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Abstract— Petri nets and related models have been used for
specification, analysis, and synthesis of programs. The paper
contains a survey of several literature approaches and an
examination of their relationship to Petri net modeling and
supervisory control. The discussion is restricted to Petri net
models in the class of place/transitions nets and the supervisory
control of this class of models.

I. INTRODUCTION

Petri nets (PNs) are formal models developed in computer

science (CS) for the modeling of concurrent systems. Since

PNs have also been used in control systems in the context

of the supervisory control (SC) of discrete event systems, it

is interesting to examine the relationship between SC and

CS applications.

The contribution of this paper is that it presents a survey

of several CS approaches and examines their relationship

to PN modeling and SC. The CS applications considered

in this paper are those related to the synthesis of computer

programs. Further, we restrict our attention to SC methods

for PNs. By comparing the settings of specific CS appli-

cations and of SC it is possible to identify methods from

one setting that could be applicable to the other and to

distinguish opportunities for the development of new SC

methods.

The paper is organized as follows. In section III we will

examine the methods that could be used to extract a PN

model from a program specification. Then, in section IV,

we will consider how PN models could be used for the

implementation of a specification. Some of the literature

approaches will be examined in more detail, emphasizing

their relationship to SC.

The paper assumes some familiarity of the reader with

PNs. For more information on PNs the reader is referred

to [1] and to the second chapter of [2], which contains also

a detailed comparison of PNs with finite automata. For a

survey of SC methods for PNs the reader is referred to the

survey papers [3], [4]. A brief introduction to the SC terms

and notation used in this paper is presented in section II.

II. PRELIMINARIES

Given a PN, let µ denote the marking, q the firing vector,

and v the Parikh vector. The firing vector represents the

transition (or transitions) fired at a firing instance. The
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Parikh vector is a state vector of the PN recording how

many times each transition has been fired. Thus, the Parikh

vector equals the sum of the firing vectors. Given a place pi

and transition tj , let µi = µ(pi), qj = q(tj), and vj = v(tj).
Note that the firing vector is defined with respect to a firing

instance. For all transitions ti, qi indicates how many times

ti is fired at the firing instance. In particular, assuming no

concurrency, only one transition ti may be fired at a time.

Then, qi = 1 and qj = 0 for all j 6= i.
In SC, a supervisor is designed to control the operation

of a plant such that a given specification is satisfied.

If the supervisor and plant are represented by PNs, the

specifications restrict the sequences of events generated by

the plant. Let ρ denote the labeling function that associates

with each transition t one event ρ(t). Note that under

supervision, a transition t of the plant may be fired only

if there is an enabled transition ts of the supervisor such

that ρ(t) = ρ(ts).
Most often, SC problems addressed in the literature

consider the case in which the transitions of the plant are

labeled by distinct events and the specification is given as a

set of linear inequalities in terms of the marking µ or of the

Parikh vector v, and sometimes also in terms of the firing

vector q. Thus, all these specifications can be described by

the general form

Lµ + Hq + Cv ≤ b (1)

where L, H , C, and b are integer matrices of appropriate

dimensions. Note that (1) requires that all reachable states

of the plant satisfy Lµ+Cv ≤ b and that a firing vector q′ is

fired only if (1) is satisfied for all q in the range 0 ≤ q ≤ q′.1

Specifications of the form (1) have the property that the

supervisor can be designed such that its parallel composition

with the plant results in a PN consisting of the plant and a

number of additional places connected to the transitions of

the plant. These additional places are known as monitors.

For example, the places p10 and p11 of Figure 5 could be

seen as monitors enforcing q3+q9+µ1 ≤ 1 and q10+q11 ≤
µ4 + µ5, respectively.

Note that the specifications (1) can be generalized to

disjunctions of the form

n∨

k=1

[Lkµ + Hkq + Ckv ≤ bk] (2)

A specification (2) requires that at any time, at least one of

the terms Lkµ + Hkq + Ckv ≤ bk be satisfied. In general,

such specifications cannot be implemented by monitors.

1Given two vectors x and y, x ≤ y means xi ≤ yi for all indices i.
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Fig. 1. A network of CFSMs.

Under certain boundedness assumptions, the supervisor can

be designed in the form of a labeled PN [5].

III. EXTRACTING PN MODELS

This section deals with the extraction of PN models from

higher level specifications of a program. Of special interest

here is the extraction of PN models from specifications

given in a programming language.

Languages allowing a finite state machine (FSM) rep-

resentation of the specification could be of interest for PN

modeling. Note that FSMs are PNs in which each transition

has exactly one input place and one output place. Esterel [6]

is a language that has been used for specifications that can

be represented by FSMs. For instance, Esterel is used to

describe specifications of Polis, a tool for hardware/software

codesign of embedded systems [7]. In Polis, the specifica-

tions are translated into networks of Codesign Finite State

Machines (CFSMs) [8]. Note that CFSM networks can be

converted to safe2 PNs, as shown next.

A network of CFSMs consists of CFSM components

interacting asynchronously. Thus, one CFSM may not react

instantly to events generated by another CFSM. For in-

stance, in Figure 1, the transition labeled by η/β occurs

when the event η is present and upon its occurrence it

generates the event β. The transition labeled by β/ does

not fire at the same time as the one that generates the event

β. Rather, the CFSM containing the transition β/ checks

whether the event β is present. Then, if it is present, it fires

the transition. A possible PN implementation of the CFSMs

shown in Figure 1 is given in Figure 2(a). The places pβ

and pγ indicate the presence of the events β and γ when

they contain at least one token. However, for consistency

with the CFSM models, the places pβ and pγ should not

contain more than one token. This fact can be modeled by

the PN shown in Figure 2(b), based on the construction

shown in Figure 3(a). More complex networks of CFSMs,

involving logic expressions on transitions, such as γα + β
in Figure 3(b), can also be dealt with, as illustrated in the

figure.

Related to CFSMs but in certain respects more general

are the condition systems [9]. A condition system is a

PN in which transitions are labeled by enabling conditions

and places by output conditions. A condition is a signal

that may have a “true” or “false” value. A transition may

fire only if the marking enables it and the conditions

2A PN is safe if for all reachable markings there is no place containing
more than one token.
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Fig. 2. PNs representing the CFSMs of Figure 1. A dashed bidirectional
arrow between a place p and a transition t indicates a self-loop, that is,
p ∈ •t ∩ t•.

reset

γα+β

(b)(a)

setα,α
t

γ
p

β

s

p
α

p
1

s

2
s

1
s

γ
p

α
p

α,t

p
α

p
α

t

2

Fig. 3. (a) PN component for the transmission of an event α. µ(pα) = 1
when the event α is present and else µ(p α) = 1. tα and tα,set have
the same label. Note that when α is absent and α occurs, tα,set is fired.
Further, when α is present and α occurs again, tα is fired. (b) Illustration
of the PN implementation of a transition that is fireable when a logic
expression is true.

labeling it are satisfied. Further, the output conditions of

a place are satisfied when the place is marked. An example

is given in Figure 4. For instance, the output conditions

of the places p1, p7, p8, and p9 are do, up, mid, and

down, respectively. Moreover, the enabling conditions of

the transitions t5, t6, and t3 are mid, up, and do (the

complement of do), respectively. For the marking shown in

Figure 4 the conditions do and up are signaled. Therefore,

the transition t4 may fire, since it is condition enabled.

As defined in [9], conditions systems allow enabled

transitions to fire at the same time. However, note that if we

impose the restriction that only one transition may be fired

at a time, a condition system can be rather easily converted

to a PN. This remark is illustrated on the condition system

of Figure 4 under the additional assumption that the marking

of any place can only be 0 or 1. An equivalent PN is shown

in Figure 5. Note that self-loops can be used to ensure that a
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Fig. 5. PN representing the condition system. Bidirectional dashed arrows
indicate self-loops.

transition cannot fire unless condition enabled. For instance,

a self-loop including t6 and p7 guarantees that t6 fires only

if the condition up is satisfied. A more complex construction

is necessary in order to implement the requirement that t10
and t11 fire only if p4 or p5 is marked. The requirement

can be expressed by q10 + q11 ≤ µ4 +µ5. By implementing

this constraint we obtain the place p11 of Figure 5. Another

situation that requires special attention is when a transition

is labeled by the complement of a condition. For instance, t3
and t9 are labeled by do. However, this enabling constraint

can be expressed by q3+q9+µ1 ≤ 1, from which we obtain

the place p10 of Figure 5. Note that the solution would be

more complex if more than one place would generate the

condition do. For instance, if there were another place px

generating do, the enabling constraint would be expressed

by a predicate [q3 + q9 + µ1 ≤ 1]∨ [q3 + q9 + µx ≤ 1]. The

construction of an equivalent PN is still possible by using

the method for disjunctive constraints of [5].

Condition systems have been applied in [9], [10], [11] to

the synthesis and specification of control software. There,

condition systems represent the components of the system

to be controlled as well as the controller modules, which

are called taskblocks. Based on specifications describing

sequences of states that the system should follow, taskblocks

are synthesized. The controller is obtained by composing

the synthesized taskblocks, where taskblocks interact hierar-

chically and sequentially to achieve the specification goals.

The controller is then converted to control software [12].

Some specific SC problems in this context are addressed

in [13]. The synthesis algorithms presented in [9] assume

each component to be an FSM.

Since PNs do not have the expressiveness of a Turing ma-

chine, generally programs cannot be completely represented

by finite PNs. Nonetheless, PNs can easily model the control

flow and the interaction of the tasks of a program [14], [15],

[16]. For example, PNs were used to represent concurrent

programs written in a C-like language in [14] and the

tasking behavior of Ada programs in [17], [18].

For a complete representation of programs by PNs, high

level PNs are to be used. For instance, high level PNs are

used for the internal representation of the specification in

the PEP tool. PEP is a software tool for the development,

verification, and simulation of parallel programs [19]. In

PEP, specifications can be described by programs writ-

ten in B(PN)2 [20] and SDL [21] or by parallel finite

automata [22]. Note that parallel finite automata are a

collection of finite automata labeled with B(PN)2 instruc-

tions. Specifications given in any of these three forms

can be translated into high level PNs, Petri box calculus

expressions [23], and low-level PNs. M-nets [24] are used

for the high level PNs and safe PNs for the low-level PNs.

Naturally, finite safe PNs cannot represent the specification

unless all variables are defined on finite domains [20].

IV. PN BASED DESIGN

Once a PN model has been extracted from a program,

desirable properties of the program can be examined based

on the PN model. While a complete PN model of a program

allows extensive verification using model checking, as in

the PEP tool [19], only some of the properties of interest

can be examined on PN models that are abstractions of

software specifications. Of special interest in the literature

has been the latter class of PN models for programs written

in the Ada language [17], [18], [25]. In this context,

the PN models were typically used in order to detect

the presence of deadlocks. For the analysis of these PN

models both structural methods [17] and reachability based

approaches [18], [26], [27] were proposed. The proposed

methods take advantage of the particular form of the PNs

modeling Ada programs.

For the remaining part of this section we will examine

in more detail two topics closely related to SC. Note that

to some extent, the application of SC methods to software

engineering has been considered in [28], [29]. Further, SC

for deadlock prevention has been applied to the execution

control of concurrent software in [30].

4996

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 6, 2009 at 17:11 from IEEE Xplore.  Restrictions apply. 



(a)

(b)

e
2

e
3

e
1

f
1

f
2 f

3

e
0

f
0

P
2

P
1

e
2

e
3

e
1

f
1

f
2 f

3

e
0

f
0

Fig. 6. (a) Two processes and their synchronization; (b) PN model.

A. Predicate Control

A literature topic closely related to the SC of PNs is

predicate control [31], [32]. The predicate control problem

has been defined in the context of distributed systems. The

system model used for predicate control can be described as

follows. A distributed system consists of several processes,

each executing a predefined program. Each process Pi,

i = 1 . . . n, is modeled by a sequence of events ei,0ei,1 . . ..
The events ei,0, ei,1, . . . are generated in the same order

each time Pi is executed. However, since the processes

Pi are not completely synchronized, an event ei,k may

occur before or after an event ej,r. Thus, the distributed

computation may have several executions, differing in the

order in which the events are generated. The predicate

control problem is to control the processes Pi such that

a given predicate is always satisfied. The processes Pi can

be controlled by adding some synchronization constraints

to the system. A synchronization constraint involves two

events ei,k and ej,r and requires that the process Pi should

not generate ei,k before Pj generates ej,r. Synchronization

is implemented by a control message sent by Pj to Pi.

As an example, Figure 6(a) illustrates two processes P1

and P2. P1 consists of the event sequence e0, . . . , e3

and P2 of the event sequence f0, . . . , f3. Graphically,

synchronization is represented by arrows. For instance, in

Figure 6(a), the arrow from f1 to e2 indicates that f1 must

precede e2. Consider the predicate implementing a fairness

requirement of the form |ǫ1 + ǫ2 + ǫ3−φ1−φ2| ≤ 1, where

ǫi denotes the number of occurrences of the event ei and φi

the number of occurrences of the event fi. The predicate is

enforced by adding the synchronization arrows drawn with

dashed lines.

The predicate control problem can be stated in terms

of PNs, as illustrated in Figure 6(b). A synchronization

arrow corresponds to a place connected between the two
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Fig. 7. PN model.

transitions of the arrow. Thus, generating synchronization

arrows corresponds to designing a monitor based supervi-

sor, where each monitor corresponds to a synchronization

arrow. Monitors here are constrained to have exactly one

input transition and one output transition. Note that in this

problem PN models are safe marked graphs.

B. Scheduling

PNs have been applied to scheduling in the context

of embedded software. In this context, often applications

consist of multiple tasks and are naturally expressed by

concurrent programs. Therefore, it is often the case that

several tasks are to be run on a single computational

resource (processor). Since the computational resource can

execute only one instruction at a time, it is necessary to

decide the sequence in which the instructions should be

executed. Scheduling deals with creating a correct schedule

of operations, that is, a correct sequence of instructions. In

the context of data flow applications, which are common in

digital signal processing, it has been noticed that scheduling

does not have to be done at run time [33]. However, in more

general applications, scheduling depends on data computed

at run time. Of special interest has been the problem of

deriving schedules in which regardless of the decisions

made at run time, certain properties are satisfied. Properties

of interest include liveness and that the program should be

executable with bounded memory.

PNs have been used for the software model in papers such

as [14], [34], [35], [36], [37], [38]. As an example, consider

the PN of Figure 7 representing two processes of a software

application. One process consists of the transitions a. . . g
and the places p1. . . p5. The other process consists of the

transitions h. . . k and the places p6. . . p10. Transitions model

internal operations. In particular, source transitions are

associated with the reading of external inputs. For instance,

in Figure 7, when the transition a is fired, input data is read.

Further, transitions in conflict, such as h and i in the figure,

model the possible choices of a control structure, such as

an if-then-else statement. If the control structure depends

on internal data computed at run time, then the transitions

are uncontrollable. Indeed, at the time when the schedule is

computed, it is not known which transition should be fired.
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In our example, the transitions b and c are uncontrollable.

In principle, it may be possible to have a control structure

whose outcome can be controlled at the time the schedule

is computed. Then, the corresponding transitions would be

controllable. This situation is illustrated in our example by

the transitions h and i, which are controllable. A possible

schedule for our example is shown in Figure 8(a).

Reachability based methods could be used to derive a

schedule, such as in [14], [34]. An invariant based approach

is considered in [38] and structural conditions for the

existence of a schedule are obtained in [37]. There are also

results for real-time specifications, based on an approach

for hybrid controller synthesis [39] and heuristics [36].

As noticed in the literature [40], a schedule could be

seen as a supervisory policy enforced by a supervisor. For

instance, if we represent the schedule of Figure 8(a) as

a state machine, the state machine would be a supervisor

enforcing the schedule on the PN of Figure 7. In general,

obtaining a supervisor by representing the schedule as a

state machine results in a rather complex supervisor with

many places. Indeed, a schedule represents a portion of the

reachability tree of the PN model of the system. However,

it is interesting to notice that it is possible to obtain simpler

supervisors enforcing the same schedule. For instance, in

our example, the supervisor of Figure 8(b) enforces the

schedule of Figure 8(a) and is considerably simpler than

the state machine representing that schedule.

The relationship between supervision and scheduling

could be exploited in two directions. On one hand, supervi-

sory control methods could be applied to obtain schedulers.

A scheduler would correspond to a supervisor and would

run in real time. Its function would be to enable a set

of operations that should be executed at a given time.

On the other hand, scheduling methods could be used as

supervision methods for PNs.

In the literature, the schedulability problem is typically

approached for programs running on a single computational

resource (processor). The schedulability problem for multi-

ple computational resources is considered in [33], [34]. In

this case each resource is allocated a number of processes

and the problem is to find an appropriate schedule for each

resource. Thus, instead of a single sequential schedule, there

are several concurrent schedules, one for each resource.

The approach proposed in [34] is to search for a sequential

schedule that produces an appropriate concurrent schedule

when projected on the subsystems associated with each

resource. To illustrate this idea, consider the example of

Figure 7 representing a program consisting of two pro-

cesses. One process is defined by the transitions a, . . . , g
and the places p1, . . . , p5, and the other process by the

transitions d, e, h, i, j, k and the places p6, . . . , p10.

Assuming that each process runs on a different resource,

by projecting the sequential schedule of Figure 8(a) on

the set of transitions of each process, we obtain the two

schedules of Figure 9. In SC terms, the problem corresponds

to decentralized SC [2], [41]. For instance, in the example

of Figure 7, the subsystems for decentralized control would

be defined as follows. For the first subsystem, the sets of

controllable and observable transitions would be Tc1 =
{a, d, . . . , g} and To1 = {a, . . . , g}, respectively. For the

second subsystem, the sets would be Tc2 = {h, . . . , k}
and To2 = {d, e, h, . . . , k}. Then, the scheduling problem

would be similar to the problem of finding a decentralized

supervisor enforcing liveness and boundedness. Note that

decentralized supervision of PNs for liveness enforcement

is an interesting direction of research. Figure 9 shows a

possible decentralized PN supervisor implementing the two

schedules shown in the figure.

V. CONCLUSION

Petri nets and related models have been used for the mod-

eling of program specifications. Moreover, various problems

related to the synthesis of programs can be considered in

the setting of supervisory control. On one hand, some of the

methods developed in the context of computer science could

be of interest for supervisory control. On the other hand,

supervisory control methods could be adapted for program
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synthesis. Specific needs encountered in the context of pro-

gram synthesis provide opportunities for the development

of new supervisory control methods.
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