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Petri Nets for Biologially Motivated ComputingJetty Kleijn1, Maiej Koutny2, and Grzegorz Rozenberg1,3
1 LIACS, Leiden UniversityP.O.Box 9512, NL-2300 RA Leiden, The Netherlands{kleijn,rozenber}�lias.nl

2 Shool of Computing Siene, University of Newastle,Newastle upon Tyne, NE1 7RU, United KingdomMaiej.Koutny�nl.a.uk
3 Department of Computer Siene, University of Colorado at Boulder,Boulder, CO 80309-0347, USAAbstrat. Petri nets are a general and well-established model of onur-rent and distributed omputation and behaviour, inluding that takingplae in biologial systems. In this survey paper, we are onerned withintrinsi relationships between Petri nets and two formal models inspiredby aspets of the funtioning of the living ell: membrane systems andreation systems. In partiular, we are interested in the bene�ts that anresult from establishing strong semantial links between Petri nets andmembrane systems and reation systems. We �rst disuss Petri nets withloalities re�eting the ompartmentalisation modelled in membrane sys-tems. Then speial attention is given to set-nets, a new Petri net modelfor reation systems and their qualitative approah to the investigationof the proesses arried out by biohemial reations taking plae in theliving ell.Keywords: Petri net, biomodelling, membrane system, reation system,loality, GALS, qualitative modelling, set-net, set membrane system.1 IntrodutionPetri nets (see e.g., [39℄) are a general formal model for onurrent and dis-tributed omputation. Over the years, an impressive variety of Petri net modelssuited for many di�erent appliations have been developed together with sup-porting theories and tools. A relatively new and ever more important �eld of ap-pliation is biology. Thanks to its distributed harater, the Petri net approahappears to be partiularly well-suited to provide omputational and operationalfoundations for problems and issues arising in biology; see for example, [28℄, fora reent omprehensive overview of appliations of Petri nets in systems biology.On the other hand, to understand or make use of spei� aspets of biologialproesses, new formal models have been proposed. Membrane systems and re-ation systems are two examples of suh models whih are both abstrations ofthe funtioning of the living ell.



2 J.Kleijn, M.Koutny and G.RozenbergIn this paper, we are onerned with intrinsi similarities and di�erenesbetween Petri nets on the one hand, and membrane systems and reation sys-tems on the other hand. In partiular, we are interested in establishing strongsemantial links between these two models and Petri nets, and the possible mu-tual bene�ts that may result. Di�erent enhanements of the Petri net model areonsidered for the faithful modelling of the dynamis of the biologial phenom-ena represented by membrane systems and reation systems. It is our aim todemonstrate the fruitful two-way interation between Petri nets and the othertwo models. We will be interested in Petri net semantis whih open the wayto importing Petri net methodologies and tools to the two biologially moti-vated omputational models. Suh semantis should be faithful, so rather thangiving a Petri net interpretation, we adapt and inorporate new onepts intothe Petri net framework, while retaining the underlying Petri net philosophy. Inpartiular, we will disuss an extension of the standard pt-nets with a oneptof loality, and muh emphasis will be given to the ompletely new lass of Petrinets alled set-nets. The latter are suited for qualitative rather than quanti-tative modelling whih plays an important role in rendering of the biohemialproesses that take plae in living ells.Petri nets are a graphial modelling language with strong mathematial, al-gorithmi and tool support for the spei�ation and analysis of distributed sys-tems. Many di�erent lasses of Petri nets have been developed sine their �rstappearane in [37℄. Their main ommon underlying philosophy is that states aredistributed and ations have a loal ause and e�et (on the adjaent ompo-nents of the net); for more disussions on this see [7℄. The most typial Petri netsare without doubt the Plae/Transition nets (or pt-nets) [8℄. They are based onthe prodution and onsumption of resoures by ations taking plae in the sys-tem. Hene the resulting omputational proesses are essentially multiset based.Another well known, more fundamental, Petri net lass are the Elementary Netsystems (or en-systems) [8℄. Their dynamis is based on holding or not holdingof loal onditions rather than being resoure based.Like pt-nets, membrane systems ([33�36℄) are essentially multiset rewritingsystems. As a omputational model they are inspired by the way hemial rea-tions take plae in ells whih are divided by membranes into ompartments. Thereations are abstrated to rules that speify whih and how many moleules anbe produed from given moleules of a ertain kind and quantity. The dynamiaspets of the membrane system model inluding potential behaviour (omputa-tions), derive from suh evolution rules. To apture the ompartmentalisation ofmembrane systems, pt-nets are extended with transition loalities. This makesit possible to have loally synhronised exeutions, but it requires an extensionof the ausality semantis of pt-nets.Reation systems [3, 10�12℄ are also a model for the investigation of pro-esses arried out by biohemial reations in living ells. The model is meantto ontribute to the understanding of the interations between suh reations.This time, however, biohemial reations are based on qualitative rather thanquantitative presene of resoures. Hene, in order to obtain a faithful Petri



Petri Nets for Biologially Motivated Computing 3net representation of reation systems, it is neessary to re-evaluate the existingPetri net modelling approahes. We therefore introdue a new lass of Petri nets,alled set-nets, that supports set-based (boolean) operations on tokens ratherthan the standard Petri net multiset-based token manipulation.Finally, we bring together the qualitative approah of reation systems andthe ompartmentalisation of membrane systems as the multiset approah ofmembrane systems is not always realisti from the point of view of expliitlyounting huge number of moleules and reations. Moreover, the resulting in�-nite state spae makes it impratial or impossible to apply formal veri�ationtehniques. Therefore, we propose to onsider set membrane systems, that ismembrane systems with qualitative evolution rules. This is espeially attra-tive as loalities and set-nets an be ombined to yield a satisfatory Petri netsemantis for set membrane systems.In this survey paper, we mainly desribe approahes and give the esseneof key results. More details on Petri nets and membrane systems an be foundin [23℄. Set membrane systems were introdued in [24℄, and set-nets were �rstpresented at the BioPPN Workshop held in Newastle upon Tyne in June 2011(see [27℄ for the informal workshop version).2 PreliminariesMultisets A multiset over a set X is a funtion µ : X → N = {0, 1, 2, . . .}. (Inthis paper we only onsider the ase that X is �nite.) Multiset µ is said to beempty if there are no x suh that x ∈ µ by whih we mean that x ∈ X and
µ(x) ≥ 1. The empty multiset is denoted by ∅.A multiset may be represented by listing its elements with repetitions, e.g.,
µ = {y, y, z} is suh that µ(y) = 2, µ(z) = 1, and µ(x) = 0 otherwise. We treatsets as multisets without repetitions.For two multisets µ and µ′ over X , the sum µ+ µ′ is the multiset given by
(µ+ µ′)(x) = µ(x) + µ′(x) for all x ∈ X , and if k ∈ N then k · µ is the multisetgiven by (k · µ)(x) = k · µ(x) for all x ∈ X . The di�erene µ − µ′ is given by
(µ − µ′)(x) = max{µ(x) − µ′(x), 0} for all x ∈ X . We denote µ ≤ µ′ whenever
µ(x) ≤ µ′(x) for all x ∈ X , and µ < µ′ whenever µ ≤ µ′ and µ 6= µ′.Petri nets A Plae/Transition net (or pt-net) is de�ned as a tuple

PT = (Pl ,Tr ,W,M0) ,where: Pl and Tr are �nite disjoint sets of respetively plaes and transitions ;
W : (Tr × Pl) ∪ (Pl × Tr) → N is the ar weight funtion; and M0 : Pl → N isthe initial marking (in general, any multiset of plaes is a marking).In diagrams, like that in Figure 1, plaes are drawn as irles, and transitionsas boxes. If W (x, y) ≥ 1, then (x, y) is an ar leading from x to y. An ar isannotated with its weight if the latter is greater than one. A marking M isrepresented by drawing in eah plae p exatly M(p) tokens (small blak dots).
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Fig. 1. pt-net.A step U of PT is a multiset of transitions. Its pre-multiset and post-multisetof plaes, •U and U•, are respetively given by
•U(p) =

∑

t∈U

U(t) ·W (p, t) and U•(p) =
∑
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U(t) ·W (t, p) ,for eah plae p. For the pt-net in Figure 1 we have:
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3}.We an distinguish three modes of exeution for pt-nets (from sequential tofully synhronous). To start with, U is free-enabled at a marking M if •U ≤ M .A free-enabled U is then: min-enabled if |U | = 1; and max-enabled if U annotbe extended by a transition to yield a step whih is free-enabled at M . For thept-net in Figure 1 we have that, at the initial marking M0, the step {τr121 , τr212 }is free-enabled, {τr111 } is min-enabled, and {τr111 , τr121 , τr212 , τr222 } is max-enabled.That is, U is free-enabled at M if in eah plae there are enough tokens for thespei�ed multiple ourrene of eah of its transitions (note that eah transition

t needs to onsume from eah plae p exatly W (p, t) tokens whih annot beshared with any other transition). Interleaving (min-enabledness) allows onlyone transition to be exeuted at a time. Maximal onurreny (max-enabledness)means that extending U would demand more tokens than M supplies.For eah mode of exeution m ∈ {free,min ,max}, a step U whih is m-enabled at a marking M an be m-exeuted leading to the marking M ′ givenby
M ′ = M − •U + U• .We denote this by M [U〉mM

′. Moreover, an m-step sequene is a �nite or in�nitesequene of m-exeutions starting from the initial marking. For the pt-net inFigure 1 we have
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Petri Nets for Biologially Motivated Computing 5Petri nets with inhibitor and ativator ars A pt-net an be equipped with twoother kinds of ars whih test for the presene or absene of tokens in plaes.More preisely,
Inh ⊆ Pl × Tr and Act ⊆ Pl × Trare respetively the sets of inhibitor and ativator ars. In diagrams, an inhibitorar ends with a small open irle, while an ativator ar ends with a small blakirle. The role of both kinds of test ars is to onstrain the enabling of a step

U by stipulating that it is free-enabled at a marking M if •U ≤ M as well as� p /∈ M whenever there is t ∈ U suh that (p, t) ∈ Inh� p ∈ M whenever there is t ∈ U suh that (p, t) ∈ Act .All the remaining notions are the same as for pt-nets.Petri nets with loalities A Plae/Transition net with loalities (or ptl-net) isde�ned as a tuple PTL = (Pl ,Tr ,W, ℓ,M0) suh that (Pl ,Tr ,W,M0) is a pt-net and ℓ : Tr → N is a loality mapping. In diagrams, suh as that in Figure 4,boxes representing transitions belonging to the same loalities are displayed ona grey bakground of the same shade.Loalities an be used to de�ne one more kind of enabling for steps of transi-tions. A step U of PTL is lmax-enabled if U annot be extended by any transition
t satisfying ℓ(t) ∈ ℓ(U) to yield a step whih is free-enabled atM . That is, loallymaximal onurreny (lmax-enabledness) is similar to maximal onurreny, butnow only ative loalities annot exeute further transitions. For the ptl-net inFigure 4 we have that {τr111 , τr131 } is lmax-enabled at the initial marking, but
{τr111 } is not. All the remaining notions are the same as for pt-nets.3 Membrane Systems and Petri NetsAmembrane struture µ (of degreem ≥ 1) is given by a rooted tree withm nodesidenti�ed with the integers 1, . . . ,m. We will write (i, j) ∈ µ or i = parent(j) tomean that there is an edge from i (parent) to j (hild) in the tree of µ, and i ∈ µto mean that i is a node of µ. The nodes of a membrane struture representnested membranes whih in turn determine ompartments (ompartment j isenlosed by membrane j and lies in-between j and its hildren, if any), as shownin Figure 2.Let V be a �nite alphabet of names of objets (moleules). A basi membranesystem over µ is a tuple

Π = (V, µ, w0
1 , . . . , w

0
m, R1, . . . , Rm)suh that, for every membrane i, w0

i is a multiset of objets, and Ri is a �niteset of evolution rules r of the form lhsr → rhsr, where lhsr (the left hand sideof r) is a non-empty multiset over V , and rhsr (the right hand side of r) is anon-empty multiset over
V ∪ {aout | a ∈ V } ∪ {ainj

| a ∈ V and (i, j) ∈ µ} .
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2 3

Fig. 2. A membrane struture (m = 3) and its ompartments with 1 being the rootnode, (1, 2) ∈ µ and 1 = parent(3).
1

2 3

{a, b}
r11 : {b} → {a}
r12 : {a} → {b, cin2

, ain3
}

r13 : {b} → {c}

{a, b, c, c}
r21 : {a, c} → {b}
r22 : {b} → {a}

∅
r31 : {a} → {a, a, cout}

Fig. 3. A basi membrane system Π0.Note that a symbol ainj
represents an objet a that is sent to a hild node(ompartment) j and aout means that a is sent to the parent node. If i is theroot of µ then no indexed objet of the form aout belongs to rhsr. A on�gurationof Π is a tuple

C = (w1, . . . , wm)of multisets of objets, and C0 = (w0
1 , . . . , w

0
m) is the initial on�guration. Fig-ure 3 shows a basi membrane system over the membrane struture from Fig-ure 2.A membrane system evolves from on�guration to on�guration as a onse-quene of the appliation (or exeution) of evolution rules. There is more thanone strategy in whih this an be done. Maximal onurreny used to be thestandard exeution mode for membrane systems. Later, however, also in view ofthe intrinsi onnetions with Petri nets, other exeution modes attrated inter-est. In partiular, with the onept of loalities added to pt-nets to representompartments, loally maximal onurreny ame to light as a new realistiexeution semantis for membrane systems. Hene, similarly as in the ase of



Petri Nets for Biologially Motivated Computing 7ptl-nets, we an distinguish four suh exeution modes, all based on the notionof a vetor multi-rule.A vetor multi-rule of Π is a tuple
r = 〈r1, . . . , rm〉where, for eah membrane i of µ, ri is a multiset of rules from Ri. For suh avetor multi-rule, we denote by lhsri the multiset
∑

r∈Ri

ri(r) · lhs
rin whih all objets in the left hand sides of the rules in ri are aumulated, andby rhsri the multiset

∑

r∈Ri

ri(r) · rhs
rof all (indexed) objets in the right hand sides. The �rst multiset spei�es howmany objets are needed in eah ompartment for the simultaneous exeutionof all the instanes evolution rules in r.A vetor multi-rule r of Π is free-enabled at a on�guration C if lhsri ≤ wi,for eah i. A free-enabled r is: min-enabled if |r1|+ · · ·+ |rm| = 1; max-enabledif no ri an be extended to yield a vetor multi-rule whih is free-enabled at C;and lmax-enabled if no non-empty ri an be extended to yield a vetor multi-rulewhih is free-enabled at C. For example, in Figure 3,� 〈∅,∅, {r31}〉 is not free-enabled;� 〈{r11},∅,∅〉 is min-enabled but not lmax-enabled;� 〈{r11, r12},∅,∅〉 is lmax-enabled but not max-enabled; and� 〈{r11, r12}, {r21, r22},∅〉 is max-enabled.If r is free-enabled (free) at a on�guration C, then C has in eah membrane

i enough opies of objets for the appliation of the multiset of evolution rules
ri. Maximal onurreny (max ) requires that adding any extra rule makes rdemand more objets than C an provide. Loally maximal onurreny (lmax )is similar but in this ase only those ompartments whih have rules in r annotenable even more rules; in other words, eah ompartment either uses no rule,or uses a maximal multiset of rules. Minimal enabling (min) allows only a singleopy of just one rule to be applied any time.The e�et of the appliation of the rules is independent of the mode of exe-ution m ∈ {free,min,max , lmax}. A vetor multi-rule r whih is m-enabled at
C an m-evolve to a on�guration C′ = (w′

1, . . . w
′
m) suh that, for eah i andobjet a:

w′
i(a) = wi(a)− lhsri (a) + rhsri (a) + rhsrparent(i)(aini

) +
∑

i=parent(j)

rhsrj(aout )



8 J.Kleijn, M.Koutny and G.Rozenbergwhere rhsrparent(i) = ∅ if i is the root of µ. We denote this by C
r

−→m C′.Moreover, an m-omputation is a sequene of m-evolutions starting from theinitial on�guration. For the example in Figure 3 we have:
C0

r

−→m ({a, b}, {a, b, c, c, c}, {a}) ,where r = 〈{r11, r12},∅,∅〉.3.1 Petri net modelling of membrane systemsThere is a natural way of translating a basi membrane system Π into a be-haviourally equivalent ptl-net PTL(Π) = (P, T,W, ℓ,M0), where multisets ofplaes are used to represent the availability of moleules within the ompart-ments, and transitions orrespond to evolution rules. Eah transition is assoi-ated with a ompartment and this information is represented by the loalitiesof net transitions. The onstruted ptl-net PTL(Π) has a separate plae πa
j foreah moleule a and membrane j, and a separate transition τri with loality ifor eah rule r in ompartment i. The initial marking inserts wj(a) tokens intoeah plae πa

j . The onnetivity between transition t = τri and plae p = πa
j isgiven by:

W (p, t) =

{

lhsr(a) if i = j
0 otherwise .as well as:

W (t, p) =















rhsr(a) if i = j
rhsr(aout ) if j = parent(i)
rhsr(ainj

) if i = parent(j)
0 otherwise .Figure 4 shows the result of the above translation for the basi membrane systemin Figure 3.The ptl-net PTL(Π) provides a faithful representation of the behaviour ofthe basi membrane system Π . To apture this very lose relationship, we de�netwo bijetive mappings, ν and ρ, whih allow us to move betweenΠ and PTL(Π):� For every marking M of PTL(Π), ν(M) = (w1, . . . , wm) is the on�gurationof Π , given by wi(a) = M(πa
i ), for every moleule a.� For every step U of PTL(Π), ρ(U) = 〈r1, . . . , rm〉 is the vetor multi-rule of

Π , given by ri(r) = U(τri ), for every ompartment i and every rule r ∈ Ri.It is then possible to establish a diret relationship between (the operation of) theoriginal membrane system and the ptl-net resulting from the above translationat the system level:
C

r

−→m C′ =⇒ ν−1(C) [ρ−1(r)〉m ν−1(C′)

M [U〉mM
′ =⇒ ν(M)

ρ(U)
−→m ν(M ′)

(1)for all modes of exeution m ∈ {free,min,max , lmax}, on�gurations C of Πand markings M of PTL(Π). Together with ν(M0) = C0, suh a result meansthat the (�nite and in�nite) m-step sequenes of PTL(Π) faithfully represent
m-omputations of Π , and the same applies to markings and on�gurations.
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Fig. 4. ptl-net PTL(Π0) modelling the basi membrane system Π0.3.2 Petri net analysis of membrane systemsThanks to the very tight behavioural orrespondene between Π and PTL(Π)aptured by (1) above, analytial tehniques developed for Petri nets an beapplied to membrane systems. For example, one an use the invariant analysisbased on linear algebra [42℄ to verify properties of on�gurations reahable fromthe initial one. If we take the membrane system in Figure 3 and apply the invari-ant analysis to the orresponding Petri net in Figure 4, then one an dedue thatthe total number of moleules a and b in ompartment 2 is onstant, irrespetiveof the initial on�guration.Another diretion is to use the ausality semantis approah of Petri netsbased on ourrene nets, allowing one to analyse entire omputations ratherthan individual reahable on�gurations. In partiular, ourrene nets allow oneto investigate ausality, onurreny and exeutability in system behaviour. Inase of lmax-step sequenes, however, one needs to modify the standard proessonstrution, as �rst outlined in [26℄.To analyse the state spae of Π one an also employ the reahability graphof PTL(Π). Investigating reahability graphs has a long tradition in the �eld ofPetri nets, and has produed several fundamental results. For example, reaha-bility for pt-nets is deidable [31, 29℄ whih means that the problem of deidingwhether a basi membrane system has a free- or min-exeution leading to agiven on�guration an be deided, even when there are in�nitely many reah-able on�gurations. Another relevant property of Π is whether the onentrationof spei� moleule(s) in spei� ompartment(s) an grow unboundedly. Thisproblem, known in the are of Petri nets as boundedness, an be takled using theoverability tree onstrution [18℄. Coverability trees an also be used to deidewhether two spei� moleules an ever be simultaneously present in the sameompartment.



10 J.Kleijn, M.Koutny and G.Rozenberg4 Reation Systems and Petri NetsReation systems [10�12℄ are a formal framework for the investigation of pro-esses arried out by biohemial reations. Thus the framework is inspired bybiohemistry and its underlying ideas are motivated by the failitation/aelera-tion and inhibition/retardation, properties shared by a great number of biohem-ial reations. Reation systems onstitute a omputational approah inspiredby nature and are targeted at the investigation of ongoing dynami hanges o-urring in biohemial systems through information proessing. However, themodel is based on priniples remarkably di�erent from those underlying otherexisting models of omputation.A reation system is a pair
A = (S,A) ,where S is a �nite bakground set omprising the entities of A, and A is the setof reations of A. Eah reation is a triple of the form a = (R, I, P ), where thethree omponents are �nite sets:1� R ⊆ S is the set of reatants ;� I ⊆ S is the set of inhibitors ; and� P ⊆ S is the set of produts.The omponents of a reation a = (R, I, P ) may be denoted, respetively, by

Ra, Ia and Pa.A state of a reation system is any set C of its entities. Then an initialisedreation system is a triple
A = (S,A,C0) ,where (S,A) is a reation system and C0 ⊆ S is the initial state. A reation sys-tem with bakground set S has exatly 2|S| potential states. To desribe possiblemoves between these states, we need to say what is meant by an ourrene ofa reation or a set of reations.A reation a is enabled at a state C ⊆ S if Ra ⊆ C and Ia∩C = ∅; moreover,for the purpose of establishing the relationship with Petri nets, in this paper wewill say that a set R of reations is enabled at C if eah reation of R is enabled.In suh a ase, R an our with its e�et on C being given by

resR(C) =
⋃

a∈R

Pa .We denote the resulting state hange by C
R
−→ resR(C). If R is the set ofall reations enabled at C, then we may simply write C −→ C′, where C′ =

resR(C).In the state hange as desribed above, all the entities in C \
⋃

a∈R Pa disap-pear when R ours. As a result, and unlike in other formal models of dynami1 In the original de�nition these sets are assumed to be non-empty and R ∩ I = ∅.



Petri Nets for Biologially Motivated Computing 11systems, there is no persisteny in a reation system in the sense that an entitypresent in a state disappears unless it is sustained by at least one reation in R.Consider, for instane, an initialised reation system
A0 = ({q, r, s}, {a, b, c}, {q}) ,with bakground set {q, r, s}, the initial state {q}, and three reations:

a = ({r, q},∅, {r}) b = ({q}, {s}, {r, q}) c = ({q},∅, {s}) .Then we have the following examples of state hange:
{r, q, s}

{a,c}
−→ {r, s} {r, q}

{b}
−→ {r, q} {q, r, s}

{a}
−→ {r} .One may observe that there is no on�it between reations in the sense thatthe ourrene of one reation might imply that another reation whih is alsoenabled at the urrent state, annot our. This, again, is a feature not found inmost other formal models of dynami systems.It is ruial to point expliitly to the `non-ounting' features of reationsystems: entities are either present or not, and produed or not, and reationsan or annot our given the presene or absene of ertain entities. Thereis no representation of multiple instanes of entities or multiple ourrenes ofreations.In general, reation systems may have an environment and then operatewithin a hanging ontext (with entities oming from the environment at eahstage of evolution). Here, however, we will onsider ontext-independent pro-esses de�ned by a reation system with an initial state provided by the envi-ronment, and every next state obtained as the result of reations taking plaein the previous state.4.1 Set-netsIn [27℄ we investigate how to onstrut Petri net representations of reationsystems. While doing so, we made some general observations and assumptionsabout the relationship between reation systems and nets.� Entities an be represented by plaes, and reations by net transitions.� Sine there are no on�its between reations, ativator ars an be usedto test for the presene of reatants (rather than laiming resoures for theexlusive use as with ordinary ars and input plaes).� Inhibitor ars an be used to test for the absene of reatants.� All reations that an our in a reation system do our, and the onlyentities left after a state hange are the newly generated produts. In thePetri net framework, these features orrespond to maximal onurreny andplae resetting implemented by reset ars [9℄.



12 J.Kleijn, M.Koutny and G.RozenbergWe tried four di�erent modelling methods, inluding high-level Petri nets [17℄.In eah ase, we established a lose orrespondene between the evolutions oftwo orresponding models. All these net models, however, exhibited de�ieniesw.r.t. simpliity and/or elegane and/or tratability of the translation.In partiular, in all four ases, one state of a reation system would orrespondto many markings of a orresponding Petri net, whih is dramatially di�erentfrom the one-to-one relationship between the on�gurations of a membrane sys-tems and markings of a the orresponding ptl-net desribed in Setion 3. Wetherefore proposed a new lass of Petri nets, alled set-nets, whih provide astronger math with reation systems and their semantis.The main idea is that in a set-net there is no onept of ounting. Plaesare marked or not marked and ars have no weights. Set-nets resemble elemen-tary net systems (en-systems) [38℄ whih is a fundamental model to study basifeatures of onurrent systems, inluding on�it, ausality and independene.However, their exeution semantis is di�erent. In set-nets, a marked plae in-diates the presene of a resoure without any quanti�ation. Hene any numberof transitions that take input from this plae an be �red at the same time.Moreover, �ring a transition empties all its input plaes. Thus there are no on-�its over tokens in set-nets, unlike in en-systems or pt-nets. Similarly, plaesdo not ount the tokens, and the �ring of a transition simply marks eah of itsoutput plaes (whether or not they were already marked). We will build up thenew model in two stages, introduing �rst set-nets with only �ow ars.A set-net is a tuple
SN = (Pl ,Tr ,W,M0)suh that the four omponents are as in the de�nition of pt-nets, under theproviso that W always returns 0 or 1, and the initial marking M0 is a set (ingeneral, markings are now sets of plaes). The �ring rule for SN assumes thateah step U is a set, and we denote by •U and U• the sets of all plaes p suhthat there is a transition t ∈ U with W (p, t) = 1 and W (t, p) = 1, respetively.We then say that U is enabled at a marking M if •U ⊆ M . In suh a ase, Uan be exeuted with its e�et on M being given by the resulting marking
M ′ = (M \ •U) ∪ U• .We denote this by M [U〉M ′. Moreover, if U is the set of all transitions enabledat M (i.e., all transitions t suh that {t} is enabled), then we obtain a maxi-mally onurrent exeution denoted by M [U〉maxM

′ or simply M [〉maxM
′ as themaximally onurrent step enabled at M is unique. Hene a step U enabled ata marking M may ontain two distint transitions t and u for whih •t∩ •u 6= ∅or t• ∩ u• 6= ∅ and yet the ommon plaes will never ontain more than onetoken.To model reation systems, we need additionally inhibitor ars to apturethe e�et of inhibitors in reation rules. We therefore onsider set-nets withinhibitor ars Inh ⊆ Pl × Tr . In suh a ase, the enabling relation hangessimilarly as for pt-nets with inhibitor ars, and we say that a step U is enabled



Petri Nets for Biologially Motivated Computing 13at a marking M if
•U ⊆ M and (M × U) ∩ Inh = ∅ .The result of exeuting an enabled step remains the same as before.4.2 set-nets modelling of reation systemsReation systems and set-nets �t together well in the sense that both do notount tokens and both hange states on the basis of the presene/absene ofresoures, represented by sets. Moreover, under the set-net semantis, ordinaryars (transitions) an be used to empty plaes. Finally, following the assumptionthat all reations that an take plae do take plae, the maximal set-semantisan be employed.Modelling inhibition aspets of reations is rather straightforward, as illus-trated by the set-net in Figure 5, representing the ontext-independent ini-tialised reation system A0 onsidered earlier. As we already mentioned, plaesrepresent entities. Transitions τa, τb and τc represent reations, and r↓, q↓ and s↓ensure that one the set-net is ative only tokens produed in the last maximalstep are present in the urrent marking. Using inhibitor ars gives a ompattranslation of reation systems whih is in a sense minimal w.r.t. the numberof plaes, ars and transitions. Moreover, relating the behaviour of the resultingset-nets and the original reation systems an be done as before.Formally, the plaes, transitions and initial marking of the translation SN (A)are given by:

Pl = {πs | s ∈ S}
Tr = {τa | a ∈ A} ∪ {↓s| s ∈ S}
M0 = {πs | s ∈ C0} .The �ow and inhibitor ars are as follows:

W = {(πs, ↓s) | s ∈ S} ∪
{(πs, τa) | a ∈ A ∧ s ∈ Ra} ∪
{(τa, πs) | a ∈ A ∧ s ∈ Pa}

Inh = {(πs, τa) | a ∈ A ∧ s ∈ Ia} .Relating the behaviour of the set-net model SN (A) and the original reationsystem A is straightforward using the mappings ν(M) = {s | πs ∈ M}, for everymarking M ⊆ Pl , and ρ(U) = {a | τa ∈ U}, for every step U ⊆ Tr .It is then possible to establish a diret relationship between (the operationof) reation systems and set-nets at the system level:
C

R
−→ C′ =⇒ ∃U : ρ(U) = R∧ ν−1(C) [U〉 ν−1(C′)

M [U〉M ′ =⇒ ν(M)
ρ(U)
−→ ν(M ′)

(2)for eah state C ofA, and eah markingM of SN (A). Together with ν(C0) = M0,suh a result means that the (�nite and in�nite) step sequenes of SN (A) faith-fully represent omputations of A, and that there is a one-to-one orrespondenebetween states and markings.
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πr

πq
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↓r

↓q

↓s

τa

τ b

τ cFig. 5. set-net SN (A0) modelling reation system A0.Moreover, the maximally onurrent semantis of the set-net orresponds tothe exeution of the reation system, i.e., the exeution of all enabled reationsin eah evolution step:
C −→ C′ =⇒ ν−1(C) [〉max ν−1(C′)

M [〉maxM
′ =⇒ ν(M) −→ ν(M ′)for eah state C of A, and eah marking M of SN (A).Note that the fundamental lass of en-systems [38℄ extended with inhibitoras well as ativator ars [16, 30, 32℄ basially has the same stati struture asset-nets. However, their treatment of on�its between transitions aessing thesame token, as well bloking a transition whih ould add a token to a markedplae, are totally di�erent. The latter issue has been noted in the past, andthe onstraint relaxed. For example, there are variations of Petri nets, suh asBoolean Petri nets, where adding a token to an already marked plae does notadd another token [5, 6, 14℄. Also, behaviour of this kind was mentioned in [2℄ inthe ontext of net synthesis. Having said that, the semantis onsidered in priorworks was based on single transition �rings, rather than (maximal) steps as isthe ase for set-nets, and so the issue of `token sharing' was never expliitlyonsidered.The main initial motivation of our investigation was to see how Petri netbased onepts ould be deployed to analyse reation systems. In doing so, weintrodued the model of set-nets whih is an original ontribution to the �eldof Petri nets. In the next setion we will see how the introdution of set-netshas motivated the introdution of a new model of membrane systems.5 Petri Nets and Set Membrane SystemsWe now disuss membrane systems whih use `qualitative' rather than `quan-titative' appliation of evolution rules to hange the urrent state. The formalde�nitions and representation for this lass of membrane are as those in Setion 3,exept that we are now working with sets rather than multisets of objets andevolution rules (similar to the operation of membrane systems in [1℄ where a
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1
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{a, b}
r11 : {b} → {a}
r12 : {a} → {b, cin2

, ain3
}

r13 : {b} → {c}

{a, b, c}
r21 : {a, c} → {b}
r22 : {b} → {a}

∅
r31 : {a} → {a, cout}

Fig. 6. A basi set membrane system Σ0.qualitative approah was used in the appliation of rules within membranes, buta quantitative on for sending objets to the environment).A basi set membrane system over the membrane struture µ is a tuple
Σ = (V, µ, w0

1 , . . . , w
0
m, R1, . . . , Rm)as in Setion 3, where eah w0

i is a set of objets, and the left and right handsides of every evolution rule are non-empty sets. Similarly, eah on�guration isomposed of sets of objets.A vetor set-rule of Σ is a tuple
r = 〈r1, . . . , rm〉where, for eah membrane i of µ, ri is a set of rules from Ri. For two vetorset-rules, r and r

′, we denote r ≤ r
′ if ri ⊆ r

′
i, for eah i ≤ m; and r < r

′ if
r ⊆ r

′ and r 6= r
′. For a vetor set-rule r and i ≤ m, we respetively denote by:

lhsri =
⋃

r∈ri

lhsr and rhsri =
⋃

r∈ri

rhsrthe set of all the objets in the left hand sides of the rules in ri, and the set ofall the (indexed) objets in their right hand sides. We then say that a vetorset-rule r is free-enabled / min-enabled / max-enabled / lmax-enabled exatlyas in Setion 3. Following this, a on�guration C = (w1, . . . wm) an m-evolve bya vetor set-rule r whih is m-enabled at C, to a on�guration C′ = (w′
1, . . . w

′
m)suh that, for eah ompartment i of µ:

w′
i = wi \ lhs

r

i ∪ {a ∈ V | a ∈ rhsri ∨ aini
∈ rhsrparent(i) ∨

∃(i, j) ∈ µ : aout ∈ rhsrj} .



16 J.Kleijn, M.Koutny and G.RozenbergWe denote this by C
r

−→m C′. An m-omputation is then de�ned as a (�nite orin�nite) sequene of onseutive m-evolutions starting from C0.The di�erene between the `qualitative' and the `quantitative' interpretationof the evolution rules is twofold. First, there may be two enabled evolutionrules in a ompartment with a ommon objet in their left hand sides whilethere is only a single representant of that objet in the urrent state in theompartment. In the urrent qualitative set-up, the two rules an be exeutedtogether. Seond, if two simultaneously exeuted rules produe the same objetin the same ompartment, instead of adding two instanes of this objet, onlyone is added (so that we never have more than a single representant of an objetin any given ompartment). As a onsequene, there is no need to use multisetsof objets present in any single ompartment to represent the urrent state, andthere is no need to use vetors of multisets of rules in set membrane systems. Ineither ase, using sets is fully su�ient. One may observe that with this view ofstate representation and system exeution, max -evolution is deterministi in setmembrane systems.5.1 set-nets modelling of set membrane systemsTo faithfully apture the behaviour of basi set membrane systems, we need toextend set-nets with loalities. A set-net with loalities (or setl-net) SNL is aset-net together with a loality mapping ℓ : Tr → N as in ptl-nets. Based onthe semantis of the underlying set-net and the semantis of nets with loalities,one an then introdue four modes of exeution, free-enabled / min-enabled /max-enabled / lmax-enabled, in a straightforward way.The modelling of a basi set membrane system Σ as a setl-net SNL(Σ)follows exatly the same lines as in Setion 3 (note that all ars have weight 1in this ase, and there are no inhibitor nor ativator ars). Figure 7 shows thetranslation for the basi set membrane system Σ0 in Figure 6.The tight orrespondene between the membrane system Σ and the setl-net
SNL(Σ) is aptured by the same two bijetive mappings ν and ρ, now restritedto sets, as in Setion 3. Moreover, the key result (1) establishing the faithful-ness of the translation obtained there an be re-stated for the urrent transla-tion. This, in partiular, means that the (�nite and in�nite) m-step sequenes of
SNL(Σ) faithfully represent m-omputations of Σ.5.2 Petri net analysis of set membrane systemsMoving from quantitative to qualitative membrane systems is an abstrationwhih may lead to a more tratable approah when it omes to answering vitalquestions onerning the evolution of systems. However, to take advantage of thisfat, the existing onrete analysis tools developed for the lassial, quantitative,Petri net models need to be adapted for set-nets.In [25℄, we have already made preliminary investigation into the synthesisproblem whih aims at an automati onstrution of set-nets exhibiting be-haviour given in terms of a transition system. For set membrane systems this
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Fig. 7. setl-net SNL(Σ0) modelling the basi set membrane system Σ0.should ontribute to insight in whih evolution rules lead to ertain observedbehaviour.By bringing qualitative (set rather than multiset) aspets to membrane sys-tems, also interesting questions relating to expressive (generative) power emerge.For every mode, one an onsider the possible evolutions of a system of a setmembrane system (i.e., the omputations of setl-nets) as a language. These lan-guages are regular subset languages. The study of subset languages of Petri netswas initiated in [40, 41℄ but still for the standard (quantitative) interpretation.There are a number of interesting theoretial questions and topis for the regularsubset languages generated by setl-nets under the four exeution modes as wellall regular subset languages. For example, one an onsider: inlusion hierar-hies; losure properties; and the omplexity of equivalene/inlusion heking.Another group of problems here would be motivated by the target appliationarea, i.e., biohemistry. For example, one an investigate: osillatory behaviour(is it possible to have yles from some point with at least/at most/spei� evo-lution rules only); or vitality of the system (possible deadlok or partial death,i.e., some rules that an no longer be exeuted); or other state-related properties,like whether it would be possible for two di�erent objets (types of moleules)to appear in a given ompartment at some point together.6 Petri nets and Extended Membrane SystemsBasi (quantitative) membrane systems have over the past deade been extendedin several di�erent diretions, motivated either by their potential appliations, orby their omputational properties. For some of these extensions, like atalystsand symport/antiport rules, there exist straightforward translations to Petri



18 J.Kleijn, M.Koutny and G.Rozenbergnets (see, for example, [15℄). For others, like i/o ommuniation and rule re-ation/onsumption, the orrespondene between evolution rules and Petri nettransitions is more involved, and the resulting nets are additionally equippedwith inhibitor and/or ativator ars (see, e.g., [20℄).First we onsider an extended version of membrane systems for modellinghow reations may be triggered or bloked in the presene of ertain moleules.The role of suh moleules di�ers from that of atalysts whih atively take partin reations and are returned afterwards. An example is objet a whih ats asa atalyst in evolution rule
r : {a, b} → {a, bout} .To model the subtle e�et that the presene of moleules may have, membranesystems have evolution rules r of the form
lhsr → rhsr|pror , inhrwhere pror and inhr are multisets over V speifying respetively the promotersand inhibitors. The intuition behind pror and inhr is that they test respetivelyfor a minimal or maximal number of ertain objets inside a ompartment, butwithout onsuming them. As a onsequene, any number of rules an test for thepresene of a single objet at the same time. In order for r to our there mustbe at least pror(a) opies of eah symbol a in its assoiated ompartment, andless than inhr(a) opies of eah symbol a whih ours in inhr. Thus we retainall de�nitions introdued for basi membrane systems with only one hangeregarding the notion of a free-enabled vetor multi-rule r. This is strengthenedby additionally requiring that, for eah i and r ∈ ri, we have pror

i ≤ wi and,moreover, if a ∈ inhr then wi(a) < inhr(a).ptl-nets are not expressive enough to model inhibitors and promoters be-ause ars between transitions and plaes indiate onsumption and produtionof tokens (objets) rather than testing for their presene or absene. A possibleway out is to use ptl-nets extended with range ars [19℄. Eah suh ar linksa plae to a transition and is spei�ed by a losed interval (possibly in�nite)of non-negative integers. This interval indiates the range (a losed interval ofnatural numbers) for the number of tokens that should be present in the plaeto enable the ourrene of the transition. Clearly, like pror and inhr, range arsan be used to model ertain forbidden/required onentrations of moleules ina ompartment.In [20℄, it has been shown that key properties of the modi�ed translation arevery similar to those obtained in the basi ase; in partiular, the orrespondeneresult (1) an simply be restated. Moreover, the treatment of ausality developedfor ptl-nets an also be extended (see [20℄).What may ome as a surprise, is that ptl-nets with inhibitor and ativa-tor ars are also robust enough to model in a faithful way, membrane systemswhih have a dynami struture due to rules whih may thiken or dissolvemembranes [21℄.



Petri Nets for Biologially Motivated Computing 19When it omes to the properties whih might be expressed or investigated us-ing reahability or overability graphs, the situation hanges dramatially whenwe move from ptl-nets to ptl-nets with range ars. The reason is that the latterallow one to test for the absene of resoures (zero-testing). Nets with this kindof relationship between plaes and transitions (i.e., inhibitor ars) have beenonsidered in [13℄. The extension with inhibitor ars gives the resulting model ofPetri nets the expressive power of Turing mahines; net languages beome reur-sively enumerable rather than reursive, and deidability for ertain importantbehavioural properties, suh as reahability and boundedness, is lost [13℄, partialsolutions have been proposed by restriting the lass of nets under onsiderationas, for example, in [4, 22℄.7 ConlusionIn this paper we desribed a number of results obtained while working at theinterfae between Petri nets (by now a lassial formal model for dealing withdistributed systems), and two reently proposed formal approahes aimed atdealing with omputations inspired by biohemial reations (i.e., membranesystems and reation systems). Our overall experiene was both illuminatingand highly enouraging. We have found that the di�erent models share a num-ber of important features whih allowed us to ompare them in a meaningful way(see, e.g., the faithfulness results (1) and (2)), but at the same time the originalmodels did di�er in some ruial aspets. The latter realisation has provided a di-ret motivation for importing onepts, suh as the struturing of the moleulesin a membrane system into ompartments and the qualitative treatment of en-tities in reation systems, into the realm of Petri nets. This has resulted in theintrodution of new net lasses, suh as ptl-nets and set-nets, whih shouldbe of a general interest to various appliation oriented researh ommunities.For instane, nets with loalities together with the lmax-semantis are relevantfor dealing with globally asynhronous loally synhronous (or GALS) systems.Moreover, we transferred newly de�ned modelling onepts bak into the do-main of membrane systems, by developing set membrane systems. We thereforeexperiene a harmonious synergy of the three, originally separate, models ofomputation.Results outlined in this paper open up a way to the adoption of Petri netanalytial tehniques in the areas of membrane omputing and reation systems.For example, one of the key advantages of Petri nets is that they support in alear and unambiguous way onepts relating to ausality and onurreny, andit turns out that the Petri net treatment of these onepts an be extendedto membrane systems thanks to the so-alled barb events whih apture theintriaies of the lmax-semantis. We therefore feel that Petri nets are a robustmodel whih an be suitably extended to provide valuable insights into other,seemingly distant approahes.
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