model structure. A solution for a class non-sequential RAS, where
processes must have a tree-like structure can be found in [27].

6.2 Beyond the state of the art for the analysis: Modelling with

object nets

The aim of this section is to show a different approach for the modelling of
production systems. It is based on the clear and intuitive characteristic that in a
production system, among other elements, there are two main components. On
the one hand, the system architecture, which corresponds to the distribution of

36

the physical elements in the plant. Usually, this structure is rather static, and
not easily changeable. On the other hand, the set of process plans corresponding
to the different types of products to be produced in the system. These plans
can be seen as logical constraints to be imposed to the free flow of parts in the
system. In many cases the set of process plans can change (new process plans are
required to face demands of new products, while others disappear, corresponding
to products with very low demand). Therefore, doing a separated consideration
of that elements when designing the system control software makes easier to
adapt it to changes in the set of products the system is able to deal with.

A way of doing that was proposed in [22], where the final model was a
coloured Petri net in which the system architecture provided the net skeleton
(the set of places, transition and arcs) while the set of part flow restrictions
imposed by the process plans were modelled by means of the colour domains of
places and transitions and the functions labelling the arcs. This has also been the
approach followed in the previous sections. In this section a different approach is
going to be adopted. It is based on the Nets-within-Nets paradigm, as used, for
instance in [61], which support a modelling of systems by Petri nets following
the paradigm of Object Oriented Modelling. Applications of the paradigm to the
case of manufacturing systems can be seen in [29, 41, 38].

Roughly speaking, one of such models is composed of a System Net and one
or more Object Nets which can be seen as token objects of the system net. Both,
the system net and the object nets are Petri nets. A token in the system net
can be either a reference to an object net or a black token. Each object net
state represents the state of the element it models. Changes in such state can
be produced by its own internal dynamics (autonomous occurrences), but can
also be due to some interactions with the system net. On the other hand, some
transitions in the system net can influence the internal state of object nets,
but others just move object nets between different locations of the system nets
(transport occurrences).

Therefore, in the definition of an elementary object system, besides the sys-
tem net, the set of object nets and the initial marking, a set of interactions must
be considered. The interactions define how the system net and the object nets
must synchronise their activities. These concepts directly apply for the modelling
of manufacturing systems. The model of the physical system will correspond to
the system net, while each part will be modelled by means of an object net.

The objective of this section is not the introduction of the Nets-within-Nets
paradigm, but just to show that it is very well adapted to model production
systems. To do that, let us apply it to the same example used in [61]. Figure 28
depicts a manufacturing cell composed of four machines, M1,M2,M3 and M4
(each one can process two products at a time) and three robots R1, R2 and
R3 (each one can hold a product at a time). There are three loading buffers
(named I1, I2, I3) and three unloading buffers (named O1, O2, O3) for loading
and unloading the cell. The action area for robot R1 is I1, O3,M1,M3, for robot
R2 is I2, O2,M1,M2,M3,M4 and for robot R3 is M2,M4, I3, O1.

37

M1
R1

R3

I2

I3 O1

O2

O3

M2

M3

M4

R2

I1

Fig. 28. A manufacturing cell composed of four machines and three robots. Black dots
represent the possibility of part flow between two resources.

Every raw product arriving to the cell belongs to one of the three following
types: W1, W2 and W3. The type of product characterises the process to be
made in the cell as follows: 1) a raw product of type W1 is taken from I1 and,
once it has been manufactured, is moved to O1. The sequences of operations
for this type are either (M1, op1); (M2, op2) (execute op1 in M1 and then op2
in M2) or (M3, op1); (M4, op2) (execute op1 in M3 and then op2 in M4). 2)
a raw product of type W2 is taken from I2, manufactured in M2 (operation
op5) and then routed towards O2. 3) a raw product of type W3 is taken from
I3, manufactured in M4 (operation op4) and then in M3 (operation op3) and,
finally, routed towards O3. Figure 29 represents, by means of directed acyclic
graphs, the possible operation sequences for such set of types of parts.

(M1,op1)

(M3,op1)

(M2,op2)

(M4,op2)
root

W1

(M4,op4) (M3,op3)root

W3

(M2,op5)root

W2

Fig. 29. Three directed acyclic graphs specifying three different types of parts to be
processed in the cell depicted in Figure 28.

Analogously as in the example in 5.3, the (uncontrolled) Petri net in Figure 30
represents the possible flow of parts in the considered system. In order to be
able to ensure that each part in the system will be produced according to its
corresponding process plan, some control has to be added to this skeleton model,

38

which will correspond to the system net in the Nets-within-Nets model (the
meaning of places named W1r,W2r,W3r and W1t,W2t,W3t will be explained
later).

R1M1

M1R1

R2M1

M1R2

R1M3

M3R1

R2M3

M3R2

R2M4

M4R2

R3M4

M4R3

R3M2

R2M2

M2R2

M2R3

pi_R1

pi_M1

pi_R2

pi_M2 pi_M4

pi_M3

I1 O3

I2 O2

I3 O1

pi_R3

rc_R1
rc_M3rc_M1

rc_R2

rc_M2

rc_R3

rc_M4

X

X

X

X

XX

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X
X

XX

X

W1r

W1tW3r

W2tW2r

W3t
K1

K2

K3

<i22><i21>

<i20><i19>

<i18><i17>

<i16><i15>

<i14><i13>

<i12>
<i11>

<i10><i9>

<i8><i7>

<i6><i5>

<i4><i3>

<i2><i1>

Fig. 30. Petri net model of the part flow in the cell depicted in Figure 28.

Figure 31 shows three object nets corresponding to the three types of parts
to be produced in the considered system (since in this example all the transitions
in the object nets must interact with the system, transition names in Figure 31
are not represented, just the interactions, for the sake of clarity). Let us explain
one of these models. The Petri net labelled W2 in Figure 31 corresponds to
a part type W2 (in fact, each W2-type part will be modelled by one instance
of such net). The token in place p21 models the raw material for one of such
products before being loaded into the system. This state is changed when that
raw material enters the system. According to the system net in Figure 28, this

39

is done by the firing of transition I2. Therefore, firing such (system) transition
must also make the token in p21 to move to place p22, which is imposed by the
interaction 〈i11〉. Place p22 models a part of type W2 inside the system and
that must be processed in M2. Transition t22 is used to model the fact that
such part enters M2, which in the system net corresponds to transition R2M2.
Interaction 〈i13〉 takes that into account. Interaction 〈i15〉 is used to move the
part from M2 to the robot R2. Finally, interaction 〈i12〉 is needed to model the
unloading of such part from the system.

<i10>

<i15><i11> <i13>

<i16><i21> <i18>

p1_2

p1_3 p1_5

p1_1

p1_6

p2_4p2_3p2_2

p3_2 p3_3 p3_4 p3_5

p2_1

p3_1 <i8>

W3)

W2)

W1)

p1_4 <i13>

<i4> p1_8

p1_9 p1_10

p1_7 <i14> 20t1_9

<i22>

<i19><i9><i3>

<i12> p2_5

p3_6<i6> <i2> p3_7

<i1>

Fig. 31. Three object nets modelling the three types of parts to be processed in the
system in Figure 28. Transition names are not presented, only the interactions with
the system net.

In the system net in Figure 30 tokens in place W1r are instances of object
net W2 in Figure 31, and correspond to raw parts of type W2 (there are K2
of such net instances). Once terminated, these object nets will be in place W1t,
which “collects” terminated products of type W2.

Any further refinement in the model is easy to be done. Let us suppose also
the different operations each machine is able to do need to be considered. For
instance, machine M3 is able to carry out operations op1 and op3. Figure 32(a)
shows how place pi M3 in the net in Figure 30 could be refined in order to
consider the operations it is able to do (capacity of M3 is not represented for
the sake of clarity). On the other hand, Figure 32(b) shows how the place p35 of
the object net corresponding to the processing of parts of type W3 in Figure 31
could be refined so that the process plan it models takes into account that the
operation op3 has to be done in M3 for such parts (notice that transitions M31

and M32 correspond to transport occurrences).
High level Petri net-based formalisms provide very useful tools for the mod-

elling, analysis and control of complex concurrent systems. However, the higher
the abstraction level the formalism allows, the more complicated its analysis
becomes. This is the case of coloured Petri nets, for instance (structure-based
techniques are not as general as in the case of ordinary Petri nets) and also the
case for Nets-within-Nets models. It is always possible to apply simulation tech-
niques, which can give insight of some system behaviours allowing the system

40

R1M3

M3R1

R2M3

M3R2

M3op1 M3op3
x

x

x

x

x

x

x

x

x

x x

x

M3_1

<i6><i24> p3_5p3_5’<i8>

(a) (b)

<i24>

M3_2

<i23>

<i4>

<i6>

<i8>

<i10>

Fig. 32. A refined model for machine M3 and how it affects the object net modelling
W3 parts.

designer to easily test different system configurations in order to have arguments
to choose one or another. In the case of Nets-within-Nets, the tool Renew [36]
is a good environment for modelling and simulation.

7 From discrete event models towards hybrid models

In the last years a new kind of models based on Petri nets has appeared. They
differ from the previous ones in that they are not discrete event models, but
hybrid models. That is, the state is not only represented by discrete variables,
but it is partly relaxed into continuous variables (in the extreme case, even all
the variables may be continuous in piecewise continuous systems).

These hybrid models have been defined in many different ways. For example,
(discrete) Petri nets may be combined with differential algebraic equations asso-
ciating them either to places (Pr/Tr Petri nets) [10] or to markings (DAE Petri
nets) [58]. Another possibility is to partially relax the integrality condition in the
firing of the transitions, i.e., continuise or fluidify the firing, as in Hybrid Petri
nets [3]. This means that the marking of the places around these transitions is
no longer guaranteed to be integer (with the possible exception of self-loop arcs).
When a total fluidification is done the result is a Continuous Petri net [14, 51].
This kind of hybrid models can be used both to represent systems whose “more
reasonable view” is hybrid, or as an approximation of discrete systems under
high traffic conditions. The idea of continuisation of discrete models is not new
and has been employed in many different fields, for example, population dynam-
ics [46], manufacturing systems [16, 32], communication systems [21], etc. In the
following we will concentrate on Hybrid Petri nets.

In timed models, in order to associate a time semantics to the fluidification
of a transition, it should be taken into account that a transition is like an station
in Queuing Networks, thus “the meeting point” of clients and servers. Assum-
ing that there may be many or few of each one of them, fluidification can be

41

Table 2. The four cases for possible continuisation of a transition [52]

Clients Servers Semantics of the transition

few (D) few (D) Discrete transition
few (D) many (C) Discrete transition (servers become implicit places)
many (C) few (D) Continuous finite server semantics (bounds to firing speed)
many (C) many (C) Continuous infinite servers semantics (speed is enabling-driven)

considered for clients, for servers or for both. Table 2 represents the four theoret-
ically possible cases. If there were few clients, the transition should be considered
discrete.

Basically, the idea is to use a first order (or deterministic) approximation of
the discrete case [45], assuming that the delays associated to the firing of transi-
tions can be approximated by their mean values. A similar approach is used, for
example, in [6]. This means that in continuous transitions the firing is approxi-
mated by a continuous flow, whose exact value depends on the semantics being
used. The two basic semantics defined for continuous transitions (see Table 2)
are infinite servers (or variable speed) and finite servers (or constant speed) [3,
45]. Under finite servers semantics, the flow of ti has just an upper bound, λ[ti]
(the number of servers times the speed of a server). Then f(τ)[ti] ≤ λ[ti] (know-
ing that at least one transition will be in saturation, that is, its utilisation will
be equal to 1). Under infinite servers semantics, the flow through a timed tran-
sition t is the product of the speed, λ[t], and the enabling of the transition, i.e.,
f [t] = λ[t] · enab(t,m) = λ[t] · minp∈•t{m[p]/Pre[p, t]}.

It should be pointed out that finite server semantics, equationally modelled by
bounding the firing speed of continuised transitions, corresponds at conceptual
level to a hybrid behaviour: fluidification is applied only to clients, while servers
are kept as discrete, counted as a finite number (the firing speed is bounded by
the product of the speed of a server and the number of servers in the station).
On the other hand, infinite servers semantics really relax clients and servers,
being the firing speed driven by the enabling degree of the transition. In this
case, even if the fluidification is total, the model is hybrid in the sense that it is a
piecewise linear system, in which switching among the embedded linear systems
is not externally driven as in [7], but internally through the minimum operators.

The following example is taken from [2, 3]. It models a station in a Motorola
production system. This station can produce two kinds of parts, c1 and c2 ,
whose processing corresponds to the left and right part of the figure, respectively.
The parts arrive in batches of 30000 and 20000 parts at times 0 and 1000. After
the arrival of a bach, parts are downloaded into a buffer at a speed of 1 part per
time unit. The processing does not start immediately, but waits until at least
500 parts of type c1 or 600 parts of type c2) have been downloaded. At that
point some set up is done on the machine, which takes 300 time units for parts
c1 and 360 for c2 , before the processing starts. When all the parts in the batch
have been processed, the machine is liberated. Pieces are removed in batches of
the input size.

42

p11

p1

t1

p2

p3

t2

t3

p4

p5

d1=0

V2=1

d4=300

d5=0

t4

t5

30 000

500

500

V3=0.5

30 000

p6

t6

p7

p8

t7

t8

p9

p10

d6=1 000

V7=1

d9=360

d10=0

t9

t10

20 000

600

600

V8=0.33

20 000

Fig. 33. Hybrid Petri net modelling the behaviour of a production system.

A model of this system can be seen in Figure 33. Although it is a discrete
system, the model is not discrete, but hybrid. The transitions represented as
bars in the figure are discrete (the usual transitions in Petri nets), while those
represented as boxes are continuous. Analogously, the circles drawn with a simple
line are discrete, while those with the double line are continuous.

In this example, since the size of the batches is quite large, the firing of
transitions t2, t3, t7 and t8 can be approximated by a continuous flow. This kind
of approximation (when applicable) may simplify the study of the system. For
example, in [2] it is reported that for this system the simulation time reduces
from 454 sec. to 0.15, that is, it is divided by 3000!

Basic understanding of hybrid systems, and analysis and synthesis techniques
need much improvement before they can be effectively used [51, 52]. Moreover,
it should be pointed out that there exist some “natural” limits to the properties
that can be studied. For example, mutual exclusion (in the marking of places or in
the firing of transitions), and the difference between home space and reversibility
cannot be studied in general [51]. Additionally, basic properties like deadlock-
freeness of the autonomous continuised model is neither necessary, nor sufficient
for the discrete case [51]. However, the use of hybrid models as partial relaxations
of discrete models is a quite new and promising approach.

43

References

1. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. Wiley, 1995.

2. H. Alla, J.B. Cavaille, M. Le Bail, and G. Bel. Les systémes de production par lot:
une approche discret-continu utilisant les réseaux de Petri Hybrides. In Proc. of
ADPM’92, Paris, France, January 1992.

3. H. Alla and R. David. Continuous and hybrid Petri nets. Journal of Circuits,
Systems, and Computers, 8(1):159–188, 1998.

4. A. Avizenis and J. P. Kelly. Fault tolerance by design diversity: Concepts and
experiments. Computer, 17(8):67–80, 1984.

5. J. M. Ayache, P. Azema, and M. Diaz. Observer, a concept for on line detection for
control errors in concurrent systems. In Proc. 9th IEEE Int. Sypm. Fault-Tolerant
Computing, pages 79–86, Madison, WI, USA, June 1992.

6. F. Balduzzi, A. Giua, and G. Menga. First-order hybrid Petri nets: A model for
optimization and control. IEEE Trans. on Robotics and Automation, 16(4):382–
399, 2000.

7. A. Bemporad, A. Giua, and C. Seatzu. An iterative algorithm for the optimal
control of continuous-time switched linear systems. In M. Silva, A. Giua, and J.M.
Colom, editors, WODES 2002: 6th Workshop on Discrete Event Systems, pages
335–340, Zaragoza, Spain, 2002. IEEE Computer Society.

8. J. Campos, G. Chiola, J. M. Colom, and M. Silva. Properties and performance
bounds for timed marked graphs. IEEE Trans. on Circuits and Systems-I: Funda-
mental Theory and Applications, 39(5):386–401, 1992.

9. J. Campos, G. Chiola, and M. Silva. Ergodicity and throughput bounds of Petri net
with unique consistent firing count vector. IEEE Trans. on Software Engineering,
17(2):117–125, 1991.

10. R. Champagnat, R. Valette, J.C. Hochon, and H. Pingaud. Modeling, simula-
tion and analysis of batch production systems. Discrete Event Dynamic Systems:
Theory and Application, 11(1/2):119–136, 2001.

11. C. Chaouiya and Y. Dallery. Petri net models of pull control systems for assembly
manufacturing systems. In Procs. of the 2nd Int. Workshop on Manufacturing and
Petri Nets, ICATPN, pages 85–103, Toulouse, France, 1997.

12. P. Chretienne, E. G. Coffman, J. K. Lengstra, and Z. Liu, editors. Wiley, 1995.
13. J. M. Colom, M. Silva, and J. L. Villarroel. On software implementation of Petri

nets and colored Petri nets using high-level concurrent languages. In Proc. 7th Eu-
ropean Workshop on Application and Theory of Petri Nets, pages 207–241, Oxford,
England, July 1986.

14. R. David and H. Alla. Continuous Petri nets. In Proc. of the 8th European Work-
shop on Application and Theory of Petri Nets, pages 275–294, Zaragoza, Spain,
1987.

15. R. David and H. Alla. Petri Nets and Grafcet. Prentice-Hall, 1992.
16. R. David, X. Xie, and Y. Dallery. Properties of continuous models of transfer lines

with unreliable machines and finite buffers. IMA Journal of Mathematics Applied
in Business and Industry, 6:281–308, 1990.

17. A. Desrochers, editor. Modeling and Control of Automated Manufacturing Systems.
IEEE Computer Society Press, 1989.

18. Alan A. Desrochers and Robert Y. Al-Jaar. Applications Of Petri Nets In Man-
ufacturing Systems. Modeling, Control, And Performance Analysis. IEEE Press,
1995.

44

19. M. Diaz, G. Juanole, and J. P. Courtiat. Observer — a concept for formal on-
line validation of distributes systems. IEEE Trans. on Software Engineering,
20(12):900–913, 1994.

20. E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Program-
ming Languages. Academic Press, 1968.

21. E.I. Elwadi and D. Mitra. Statistical multiplexing with loss priorities in rate-based
congestion control of high-speed networks. IEEE Transactions on Communica-
tions, 42(11):2989–3002, 1994.

22. J. Ezpeleta and J.M. Colom. Automatic synthesis of colored Petri nets for the
control of FMS. IEEE Transactions on Robotics and Automation, 13(3):327–337,
June 1997.

23. J. Ezpeleta, J.M. Colom, and J. Mart́ınez. A Petri net based deadlock prevention
policy for flexible manufacturing systems. IEEE Trans. on Robotics and Automa-
tion, 11(2):173–184, April 1995.

24. J. Ezpeleta and J. Mart́ınez. Formal specification and validation in production
plants. In Proceedings of the 3th. International Conference on Computer Integrated
Manufacturing, pages 64–73, Rensselaer Polytechnic Institute, Troy (New York),
May 1992. IMACS.

25. J. Ezpeleta and L. Recalde. A deadlock avoidance approach for non-sequential
resource allocation systems. In Proc. of the Int. Conference on Systems, Man and
Cybernetics, Hammamet, Tunisia, 0ctober 2002.

26. J. Ezpeleta, F. Tricas, F. Garćıa- Vallés, and J.M. Colom. A Banker’s solution
for deadlock avoidance in FMS with routing flexibility and multi–resource states.
IEEE Transactions on Robotics and Automation, 18(4):621–625, August 2002.

27. J. Ezpeleta and R. Valk. A polynomial solution for deadlock avoidance in assem-
bly systems modelled with petri nets. In Proceedings of the Multiconference on
Computational Engineering in Systems Applications (CESA2003), pages 1–8, Lille
(France), July, 9–11 2003.

28. M.P. Fanti, B. Maione, and B. Turchiano. Design of supervisors to avoid deadlock
in flexible assembly systems. The International Journal of Flexible Manufacturing
Systems, 14:157–175, 2002.

29. B. Farwer, D. Moldt, and F. Garćı-Vallés. An approach to modelling fms with
dynamic object petri nets. In Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics, Hammamet (Tunisia), October 2002.

30. J. C. Gentina, J. P. Bourey, and M. Kapusta. Coloured adaptive structured Petri
nets. Computer-Integrated Manufacturing, 1(1):39–47, 1988.

31. J. C. Gentina, J. P. Bourey, and M. Kapusta. Coloured adaptive structured Petri
nets (II). Computer-Integrated Manufacturing, 1(2):103–109, 1988.

32. S. B. Gershwin. Manufacturing Systems Engineering. Prentice-Hall, 1994.
33. A. N. Habermann. Prevention of systems deadlocks. Communications of the ACM,

12(7):373–385, July 1969.
34. C. Hanen and A. Munier. Cyclic scheduling problems: An overview. In Chretienne

et al. [12].
35. YiSheng Huang, MuDer Jeng, and Xiaolan Xie. A deadlock prevention policy for

flexible manufacturing systems using siphons. In Proc. of the 2001 IEEE Inter-
national Conference on Robotics and Automation, pages 541–546, Seoul (Korea),
May 2001.

36. O. Kummer and F. Wienberg. Renew. the reference net workshop. Petri Net
Newsletter, (56):12–16, 1999.

37. N. G. Leveson and J. L. Stolzy. Safety analysis using Petri nets. IEEE Trans. on
Software Engineering, 13(3):386–397, 1987.

45

38. E. López-Mellado and J.G. Morales-Montelongo. Agent-based distributed con-
trollers for discrete manufacturing systems. In Proceedings of the Multiconference
on Computational Engineering in Systems Applications (CESA2003), pages 1–7,
Lille (France), July, 9–11 2003.

39. J. Mart́ınez, P. Muro, and M. Silva. Modeling, validation and software implementa-
tion of production systems using high level Petri nets. In M. Silva and T. Murata,
editors, Invited Sessions: Petri Nets and Flexible Manufacturing. IEEE Int. Conf.
on Robotics and Automation, pages 1180–1185, Raleigh, NC, USA, April 1987.

40. J. Mart́ınez, P. Muro, M. Silva, S. F. Smith, and J. L. Villarroel. Merging artifi-
cial intelligence techniques and Petri nets for real time scheduling and control of
production systems. In R. Huber et al., editors, Artificial Intelligence in Scientific
Computation, pages 307–313. Scientific Publishing Co., 1989.

41. D. Moldt and J. Ezpeleta. A proposal for flexible testing of deadlock control
strategies in resource allocation systems. In Proceedings of the International
Conference on Computational Intelligence for Modelling Control and Automation
(CIMCA’03), pages 586–595, Vienna, Austria, February 2003.

42. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

43. J. Park and S. Reveliotis. Deadlock avoidance in sequential resource allocation sys-
tems with multiple resource acquisitions and flexible routings. IEEE Transactions
on Automatic Control, 46(10):1572–1583, October 2001.

44. J. M. Proth and X. Xie. Petri Nets. A Tool for Design and Management of Man-
ufacturing Systems. Wiley, 1996.

45. L. Recalde and M. Silva. Petri Nets fluidification revisited: Semantics and steady
state. APII-JESA, 35(4):435–449, 2001.

46. E. Renshaw. A survey of stepping-stone models in population dynamics. Adv.
Appl. Prob., 18:581–627, 1986.

47. E. Roszkowska and R. Wojcik. Problems of process flow feasibility in FAS. In
K. Leiviska, editor, IFAC CIM in Process and manufacturing Industries, pages
115–120, Espoo, Finland, 1992. Oxford: Pergamon Press.

48. M. Silva. Las Redes de Petri: en la Automática y la Informática. AC, 1985.
49. M. Silva. Interleaving functional and performance structural analysis of net models.

In M. Ajmone Marsan, editor, Application and Theory of Petri Nets 1993, volume
691 of Lecture Notes in Computer Science, pages 17–23. Springer, 1993.

50. M. Silva. Introducing Petri nets. In Practice of Petri Nets in Manufacturing, pages
1–62. Chapman & Hall, 1993.

51. M. Silva and L. Recalde. Petri nets and integrality relaxations: A view of continuous
Petri nets. IEEE Trans. on Systems, Man, and Cybernetics, 32(4):314–327, 2002.

52. M. Silva and L. Recalde. On fluidification of petri net models: from discrete to
hybrid and continuous models. In IFAC Conference on Analysis and Design of
Hybrid Systems, ADHS03, pages 9–20, Saint-Malo, France, June 2003.

53. M. Silva and E. Teruel. A systems theory perspective of discrete event dynamic
systems: The Petri net paradigm. In P. Borne, J. C. Gentina, E. Craye, and
S. El Khattabi, editors, Symposium on Discrete Events and Manufacturing Sys-
tems. CESA ’96 IMACS Multiconference, pages 1–12, Lille, France, July 1996.

54. M. Silva and E. Teruel. Petri nets for the design and operation of manufacturing
systems. European Journal of Control, 3(3):182–199, 1997.

55. M. Silva, E. Teruel, and J. M. Colom. Linear algebraic and linear programming
techniques for the analysis of net systems. In G. Rozenberg and W. Reisig, editors,
Lectures in Petri Nets. I: Basic Models, volume 1491 of Lecture Notes in Computer
Science, pages 309–373. Springer, 1998.

46

56. E. Teruel, J. M. Colom, and M. Silva. Choice-free Petri nets: A model for de-
terministic concurrent systems with bulk services and arrivals. IEEE Trans. on
Systems, Man, and Cybernetics, 27(1):73–83, 1997.

57. F. Tricas, F. Garćıa-Vallés, J.M. Colom, and J. Ezpeleta. An iterative method for
deadlock prevention in FMS. In R. Boel and G. Stremersch, editors, Discrete Event
Systems: Analysis and Control. Proc. of the Workshop On Discrete Event Systems
2000, pages 139–148, Ghent, Belgium, Aug 2000. Kluwer Academic Publishers.

58. C. Valentin-Roubinet. Modeling of hybrid systems: DAE supervised by Petri nets.
the example of a gas storage. In Proc. of ADPM’98, pages 142–149, Reims, France,
March 1998.

59. R. Valette and M. Courvoisier. Petri nets and artificial intelligence. In R. Zurawski
and T. Dillon, editors, Modern Tools for Manufacturing Systems, pages 385–405.
Elsevier, 1993.

60. R. Valette, M. Courvoisier, J. M. Bigou, and J. Albukerque. A Petri nets based
programmable logic controller. In IFIP 1st Int. Conf. on Computer Applications
in Production and Engineering, Amsterdam, Holland, April 1983.

61. R. Valk. Petri nets as token objects - an introduction to elementary object nets.
Lecture Notes in Computer Science: 19th Int. Conf. on Application and Theory of
Petri Nets, ICATPN’98, Lisbon, Portugal, June 1998, 1420:1–25, June 1998.

62. S. Velilla and M. Silva. The spy: A mechanism for safe implementation of highly
concurrent systems. In Real Time Programming 1988, 15th IFAC/IFIP Workshop,
pages 95–102, Valencia, Spain, May 1988. Pergamon.

63. J. L. Villarroel, J. Mart́ınez, and M. Silva. GRAMAN: A graphic system for manu-
facturing system design. In S. Tzafestas, A. Eisinberg, and L. Carotenuto, editors,
IMACS Symp. on System Modelling and Simulation, pages 311–316. Elsevier, 1988.

64. N. Viswanadham and Y. Narahari. Performance Modeling of Automated Manu-
facturing Systems. Prentice-Hall, 1992.

65. Mengchu Zhou and Kurapati Venkatesh. Modeling, Simulation, and Control of
Flexible Manufacturing Systems : A Petri Net Approach, volume 6 of Series in
Intelligent Control and Intelligent Automation. World Scientific, 1999.

47

