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t. Petri nets are a general and well-established model of 
on
ur-rent and distributed 
omputation and behaviour, in
luding that takingpla
e in biologi
al systems. In this survey paper, we are 
on
erned withintrinsi
 relationships between Petri nets and two formal models inspiredby aspe
ts of the fun
tioning of the living 
ell: membrane systems andrea
tion systems. In parti
ular, we are interested in the bene�ts that 
anresult from establishing strong semanti
al links between Petri nets andmembrane systems and rea
tion systems. We �rst dis
uss Petri nets withlo
alities re�e
ting the 
ompartmentalisation modelled in membrane sys-tems. Then spe
ial attention is given to set-nets, a new Petri net modelfor rea
tion systems and their qualitative approa
h to the investigationof the pro
esses 
arried out by bio
hemi
al rea
tions taking pla
e in theliving 
ell.Keywords: Petri net, biomodelling, membrane system, rea
tion system,lo
ality, GALS, qualitative modelling, set-net, set membrane system.1 Introdu
tionPetri nets (see e.g., [39℄) are a general formal model for 
on
urrent and dis-tributed 
omputation. Over the years, an impressive variety of Petri net modelssuited for many di�erent appli
ations have been developed together with sup-porting theories and tools. A relatively new and ever more important �eld of ap-pli
ation is biology. Thanks to its distributed 
hara
ter, the Petri net approa
happears to be parti
ularly well-suited to provide 
omputational and operationalfoundations for problems and issues arising in biology; see for example, [28℄, fora re
ent 
omprehensive overview of appli
ations of Petri nets in systems biology.On the other hand, to understand or make use of spe
i�
 aspe
ts of biologi
alpro
esses, new formal models have been proposed. Membrane systems and re-a
tion systems are two examples of su
h models whi
h are both abstra
tions ofthe fun
tioning of the living 
ell.



2 J.Kleijn, M.Koutny and G.RozenbergIn this paper, we are 
on
erned with intrinsi
 similarities and di�eren
esbetween Petri nets on the one hand, and membrane systems and rea
tion sys-tems on the other hand. In parti
ular, we are interested in establishing strongsemanti
al links between these two models and Petri nets, and the possible mu-tual bene�ts that may result. Di�erent enhan
ements of the Petri net model are
onsidered for the faithful modelling of the dynami
s of the biologi
al phenom-ena represented by membrane systems and rea
tion systems. It is our aim todemonstrate the fruitful two-way intera
tion between Petri nets and the othertwo models. We will be interested in Petri net semanti
s whi
h open the wayto importing Petri net methodologies and tools to the two biologi
ally moti-vated 
omputational models. Su
h semanti
s should be faithful, so rather thangiving a Petri net interpretation, we adapt and in
orporate new 
on
epts intothe Petri net framework, while retaining the underlying Petri net philosophy. Inparti
ular, we will dis
uss an extension of the standard pt-nets with a 
on
eptof lo
ality, and mu
h emphasis will be given to the 
ompletely new 
lass of Petrinets 
alled set-nets. The latter are suited for qualitative rather than quanti-tative modelling whi
h plays an important role in rendering of the bio
hemi
alpro
esses that take pla
e in living 
ells.Petri nets are a graphi
al modelling language with strong mathemati
al, al-gorithmi
 and tool support for the spe
i�
ation and analysis of distributed sys-tems. Many di�erent 
lasses of Petri nets have been developed sin
e their �rstappearan
e in [37℄. Their main 
ommon underlying philosophy is that states aredistributed and a
tions have a lo
al 
ause and e�e
t (on the adja
ent 
ompo-nents of the net); for more dis
ussions on this see [7℄. The most typi
al Petri netsare without doubt the Pla
e/Transition nets (or pt-nets) [8℄. They are based onthe produ
tion and 
onsumption of resour
es by a
tions taking pla
e in the sys-tem. Hen
e the resulting 
omputational pro
esses are essentially multiset based.Another well known, more fundamental, Petri net 
lass are the Elementary Netsystems (or en-systems) [8℄. Their dynami
s is based on holding or not holdingof lo
al 
onditions rather than being resour
e based.Like pt-nets, membrane systems ([33�36℄) are essentially multiset rewritingsystems. As a 
omputational model they are inspired by the way 
hemi
al rea
-tions take pla
e in 
ells whi
h are divided by membranes into 
ompartments. Therea
tions are abstra
ted to rules that spe
ify whi
h and how many mole
ules 
anbe produ
ed from given mole
ules of a 
ertain kind and quantity. The dynami
aspe
ts of the membrane system model in
luding potential behaviour (
omputa-tions), derive from su
h evolution rules. To 
apture the 
ompartmentalisation ofmembrane systems, pt-nets are extended with transition lo
alities. This makesit possible to have lo
ally syn
hronised exe
utions, but it requires an extensionof the 
ausality semanti
s of pt-nets.Rea
tion systems [3, 10�12℄ are also a model for the investigation of pro-
esses 
arried out by bio
hemi
al rea
tions in living 
ells. The model is meantto 
ontribute to the understanding of the intera
tions between su
h rea
tions.This time, however, bio
hemi
al rea
tions are based on qualitative rather thanquantitative presen
e of resour
es. Hen
e, in order to obtain a faithful Petri



Petri Nets for Biologi
ally Motivated Computing 3net representation of rea
tion systems, it is ne
essary to re-evaluate the existingPetri net modelling approa
hes. We therefore introdu
e a new 
lass of Petri nets,
alled set-nets, that supports set-based (boolean) operations on tokens ratherthan the standard Petri net multiset-based token manipulation.Finally, we bring together the qualitative approa
h of rea
tion systems andthe 
ompartmentalisation of membrane systems as the multiset approa
h ofmembrane systems is not always realisti
 from the point of view of expli
itly
ounting huge number of mole
ules and rea
tions. Moreover, the resulting in�-nite state spa
e makes it impra
ti
al or impossible to apply formal veri�
ationte
hniques. Therefore, we propose to 
onsider set membrane systems, that ismembrane systems with qualitative evolution rules. This is espe
ially attra
-tive as lo
alities and set-nets 
an be 
ombined to yield a satisfa
tory Petri netsemanti
s for set membrane systems.In this survey paper, we mainly des
ribe approa
hes and give the essen
eof key results. More details on Petri nets and membrane systems 
an be foundin [23℄. Set membrane systems were introdu
ed in [24℄, and set-nets were �rstpresented at the BioPPN Workshop held in New
astle upon Tyne in June 2011(see [27℄ for the informal workshop version).2 PreliminariesMultisets A multiset over a set X is a fun
tion µ : X → N = {0, 1, 2, . . .}. (Inthis paper we only 
onsider the 
ase that X is �nite.) Multiset µ is said to beempty if there are no x su
h that x ∈ µ by whi
h we mean that x ∈ X and
µ(x) ≥ 1. The empty multiset is denoted by ∅.A multiset may be represented by listing its elements with repetitions, e.g.,
µ = {y, y, z} is su
h that µ(y) = 2, µ(z) = 1, and µ(x) = 0 otherwise. We treatsets as multisets without repetitions.For two multisets µ and µ′ over X , the sum µ+ µ′ is the multiset given by
(µ+ µ′)(x) = µ(x) + µ′(x) for all x ∈ X , and if k ∈ N then k · µ is the multisetgiven by (k · µ)(x) = k · µ(x) for all x ∈ X . The di�eren
e µ − µ′ is given by
(µ − µ′)(x) = max{µ(x) − µ′(x), 0} for all x ∈ X . We denote µ ≤ µ′ whenever
µ(x) ≤ µ′(x) for all x ∈ X , and µ < µ′ whenever µ ≤ µ′ and µ 6= µ′.Petri nets A Pla
e/Transition net (or pt-net) is de�ned as a tuple

PT = (Pl ,Tr ,W,M0) ,where: Pl and Tr are �nite disjoint sets of respe
tively pla
es and transitions ;
W : (Tr × Pl) ∪ (Pl × Tr) → N is the ar
 weight fun
tion; and M0 : Pl → N isthe initial marking (in general, any multiset of pla
es is a marking).In diagrams, like that in Figure 1, pla
es are drawn as 
ir
les, and transitionsas boxes. If W (x, y) ≥ 1, then (x, y) is an ar
 leading from x to y. An ar
 isannotated with its weight if the latter is greater than one. A marking M isrepresented by drawing in ea
h pla
e p exa
tly M(p) tokens (small bla
k dots).
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Fig. 1. pt-net.A step U of PT is a multiset of transitions. Its pre-multiset and post-multisetof pla
es, •U and U•, are respe
tively given by
•U(p) =

∑

t∈U

U(t) ·W (p, t) and U•(p) =
∑

t∈U

U(t) ·W (t, p) ,for ea
h pla
e p. For the pt-net in Figure 1 we have:
•{τr111 , τr111 , τr313 } = {πb

1, π
b
1, π

a
3} and {τr111 , τr111 , τr313 }

•
= {πa

1 , π
a
1 , π

c
1, π

a
3 , π

a
3}.We 
an distinguish three modes of exe
ution for pt-nets (from sequential tofully syn
hronous). To start with, U is free-enabled at a marking M if •U ≤ M .A free-enabled U is then: min-enabled if |U | = 1; and max-enabled if U 
annotbe extended by a transition to yield a step whi
h is free-enabled at M . For thept-net in Figure 1 we have that, at the initial marking M0, the step {τr121 , τr212 }is free-enabled, {τr111 } is min-enabled, and {τr111 , τr121 , τr212 , τr222 } is max-enabled.That is, U is free-enabled at M if in ea
h pla
e there are enough tokens for thespe
i�ed multiple o

urren
e of ea
h of its transitions (note that ea
h transition

t needs to 
onsume from ea
h pla
e p exa
tly W (p, t) tokens whi
h 
annot beshared with any other transition). Interleaving (min-enabledness) allows onlyone transition to be exe
uted at a time. Maximal 
on
urren
y (max-enabledness)means that extending U would demand more tokens than M supplies.For ea
h mode of exe
ution m ∈ {free,min ,max}, a step U whi
h is m-enabled at a marking M 
an be m-exe
uted leading to the marking M ′ givenby
M ′ = M − •U + U• .We denote this by M [U〉mM

′. Moreover, an m-step sequen
e is a �nite or in�nitesequen
e of m-exe
utions starting from the initial marking. For the pt-net inFigure 1 we have
M0[{τ

r12
1 , τr212 }〉free{π

b
1, π

b
1, π

b
2, π

b
2, π

c
2, π

c
2, π

a
3} .



Petri Nets for Biologi
ally Motivated Computing 5Petri nets with inhibitor and a
tivator ar
s A pt-net 
an be equipped with twoother kinds of ar
s whi
h test for the presen
e or absen
e of tokens in pla
es.More pre
isely,
Inh ⊆ Pl × Tr and Act ⊆ Pl × Trare respe
tively the sets of inhibitor and a
tivator ar
s. In diagrams, an inhibitorar
 ends with a small open 
ir
le, while an a
tivator ar
 ends with a small bla
k
ir
le. The role of both kinds of test ar
s is to 
onstrain the enabling of a step

U by stipulating that it is free-enabled at a marking M if •U ≤ M as well as� p /∈ M whenever there is t ∈ U su
h that (p, t) ∈ Inh� p ∈ M whenever there is t ∈ U su
h that (p, t) ∈ Act .All the remaining notions are the same as for pt-nets.Petri nets with lo
alities A Pla
e/Transition net with lo
alities (or ptl-net) isde�ned as a tuple PTL = (Pl ,Tr ,W, ℓ,M0) su
h that (Pl ,Tr ,W,M0) is a pt-net and ℓ : Tr → N is a lo
ality mapping. In diagrams, su
h as that in Figure 4,boxes representing transitions belonging to the same lo
alities are displayed ona grey ba
kground of the same shade.Lo
alities 
an be used to de�ne one more kind of enabling for steps of transi-tions. A step U of PTL is lmax-enabled if U 
annot be extended by any transition
t satisfying ℓ(t) ∈ ℓ(U) to yield a step whi
h is free-enabled atM . That is, lo
allymaximal 
on
urren
y (lmax-enabledness) is similar to maximal 
on
urren
y, butnow only a
tive lo
alities 
annot exe
ute further transitions. For the ptl-net inFigure 4 we have that {τr111 , τr131 } is lmax-enabled at the initial marking, but
{τr111 } is not. All the remaining notions are the same as for pt-nets.3 Membrane Systems and Petri NetsAmembrane stru
ture µ (of degreem ≥ 1) is given by a rooted tree withm nodesidenti�ed with the integers 1, . . . ,m. We will write (i, j) ∈ µ or i = parent(j) tomean that there is an edge from i (parent) to j (
hild) in the tree of µ, and i ∈ µto mean that i is a node of µ. The nodes of a membrane stru
ture representnested membranes whi
h in turn determine 
ompartments (
ompartment j isen
losed by membrane j and lies in-between j and its 
hildren, if any), as shownin Figure 2.Let V be a �nite alphabet of names of obje
ts (mole
ules). A basi
 membranesystem over µ is a tuple

Π = (V, µ, w0
1 , . . . , w

0
m, R1, . . . , Rm)su
h that, for every membrane i, w0

i is a multiset of obje
ts, and Ri is a �niteset of evolution rules r of the form lhsr → rhsr, where lhsr (the left hand sideof r) is a non-empty multiset over V , and rhsr (the right hand side of r) is anon-empty multiset over
V ∪ {aout | a ∈ V } ∪ {ainj

| a ∈ V and (i, j) ∈ µ} .
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2 3

Fig. 2. A membrane stru
ture (m = 3) and its 
ompartments with 1 being the rootnode, (1, 2) ∈ µ and 1 = parent(3).
1

2 3

{a, b}
r11 : {b} → {a}
r12 : {a} → {b, cin2

, ain3
}

r13 : {b} → {c}

{a, b, c, c}
r21 : {a, c} → {b}
r22 : {b} → {a}

∅
r31 : {a} → {a, a, cout}

Fig. 3. A basi
 membrane system Π0.Note that a symbol ainj
represents an obje
t a that is sent to a 
hild node(
ompartment) j and aout means that a is sent to the parent node. If i is theroot of µ then no indexed obje
t of the form aout belongs to rhsr. A 
on�gurationof Π is a tuple

C = (w1, . . . , wm)of multisets of obje
ts, and C0 = (w0
1 , . . . , w

0
m) is the initial 
on�guration. Fig-ure 3 shows a basi
 membrane system over the membrane stru
ture from Fig-ure 2.A membrane system evolves from 
on�guration to 
on�guration as a 
onse-quen
e of the appli
ation (or exe
ution) of evolution rules. There is more thanone strategy in whi
h this 
an be done. Maximal 
on
urren
y used to be thestandard exe
ution mode for membrane systems. Later, however, also in view ofthe intrinsi
 
onne
tions with Petri nets, other exe
ution modes attra
ted inter-est. In parti
ular, with the 
on
ept of lo
alities added to pt-nets to represent
ompartments, lo
ally maximal 
on
urren
y 
ame to light as a new realisti
exe
ution semanti
s for membrane systems. Hen
e, similarly as in the 
ase of
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ally Motivated Computing 7ptl-nets, we 
an distinguish four su
h exe
ution modes, all based on the notionof a ve
tor multi-rule.A ve
tor multi-rule of Π is a tuple
r = 〈r1, . . . , rm〉where, for ea
h membrane i of µ, ri is a multiset of rules from Ri. For su
h ave
tor multi-rule, we denote by lhsri the multiset
∑

r∈Ri

ri(r) · lhs
rin whi
h all obje
ts in the left hand sides of the rules in ri are a

umulated, andby rhsri the multiset

∑

r∈Ri

ri(r) · rhs
rof all (indexed) obje
ts in the right hand sides. The �rst multiset spe
i�es howmany obje
ts are needed in ea
h 
ompartment for the simultaneous exe
utionof all the instan
es evolution rules in r.A ve
tor multi-rule r of Π is free-enabled at a 
on�guration C if lhsri ≤ wi,for ea
h i. A free-enabled r is: min-enabled if |r1|+ · · ·+ |rm| = 1; max-enabledif no ri 
an be extended to yield a ve
tor multi-rule whi
h is free-enabled at C;and lmax-enabled if no non-empty ri 
an be extended to yield a ve
tor multi-rulewhi
h is free-enabled at C. For example, in Figure 3,� 〈∅,∅, {r31}〉 is not free-enabled;� 〈{r11},∅,∅〉 is min-enabled but not lmax-enabled;� 〈{r11, r12},∅,∅〉 is lmax-enabled but not max-enabled; and� 〈{r11, r12}, {r21, r22},∅〉 is max-enabled.If r is free-enabled (free) at a 
on�guration C, then C has in ea
h membrane

i enough 
opies of obje
ts for the appli
ation of the multiset of evolution rules
ri. Maximal 
on
urren
y (max ) requires that adding any extra rule makes rdemand more obje
ts than C 
an provide. Lo
ally maximal 
on
urren
y (lmax )is similar but in this 
ase only those 
ompartments whi
h have rules in r 
annotenable even more rules; in other words, ea
h 
ompartment either uses no rule,or uses a maximal multiset of rules. Minimal enabling (min) allows only a single
opy of just one rule to be applied any time.The e�e
t of the appli
ation of the rules is independent of the mode of exe-
ution m ∈ {free,min,max , lmax}. A ve
tor multi-rule r whi
h is m-enabled at
C 
an m-evolve to a 
on�guration C′ = (w′

1, . . . w
′
m) su
h that, for ea
h i andobje
t a:

w′
i(a) = wi(a)− lhsri (a) + rhsri (a) + rhsrparent(i)(aini

) +
∑

i=parent(j)

rhsrj(aout )



8 J.Kleijn, M.Koutny and G.Rozenbergwhere rhsrparent(i) = ∅ if i is the root of µ. We denote this by C
r

−→m C′.Moreover, an m-
omputation is a sequen
e of m-evolutions starting from theinitial 
on�guration. For the example in Figure 3 we have:
C0

r

−→m ({a, b}, {a, b, c, c, c}, {a}) ,where r = 〈{r11, r12},∅,∅〉.3.1 Petri net modelling of membrane systemsThere is a natural way of translating a basi
 membrane system Π into a be-haviourally equivalent ptl-net PTL(Π) = (P, T,W, ℓ,M0), where multisets ofpla
es are used to represent the availability of mole
ules within the 
ompart-ments, and transitions 
orrespond to evolution rules. Ea
h transition is asso
i-ated with a 
ompartment and this information is represented by the lo
alitiesof net transitions. The 
onstru
ted ptl-net PTL(Π) has a separate pla
e πa
j forea
h mole
ule a and membrane j, and a separate transition τri with lo
ality ifor ea
h rule r in 
ompartment i. The initial marking inserts wj(a) tokens intoea
h pla
e πa

j . The 
onne
tivity between transition t = τri and pla
e p = πa
j isgiven by:

W (p, t) =

{

lhsr(a) if i = j
0 otherwise .as well as:

W (t, p) =















rhsr(a) if i = j
rhsr(aout ) if j = parent(i)
rhsr(ainj

) if i = parent(j)
0 otherwise .Figure 4 shows the result of the above translation for the basi
 membrane systemin Figure 3.The ptl-net PTL(Π) provides a faithful representation of the behaviour ofthe basi
 membrane system Π . To 
apture this very 
lose relationship, we de�netwo bije
tive mappings, ν and ρ, whi
h allow us to move betweenΠ and PTL(Π):� For every marking M of PTL(Π), ν(M) = (w1, . . . , wm) is the 
on�gurationof Π , given by wi(a) = M(πa
i ), for every mole
ule a.� For every step U of PTL(Π), ρ(U) = 〈r1, . . . , rm〉 is the ve
tor multi-rule of

Π , given by ri(r) = U(τri ), for every 
ompartment i and every rule r ∈ Ri.It is then possible to establish a dire
t relationship between (the operation of) theoriginal membrane system and the ptl-net resulting from the above translationat the system level:
C

r

−→m C′ =⇒ ν−1(C) [ρ−1(r)〉m ν−1(C′)

M [U〉mM
′ =⇒ ν(M)

ρ(U)
−→m ν(M ′)

(1)for all modes of exe
ution m ∈ {free,min,max , lmax}, 
on�gurations C of Πand markings M of PTL(Π). Together with ν(M0) = C0, su
h a result meansthat the (�nite and in�nite) m-step sequen
es of PTL(Π) faithfully represent
m-
omputations of Π , and the same applies to markings and 
on�gurations.
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Fig. 4. ptl-net PTL(Π0) modelling the basi
 membrane system Π0.3.2 Petri net analysis of membrane systemsThanks to the very tight behavioural 
orresponden
e between Π and PTL(Π)
aptured by (1) above, analyti
al te
hniques developed for Petri nets 
an beapplied to membrane systems. For example, one 
an use the invariant analysisbased on linear algebra [42℄ to verify properties of 
on�gurations rea
hable fromthe initial one. If we take the membrane system in Figure 3 and apply the invari-ant analysis to the 
orresponding Petri net in Figure 4, then one 
an dedu
e thatthe total number of mole
ules a and b in 
ompartment 2 is 
onstant, irrespe
tiveof the initial 
on�guration.Another dire
tion is to use the 
ausality semanti
s approa
h of Petri netsbased on o

urren
e nets, allowing one to analyse entire 
omputations ratherthan individual rea
hable 
on�gurations. In parti
ular, o

urren
e nets allow oneto investigate 
ausality, 
on
urren
y and exe
utability in system behaviour. In
ase of lmax-step sequen
es, however, one needs to modify the standard pro
ess
onstru
tion, as �rst outlined in [26℄.To analyse the state spa
e of Π one 
an also employ the rea
hability graphof PTL(Π). Investigating rea
hability graphs has a long tradition in the �eld ofPetri nets, and has produ
ed several fundamental results. For example, rea
ha-bility for pt-nets is de
idable [31, 29℄ whi
h means that the problem of de
idingwhether a basi
 membrane system has a free- or min-exe
ution leading to agiven 
on�guration 
an be de
ided, even when there are in�nitely many rea
h-able 
on�gurations. Another relevant property of Π is whether the 
on
entrationof spe
i�
 mole
ule(s) in spe
i�
 
ompartment(s) 
an grow unboundedly. Thisproblem, known in the are of Petri nets as boundedness, 
an be ta
kled using the
overability tree 
onstru
tion [18℄. Coverability trees 
an also be used to de
idewhether two spe
i�
 mole
ules 
an ever be simultaneously present in the same
ompartment.
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tion Systems and Petri NetsRea
tion systems [10�12℄ are a formal framework for the investigation of pro-
esses 
arried out by bio
hemi
al rea
tions. Thus the framework is inspired bybio
hemistry and its underlying ideas are motivated by the fa
ilitation/a

elera-tion and inhibition/retardation, properties shared by a great number of bio
hem-i
al rea
tions. Rea
tion systems 
onstitute a 
omputational approa
h inspiredby nature and are targeted at the investigation of ongoing dynami
 
hanges o
-
urring in bio
hemi
al systems through information pro
essing. However, themodel is based on prin
iples remarkably di�erent from those underlying otherexisting models of 
omputation.A rea
tion system is a pair
A = (S,A) ,where S is a �nite ba
kground set 
omprising the entities of A, and A is the setof rea
tions of A. Ea
h rea
tion is a triple of the form a = (R, I, P ), where thethree 
omponents are �nite sets:1� R ⊆ S is the set of rea
tants ;� I ⊆ S is the set of inhibitors ; and� P ⊆ S is the set of produ
ts.The 
omponents of a rea
tion a = (R, I, P ) may be denoted, respe
tively, by

Ra, Ia and Pa.A state of a rea
tion system is any set C of its entities. Then an initialisedrea
tion system is a triple
A = (S,A,C0) ,where (S,A) is a rea
tion system and C0 ⊆ S is the initial state. A rea
tion sys-tem with ba
kground set S has exa
tly 2|S| potential states. To des
ribe possiblemoves between these states, we need to say what is meant by an o

urren
e ofa rea
tion or a set of rea
tions.A rea
tion a is enabled at a state C ⊆ S if Ra ⊆ C and Ia∩C = ∅; moreover,for the purpose of establishing the relationship with Petri nets, in this paper wewill say that a set R of rea
tions is enabled at C if ea
h rea
tion of R is enabled.In su
h a 
ase, R 
an o

ur with its e�e
t on C being given by

resR(C) =
⋃

a∈R

Pa .We denote the resulting state 
hange by C
R
−→ resR(C). If R is the set ofall rea
tions enabled at C, then we may simply write C −→ C′, where C′ =

resR(C).In the state 
hange as des
ribed above, all the entities in C \
⋃

a∈R Pa disap-pear when R o

urs. As a result, and unlike in other formal models of dynami
1 In the original de�nition these sets are assumed to be non-empty and R ∩ I = ∅.
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ally Motivated Computing 11systems, there is no persisten
y in a rea
tion system in the sense that an entitypresent in a state disappears unless it is sustained by at least one rea
tion in R.Consider, for instan
e, an initialised rea
tion system
A0 = ({q, r, s}, {a, b, c}, {q}) ,with ba
kground set {q, r, s}, the initial state {q}, and three rea
tions:

a = ({r, q},∅, {r}) b = ({q}, {s}, {r, q}) c = ({q},∅, {s}) .Then we have the following examples of state 
hange:
{r, q, s}

{a,c}
−→ {r, s} {r, q}

{b}
−→ {r, q} {q, r, s}

{a}
−→ {r} .One may observe that there is no 
on�i
t between rea
tions in the sense thatthe o

urren
e of one rea
tion might imply that another rea
tion whi
h is alsoenabled at the 
urrent state, 
annot o

ur. This, again, is a feature not found inmost other formal models of dynami
 systems.It is 
ru
ial to point expli
itly to the `non-
ounting' features of rea
tionsystems: entities are either present or not, and produ
ed or not, and rea
tions
an or 
annot o

ur given the presen
e or absen
e of 
ertain entities. Thereis no representation of multiple instan
es of entities or multiple o

urren
es ofrea
tions.In general, rea
tion systems may have an environment and then operatewithin a 
hanging 
ontext (with entities 
oming from the environment at ea
hstage of evolution). Here, however, we will 
onsider 
ontext-independent pro-
esses de�ned by a rea
tion system with an initial state provided by the envi-ronment, and every next state obtained as the result of rea
tions taking pla
ein the previous state.4.1 Set-netsIn [27℄ we investigate how to 
onstru
t Petri net representations of rea
tionsystems. While doing so, we made some general observations and assumptionsabout the relationship between rea
tion systems and nets.� Entities 
an be represented by pla
es, and rea
tions by net transitions.� Sin
e there are no 
on�i
ts between rea
tions, a
tivator ar
s 
an be usedto test for the presen
e of rea
tants (rather than 
laiming resour
es for theex
lusive use as with ordinary ar
s and input pla
es).� Inhibitor ar
s 
an be used to test for the absen
e of rea
tants.� All rea
tions that 
an o

ur in a rea
tion system do o

ur, and the onlyentities left after a state 
hange are the newly generated produ
ts. In thePetri net framework, these features 
orrespond to maximal 
on
urren
y andpla
e resetting implemented by reset ar
s [9℄.



12 J.Kleijn, M.Koutny and G.RozenbergWe tried four di�erent modelling methods, in
luding high-level Petri nets [17℄.In ea
h 
ase, we established a 
lose 
orresponden
e between the evolutions oftwo 
orresponding models. All these net models, however, exhibited de�
ien
iesw.r.t. simpli
ity and/or elegan
e and/or tra
tability of the translation.In parti
ular, in all four 
ases, one state of a rea
tion system would 
orrespondto many markings of a 
orresponding Petri net, whi
h is dramati
ally di�erentfrom the one-to-one relationship between the 
on�gurations of a membrane sys-tems and markings of a the 
orresponding ptl-net des
ribed in Se
tion 3. Wetherefore proposed a new 
lass of Petri nets, 
alled set-nets, whi
h provide astronger mat
h with rea
tion systems and their semanti
s.The main idea is that in a set-net there is no 
on
ept of 
ounting. Pla
esare marked or not marked and ar
s have no weights. Set-nets resemble elemen-tary net systems (en-systems) [38℄ whi
h is a fundamental model to study basi
features of 
on
urrent systems, in
luding 
on�i
t, 
ausality and independen
e.However, their exe
ution semanti
s is di�erent. In set-nets, a marked pla
e in-di
ates the presen
e of a resour
e without any quanti�
ation. Hen
e any numberof transitions that take input from this pla
e 
an be �red at the same time.Moreover, �ring a transition empties all its input pla
es. Thus there are no 
on-�i
ts over tokens in set-nets, unlike in en-systems or pt-nets. Similarly, pla
esdo not 
ount the tokens, and the �ring of a transition simply marks ea
h of itsoutput pla
es (whether or not they were already marked). We will build up thenew model in two stages, introdu
ing �rst set-nets with only �ow ar
s.A set-net is a tuple
SN = (Pl ,Tr ,W,M0)su
h that the four 
omponents are as in the de�nition of pt-nets, under theproviso that W always returns 0 or 1, and the initial marking M0 is a set (ingeneral, markings are now sets of pla
es). The �ring rule for SN assumes thatea
h step U is a set, and we denote by •U and U• the sets of all pla
es p su
hthat there is a transition t ∈ U with W (p, t) = 1 and W (t, p) = 1, respe
tively.We then say that U is enabled at a marking M if •U ⊆ M . In su
h a 
ase, U
an be exe
uted with its e�e
t on M being given by the resulting marking
M ′ = (M \ •U) ∪ U• .We denote this by M [U〉M ′. Moreover, if U is the set of all transitions enabledat M (i.e., all transitions t su
h that {t} is enabled), then we obtain a maxi-mally 
on
urrent exe
ution denoted by M [U〉maxM

′ or simply M [〉maxM
′ as themaximally 
on
urrent step enabled at M is unique. Hen
e a step U enabled ata marking M may 
ontain two distin
t transitions t and u for whi
h •t∩ •u 6= ∅or t• ∩ u• 6= ∅ and yet the 
ommon pla
es will never 
ontain more than onetoken.To model rea
tion systems, we need additionally inhibitor ar
s to 
apturethe e�e
t of inhibitors in rea
tion rules. We therefore 
onsider set-nets withinhibitor ar
s Inh ⊆ Pl × Tr . In su
h a 
ase, the enabling relation 
hangessimilarly as for pt-nets with inhibitor ar
s, and we say that a step U is enabled
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ally Motivated Computing 13at a marking M if
•U ⊆ M and (M × U) ∩ Inh = ∅ .The result of exe
uting an enabled step remains the same as before.4.2 set-nets modelling of rea
tion systemsRea
tion systems and set-nets �t together well in the sense that both do not
ount tokens and both 
hange states on the basis of the presen
e/absen
e ofresour
es, represented by sets. Moreover, under the set-net semanti
s, ordinaryar
s (transitions) 
an be used to empty pla
es. Finally, following the assumptionthat all rea
tions that 
an take pla
e do take pla
e, the maximal set-semanti
s
an be employed.Modelling inhibition aspe
ts of rea
tions is rather straightforward, as illus-trated by the set-net in Figure 5, representing the 
ontext-independent ini-tialised rea
tion system A0 
onsidered earlier. As we already mentioned, pla
esrepresent entities. Transitions τa, τb and τc represent rea
tions, and r↓, q↓ and s↓ensure that on
e the set-net is a
tive only tokens produ
ed in the last maximalstep are present in the 
urrent marking. Using inhibitor ar
s gives a 
ompa
ttranslation of rea
tion systems whi
h is in a sense minimal w.r.t. the numberof pla
es, ar
s and transitions. Moreover, relating the behaviour of the resultingset-nets and the original rea
tion systems 
an be done as before.Formally, the pla
es, transitions and initial marking of the translation SN (A)are given by:

Pl = {πs | s ∈ S}
Tr = {τa | a ∈ A} ∪ {↓s| s ∈ S}
M0 = {πs | s ∈ C0} .The �ow and inhibitor ar
s are as follows:

W = {(πs, ↓s) | s ∈ S} ∪
{(πs, τa) | a ∈ A ∧ s ∈ Ra} ∪
{(τa, πs) | a ∈ A ∧ s ∈ Pa}

Inh = {(πs, τa) | a ∈ A ∧ s ∈ Ia} .Relating the behaviour of the set-net model SN (A) and the original rea
tionsystem A is straightforward using the mappings ν(M) = {s | πs ∈ M}, for everymarking M ⊆ Pl , and ρ(U) = {a | τa ∈ U}, for every step U ⊆ Tr .It is then possible to establish a dire
t relationship between (the operationof) rea
tion systems and set-nets at the system level:
C

R
−→ C′ =⇒ ∃U : ρ(U) = R∧ ν−1(C) [U〉 ν−1(C′)

M [U〉M ′ =⇒ ν(M)
ρ(U)
−→ ν(M ′)

(2)for ea
h state C ofA, and ea
h markingM of SN (A). Together with ν(C0) = M0,su
h a result means that the (�nite and in�nite) step sequen
es of SN (A) faith-fully represent 
omputations of A, and that there is a one-to-one 
orresponden
ebetween states and markings.
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πr

πq

πs

↓r

↓q

↓s

τa

τ b

τ cFig. 5. set-net SN (A0) modelling rea
tion system A0.Moreover, the maximally 
on
urrent semanti
s of the set-net 
orresponds tothe exe
ution of the rea
tion system, i.e., the exe
ution of all enabled rea
tionsin ea
h evolution step:
C −→ C′ =⇒ ν−1(C) [〉max ν−1(C′)

M [〉maxM
′ =⇒ ν(M) −→ ν(M ′)for ea
h state C of A, and ea
h marking M of SN (A).Note that the fundamental 
lass of en-systems [38℄ extended with inhibitoras well as a
tivator ar
s [16, 30, 32℄ basi
ally has the same stati
 stru
ture asset-nets. However, their treatment of 
on�i
ts between transitions a

essing thesame token, as well blo
king a transition whi
h 
ould add a token to a markedpla
e, are totally di�erent. The latter issue has been noted in the past, andthe 
onstraint relaxed. For example, there are variations of Petri nets, su
h asBoolean Petri nets, where adding a token to an already marked pla
e does notadd another token [5, 6, 14℄. Also, behaviour of this kind was mentioned in [2℄ inthe 
ontext of net synthesis. Having said that, the semanti
s 
onsidered in priorworks was based on single transition �rings, rather than (maximal) steps as isthe 
ase for set-nets, and so the issue of `token sharing' was never expli
itly
onsidered.The main initial motivation of our investigation was to see how Petri netbased 
on
epts 
ould be deployed to analyse rea
tion systems. In doing so, weintrodu
ed the model of set-nets whi
h is an original 
ontribution to the �eldof Petri nets. In the next se
tion we will see how the introdu
tion of set-netshas motivated the introdu
tion of a new model of membrane systems.5 Petri Nets and Set Membrane SystemsWe now dis
uss membrane systems whi
h use `qualitative' rather than `quan-titative' appli
ation of evolution rules to 
hange the 
urrent state. The formalde�nitions and representation for this 
lass of membrane are as those in Se
tion 3,ex
ept that we are now working with sets rather than multisets of obje
ts andevolution rules (similar to the operation of membrane systems in [1℄ where a
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1

2 3

{a, b}
r11 : {b} → {a}
r12 : {a} → {b, cin2

, ain3
}

r13 : {b} → {c}

{a, b, c}
r21 : {a, c} → {b}
r22 : {b} → {a}

∅
r31 : {a} → {a, cout}

Fig. 6. A basi
 set membrane system Σ0.qualitative approa
h was used in the appli
ation of rules within membranes, buta quantitative on for sending obje
ts to the environment).A basi
 set membrane system over the membrane stru
ture µ is a tuple
Σ = (V, µ, w0

1 , . . . , w
0
m, R1, . . . , Rm)as in Se
tion 3, where ea
h w0

i is a set of obje
ts, and the left and right handsides of every evolution rule are non-empty sets. Similarly, ea
h 
on�guration is
omposed of sets of obje
ts.A ve
tor set-rule of Σ is a tuple
r = 〈r1, . . . , rm〉where, for ea
h membrane i of µ, ri is a set of rules from Ri. For two ve
torset-rules, r and r

′, we denote r ≤ r
′ if ri ⊆ r

′
i, for ea
h i ≤ m; and r < r

′ if
r ⊆ r

′ and r 6= r
′. For a ve
tor set-rule r and i ≤ m, we respe
tively denote by:

lhsri =
⋃

r∈ri

lhsr and rhsri =
⋃

r∈ri

rhsrthe set of all the obje
ts in the left hand sides of the rules in ri, and the set ofall the (indexed) obje
ts in their right hand sides. We then say that a ve
torset-rule r is free-enabled / min-enabled / max-enabled / lmax-enabled exa
tlyas in Se
tion 3. Following this, a 
on�guration C = (w1, . . . wm) 
an m-evolve bya ve
tor set-rule r whi
h is m-enabled at C, to a 
on�guration C′ = (w′
1, . . . w

′
m)su
h that, for ea
h 
ompartment i of µ:

w′
i = wi \ lhs

r

i ∪ {a ∈ V | a ∈ rhsri ∨ aini
∈ rhsrparent(i) ∨

∃(i, j) ∈ µ : aout ∈ rhsrj} .
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r

−→m C′. An m-
omputation is then de�ned as a (�nite orin�nite) sequen
e of 
onse
utive m-evolutions starting from C0.The di�eren
e between the `qualitative' and the `quantitative' interpretationof the evolution rules is twofold. First, there may be two enabled evolutionrules in a 
ompartment with a 
ommon obje
t in their left hand sides whilethere is only a single representant of that obje
t in the 
urrent state in the
ompartment. In the 
urrent qualitative set-up, the two rules 
an be exe
utedtogether. Se
ond, if two simultaneously exe
uted rules produ
e the same obje
tin the same 
ompartment, instead of adding two instan
es of this obje
t, onlyone is added (so that we never have more than a single representant of an obje
tin any given 
ompartment). As a 
onsequen
e, there is no need to use multisetsof obje
ts present in any single 
ompartment to represent the 
urrent state, andthere is no need to use ve
tors of multisets of rules in set membrane systems. Ineither 
ase, using sets is fully su�
ient. One may observe that with this view ofstate representation and system exe
ution, max -evolution is deterministi
 in setmembrane systems.5.1 set-nets modelling of set membrane systemsTo faithfully 
apture the behaviour of basi
 set membrane systems, we need toextend set-nets with lo
alities. A set-net with lo
alities (or setl-net) SNL is aset-net together with a lo
ality mapping ℓ : Tr → N as in ptl-nets. Based onthe semanti
s of the underlying set-net and the semanti
s of nets with lo
alities,one 
an then introdu
e four modes of exe
ution, free-enabled / min-enabled /max-enabled / lmax-enabled, in a straightforward way.The modelling of a basi
 set membrane system Σ as a setl-net SNL(Σ)follows exa
tly the same lines as in Se
tion 3 (note that all ar
s have weight 1in this 
ase, and there are no inhibitor nor a
tivator ar
s). Figure 7 shows thetranslation for the basi
 set membrane system Σ0 in Figure 6.The tight 
orresponden
e between the membrane system Σ and the setl-net
SNL(Σ) is 
aptured by the same two bije
tive mappings ν and ρ, now restri
tedto sets, as in Se
tion 3. Moreover, the key result (1) establishing the faithful-ness of the translation obtained there 
an be re-stated for the 
urrent transla-tion. This, in parti
ular, means that the (�nite and in�nite) m-step sequen
es of
SNL(Σ) faithfully represent m-
omputations of Σ.5.2 Petri net analysis of set membrane systemsMoving from quantitative to qualitative membrane systems is an abstra
tionwhi
h may lead to a more tra
table approa
h when it 
omes to answering vitalquestions 
on
erning the evolution of systems. However, to take advantage of thisfa
t, the existing 
on
rete analysis tools developed for the 
lassi
al, quantitative,Petri net models need to be adapted for set-nets.In [25℄, we have already made preliminary investigation into the synthesisproblem whi
h aims at an automati
 
onstru
tion of set-nets exhibiting be-haviour given in terms of a transition system. For set membrane systems this
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Fig. 7. setl-net SNL(Σ0) modelling the basi
 set membrane system Σ0.should 
ontribute to insight in whi
h evolution rules lead to 
ertain observedbehaviour.By bringing qualitative (set rather than multiset) aspe
ts to membrane sys-tems, also interesting questions relating to expressive (generative) power emerge.For every mode, one 
an 
onsider the possible evolutions of a system of a setmembrane system (i.e., the 
omputations of setl-nets) as a language. These lan-guages are regular subset languages. The study of subset languages of Petri netswas initiated in [40, 41℄ but still for the standard (quantitative) interpretation.There are a number of interesting theoreti
al questions and topi
s for the regularsubset languages generated by setl-nets under the four exe
ution modes as wellall regular subset languages. For example, one 
an 
onsider: in
lusion hierar-
hies; 
losure properties; and the 
omplexity of equivalen
e/in
lusion 
he
king.Another group of problems here would be motivated by the target appli
ationarea, i.e., bio
hemistry. For example, one 
an investigate: os
illatory behaviour(is it possible to have 
y
les from some point with at least/at most/spe
i�
 evo-lution rules only); or vitality of the system (possible deadlo
k or partial death,i.e., some rules that 
an no longer be exe
uted); or other state-related properties,like whether it would be possible for two di�erent obje
ts (types of mole
ules)to appear in a given 
ompartment at some point together.6 Petri nets and Extended Membrane SystemsBasi
 (quantitative) membrane systems have over the past de
ade been extendedin several di�erent dire
tions, motivated either by their potential appli
ations, orby their 
omputational properties. For some of these extensions, like 
atalystsand symport/antiport rules, there exist straightforward translations to Petri



18 J.Kleijn, M.Koutny and G.Rozenbergnets (see, for example, [15℄). For others, like i/o 
ommuni
ation and rule 
re-ation/
onsumption, the 
orresponden
e between evolution rules and Petri nettransitions is more involved, and the resulting nets are additionally equippedwith inhibitor and/or a
tivator ar
s (see, e.g., [20℄).First we 
onsider an extended version of membrane systems for modellinghow rea
tions may be triggered or blo
ked in the presen
e of 
ertain mole
ules.The role of su
h mole
ules di�ers from that of 
atalysts whi
h a
tively take partin rea
tions and are returned afterwards. An example is obje
t a whi
h a
ts asa 
atalyst in evolution rule
r : {a, b} → {a, bout} .To model the subtle e�e
t that the presen
e of mole
ules may have, membranesystems have evolution rules r of the form
lhsr → rhsr|pror , inhrwhere pror and inhr are multisets over V spe
ifying respe
tively the promotersand inhibitors. The intuition behind pror and inhr is that they test respe
tivelyfor a minimal or maximal number of 
ertain obje
ts inside a 
ompartment, butwithout 
onsuming them. As a 
onsequen
e, any number of rules 
an test for thepresen
e of a single obje
t at the same time. In order for r to o

ur there mustbe at least pror(a) 
opies of ea
h symbol a in its asso
iated 
ompartment, andless than inhr(a) 
opies of ea
h symbol a whi
h o

urs in inhr. Thus we retainall de�nitions introdu
ed for basi
 membrane systems with only one 
hangeregarding the notion of a free-enabled ve
tor multi-rule r. This is strengthenedby additionally requiring that, for ea
h i and r ∈ ri, we have pror

i ≤ wi and,moreover, if a ∈ inhr then wi(a) < inhr(a).ptl-nets are not expressive enough to model inhibitors and promoters be-
ause ar
s between transitions and pla
es indi
ate 
onsumption and produ
tionof tokens (obje
ts) rather than testing for their presen
e or absen
e. A possibleway out is to use ptl-nets extended with range ar
s [19℄. Ea
h su
h ar
 linksa pla
e to a transition and is spe
i�ed by a 
losed interval (possibly in�nite)of non-negative integers. This interval indi
ates the range (a 
losed interval ofnatural numbers) for the number of tokens that should be present in the pla
eto enable the o

urren
e of the transition. Clearly, like pror and inhr, range ar
s
an be used to model 
ertain forbidden/required 
on
entrations of mole
ules ina 
ompartment.In [20℄, it has been shown that key properties of the modi�ed translation arevery similar to those obtained in the basi
 
ase; in parti
ular, the 
orresponden
eresult (1) 
an simply be restated. Moreover, the treatment of 
ausality developedfor ptl-nets 
an also be extended (see [20℄).What may 
ome as a surprise, is that ptl-nets with inhibitor and a
tiva-tor ar
s are also robust enough to model in a faithful way, membrane systemswhi
h have a dynami
 stru
ture due to rules whi
h may thi
ken or dissolvemembranes [21℄.
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omes to the properties whi
h might be expressed or investigated us-ing rea
hability or 
overability graphs, the situation 
hanges dramati
ally whenwe move from ptl-nets to ptl-nets with range ar
s. The reason is that the latterallow one to test for the absen
e of resour
es (zero-testing). Nets with this kindof relationship between pla
es and transitions (i.e., inhibitor ar
s) have been
onsidered in [13℄. The extension with inhibitor ar
s gives the resulting model ofPetri nets the expressive power of Turing ma
hines; net languages be
ome re
ur-sively enumerable rather than re
ursive, and de
idability for 
ertain importantbehavioural properties, su
h as rea
hability and boundedness, is lost [13℄, partialsolutions have been proposed by restri
ting the 
lass of nets under 
onsiderationas, for example, in [4, 22℄.7 Con
lusionIn this paper we des
ribed a number of results obtained while working at theinterfa
e between Petri nets (by now a 
lassi
al formal model for dealing withdistributed systems), and two re
ently proposed formal approa
hes aimed atdealing with 
omputations inspired by bio
hemi
al rea
tions (i.e., membranesystems and rea
tion systems). Our overall experien
e was both illuminatingand highly en
ouraging. We have found that the di�erent models share a num-ber of important features whi
h allowed us to 
ompare them in a meaningful way(see, e.g., the faithfulness results (1) and (2)), but at the same time the originalmodels did di�er in some 
ru
ial aspe
ts. The latter realisation has provided a di-re
t motivation for importing 
on
epts, su
h as the stru
turing of the mole
ulesin a membrane system into 
ompartments and the qualitative treatment of en-tities in rea
tion systems, into the realm of Petri nets. This has resulted in theintrodu
tion of new net 
lasses, su
h as ptl-nets and set-nets, whi
h shouldbe of a general interest to various appli
ation oriented resear
h 
ommunities.For instan
e, nets with lo
alities together with the lmax-semanti
s are relevantfor dealing with globally asyn
hronous lo
ally syn
hronous (or GALS) systems.Moreover, we transferred newly de�ned modelling 
on
epts ba
k into the do-main of membrane systems, by developing set membrane systems. We thereforeexperien
e a harmonious synergy of the three, originally separate, models of
omputation.Results outlined in this paper open up a way to the adoption of Petri netanalyti
al te
hniques in the areas of membrane 
omputing and rea
tion systems.For example, one of the key advantages of Petri nets is that they support in a
lear and unambiguous way 
on
epts relating to 
ausality and 
on
urren
y, andit turns out that the Petri net treatment of these 
on
epts 
an be extendedto membrane systems thanks to the so-
alled barb events whi
h 
apture theintri
a
ies of the lmax-semanti
s. We therefore feel that Petri nets are a robustmodel whi
h 
an be suitably extended to provide valuable insights into other,seemingly distant approa
hes.
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