
Presented at AISB 06, at “Narrative AI and Games” workshop
Published in the proceedings of AISB printed by the Society for the Study of Artificial Intelligence and the Simulation of
Behaviour

Petri Nets for Game Plot

Cyril Brom and Adam Abonyi

Faculty of Mathematics and Physics, Charles University in Prague
Malostranské nám. 25, Prague 1 – 118 00, Czech Republic

brom@ksvi.mff.cuni.cz adam.abonyi@gmail.com

Abstract

We have developed a technique for authoring a nonlinear plot and for managing a story according to
the plot in an interactive story-based virtual reality application. The technique exploits Petri Nets
that alter reactive plans controlling individual actors. Its main advantage is that it allows for iterative
design and copes with large virtual worlds inhabited with tens of actors. In this paper, we describe
the technique and a prototype application.

1 Introduction
This paper concerns itself with a problem of manag-
ing a story in an interactive application featuring a
large virtual world inhabited by intelligent virtual
humans. Above all, we think of a role-playing com-
puter game underpinned by a narrative plot. A
framework for driving virtual humans is already
developed, as well as a prototype application for
story management.

Several aspects need to be stressed. First, by vir-
tual human (v-human in what follows) we mean a
piece of software that imitates behaviour of a human
in a virtual world and that is equipped with a virtual
body. Even if the body is typically visualised by a
graphical viewer, we will not consider graphical
issues here. We are focused on intelligent v-humans,
by which we mean that they carry out more compli-
cated tasks than just walking, object grasping or
chatting in an ELIZA-like manner.

Second, by large virtual world (v-world) we
mean a really large artificial environment – not a
single room, but a village or a region. There are tens
or hundreds of v-humans acting in a large v-world.
The story should last for tens of minutes.

Third, by interactive we mean that there is at
least one user interacting with the simulation. Obvi-
ously, this will cause an interactive–narrative ten-
sion. The user can be embodied through an avatar,
or can act within the v-world in an alternative way.

Fourth, a story is pre-given by a plot specifica-
tion. The plot is not linear. It means that the story
can evolve in several different ways according to a
user intervention, and it can take place in several
different locations at the same moment – not only in
the location observed by the user.

We aim at developing a large long-lasting inter-
active computer game emphasising a story and intel-
ligent artificial actors. From the artificial intelli-
gence point of view, anyone with this goal must
tackle at least the following issues:

1) How to control behaviour of an individual v-
human?

2) How to simulate efficiently a large v-world
when it is not possible to simulate it in its en-
tirety due to enormous computational cost?

3) How to manage an interactive simulation ac-
cording to a plot specification?

4) How to merge independent solutions of 1 – 3
into a single application?

We developed a toolkit for prototyping behav-
iour of individual v-humans (Bojar et al., 2005) and,
based on its concepts, a simulator of large v-worlds
called IVE (intelligent virtual environment, Fig. 1)
(Brom et al., 2006). IVE presents an augmentation
of Bryson’s hierarchical reactive planning (2001),
BDI theory (1987), and Gibson’s theory of affor-
dances (1979). These three main points help us to
achieve several things. First, the creation of v-
humans with relatively complicated behaviour is
possible. Second, a level-of detail (LOD) technique
for “AI” of v-humans and topology of virtual world
(not for computer graphics) can be used; this allows
for an automatic smooth simulation simplification
on places unimportant at a given instant. Third, new
objects and locations can be added into v-worlds as
plug-ins and v-humans are able to adapt to them
without using any machine-learning algorithm
(similarly to The Sims). This feature facilitates a
design.

IVE has been tested with a scenario comprising
about 100 v-humans acting in four virtual villages;
each with a pub, 5 mines, and 12 houses. The results

Presented at AISB 06, at “Narrative AI and Games” workshop
Published in the proceedings of AISB printed by the Society for the Study of Artificial Intelligence and the Simulation of
Behaviour

have allowed us to conclude that the issues 1 and 2
have been solved. However, as the v-humans of IVE
are driven only by prescripted reactive plans and
schedules, no interesting story can emerge. Thus,
the logical next step has been to address the issues 3,
4. In other words, our recent goal is to augment IVE
with a story management module driving the simu-
lation according to a high-level plot specification.

Figure 1: Mine scenario in IVE. The mine comprises three
sublocations: the lower part, the tunnel and the upper part.

There are two miners – one in the upper and one in the
lower part. The lower part and the tunnel are not expanded
(above), contrary to the upper part (bellow). The scenario
illustrates an activity taking place in locations with differ-

ent LOD value (i.e., mining). The cart leaves the pit,
which is simulated in less detail (LOD is 4), and enters the

upper part, which is simulated in more detail (LOD 5).

Solving the issue 3 we have developed a tech-

nique for authoring the plots and for managing the
stories, which uses Petri Nets. We have not fully
augmented IVE with the technique yet, hence the
issue 4 remains on the list. However, a test applica-
tion (called TEST) for prototyping the plots and
verifying the technique is already developed. In this
paper, we describe the technique. We start with set-
ting the ground of related works and detailing the
requirements on the technique in Section 2. Section
3 introduces our technique, and describes TEST and
a case-study story prototyped in TEST. In Section 4,
a formal description of our method is given. Finally,
we evaluate the technique and discuss directions for
future research.

2 Related work and problem de-
tailed
This section details requirements we had on the
technique and discusses related work. With respect
to our final goal, we were seeking a technique that:

a) copes with large v-worlds,
b) allows for describing high-level plot specifi-

cations, and yet allows for user interaction
and for some degree of autonomy of v-
humans,

c) copes with stories unfolding in several dif-
ferent places at the same instant,

d) allows for prototyping of stories.
The requirement b) means that we wanted a

story manager to alter behaviour of individual v-
humans, but not to drive them step by step. At the
level of individual actors, we wanted the autonomy
to be retained. Thus, our approach can be seen as a
compromise between top-down scripting and emer-
gent narrative. The requirement d) means that the
method should allow a user to verify a plot in a test
application that just models the course of the story.
There should be no v-human and no 3D graphics in
the application; it should serve just as a tool for test-
ing the plot.

To be clear, we were not interested in automatic
story generation, so the results of Cavazza (2002),
who, generally saying, used an HTN planner for
generating dramatically interesting sitcom-like epi-
sodes, is not what we were looking for. Similarly,
we could not follow the approach of Aylett et al.
(2005). In a nutshell, they used a continuous par-
tially-ordered planner for generating episodes ac-
cording to a high-level plot in an anti-bullying edu-
cational application. Notice, that we do not disre-
gard the role of planners in storytelling applications.
However, we think that it is hard to use them for
large virtual worlds (issue a)) because of their expo-
nential complexity.

We were interested, similarly to Mateas (2001),
in authoring of plots and in keeping an unfolding
story as close to an optimal plot as possible. Unfor-
tunately, we could not use his solution, because it
was not clear how to scale it to deal with the issues
 a), b), and d). Neither could we use the method of
Szilas et al. (2003), because we did not find out how
it could cope with issue a), b).

There is a branch of techniques used for specify-
ing plots that exploits finite-state machines (FSM).
Each state is a story episode, and a transition is a
trigger that detects an end of the episode and starts a
next one. FSM were described for example in (Shel-
don, 2004) and used by Silva et al. (2003). Natural
advantage of FSM is that they are formal, and yet
graphical (Fig. 2), which facilitates a story design.
However, a classical FSM is not suitable for us,
since they cannot cope with issues c) and d). First, a
(deterministic) FSM has just one active state at a
given time, second, its triggers test for v-world
events, which actually can not occur in a prototyp-
ing application for there is no v-world in it. Instead,
we needed something like a FSM with more active
states (to tackle c)) and with triggers that would

Presented at AISB 06, at “Narrative AI and Games” workshop
Published in the proceedings of AISB printed by the Society for the Study of Artificial Intelligence and the Simulation of
Behaviour

have tested for events caused by the plot specifica-
tion itself (not occurrences in a v-world – to tackle
 d). We found that this “something like a FSM” is a
Petri Net (PN). They have been already used to de-
scribe story plots in (Natkin and Vega, 2003), how-
ever, only to a retrospective analyse of a story (of a
computer game). We are interested in the reverse
issue.

To recapitulate, there were 4 main requirements
we had on the plot description technique. We found
out that we could not use state-of-art work, espe-
cially FSM. We have realised that a PN similar to
the PN used in (Natkin and Vega, 2003) is the solu-
tion. The method is introduced in Section 3 and de-
tailed in Section 4.

Figure 2: Story plots as finite-state machines. The lin-
ear plot is on the left, the nonlinear on the right.

3 PN-model and Story example
In this section, we introduce our technique, describe
TEST and present an example of a story-plot proto-
typed in TEST. We recommend the reader to be
familiar with PN – see (Natkin and Vega, 2003) for
an introduction.

3.1 PN-model
To address the issues a) – c) (Sec. 2) we have re-
fined a kind of PN, so called timed coloured PN, to
serve for describing high-level plot specifications.
To set the terminology, we say that PN-model is our
type of PN, and PN-plot is a specification of an in-
dividual plot by means of the PN-model.

To address the issue d), we have developed two
kind of PN-models, so called draft PN-model and
final PN-model. The former serves for specification
of a draft PN-plot and the latter for specification of
a final PN-plot. Every draft can be verified by
TEST, but can not be used for a real story manager.
Every trigger of a draft PN-plot tests only for events
caused by the draft itself, but not for any v-world
events. Drafts serve for verifying the plots. Addi-
tionally, we have developed a method for converting
a draft PN-plot to a final PN-plot. This conversion is
to be carried out by the story designer after the draft
is verified. Some triggers of the final PN-plot tests
also for the occurrences of the v-world. The final
PN-plot is aimed for a real story manager.

To summarise, our methodology for a specifica-
tion of a plot is following: First, design a draft PN-
plot. Second, verify the draft in TEST and adjust it.

Third, convert the adjusted draft to a final PN-plot.
In fact, this method is an example of iterative de-
sign. Section 4 details draft PN-model. Section 5
describes the conversion method.

3.2 TEST
We have developed a test application TEST, where
a story is unfolded in an abstract manner according
to a given PN-plot. TEST works as follows: First, a
draft PN-plot is loaded from an XML-file. Second,
when the simulation is started, abstract events start
to occur according to the PN-plot. Third, a user can
alter the story at real-time.

The purpose of the application is twofold. It
serves as a “proof-of-concept” of our PN-model,
and it allows for prototyping and verifying stories,
including modelling of a user interaction. Actually,
we are working on a real story manager of IVE.

Figure 3. A screenshot of TEST.

3.3 Story example
Here, we present an example of a story we have
prototyped in TEST. Notice, that the story has no
artistic value, it serves only for a demonstration pur-
pose. The story is a simple fantasy narrative set in a
village in an evening. It is a rather small story, just
an episode from a larger tale. There are the follow-
ing actors and groups of actors:

• MAGICIAN: a user-actor. She needs a puppet
(for whatever reason).

• GUARDS: four bum-bailiffs. One of them is a
friend of the magician; he has given her a
note that there will be a puppet theatre com-
ing this evening.

• PUPPET THEATRE: four artists. One of them is
a twin of a guy who used to steal in the vil-
lage several years ago, was arrested but man-
aged to escape.

• ROBBERS: a band having pilfered in the vil-
lage for a few weeks.

• VILLAGERS: citizens of the village. Some of
them will mistakenly recognise the twin as
his robber-brother.

Two things are going to happen in parallel. First,
the robbers are going to pilfer this evening and the
guards will try to capture them. Second, the troupe
is going to perform a piece in a pub, and in the

Presented at AISB 06, at “Narrative AI and Games” workshop
Published in the proceedings of AISB printed by the Society for the Study of Artificial Intelligence and the Simulation of
Behaviour

course of the play, some villagers will mistake the
twin as his robber-brother and a brawl will flare up
in the pub. Consequently, a fire might start, that
would destroy the theatre and all the puppets.

Nothing is fixed, the events occur in a probabil-
istic manner. It is not sure whether or not the guards
capture the robbers, or even notice them; whether or
not somebody mistakes the twin; and whether or not
the fire breaks out.

The magician is allowed to influence the story in
the following ways: She can buy a puppet (before
the theatre is reduced to ashes), or steal one in the
course of the brawl. If she helps the artists in the
brawl, she will be given a puppet for free, provided
that no fire has broken out.

She can call the guards during the brawl using a
spell. In this case, the guards interrupt the chasing
and come to the pub. This reduces the probability of
the fire breaking out significantly, especially if
guards have just caught the robbers. She can also
put out the fire immediately by casting a spell.

A part of the PN-plot for this story is depicted in

Figure 4. The most important features of the por-
trayal are described in Section 4. The complexity of
the drawing is discussed in Section 6.

4 Petri net model
This section gives the formal description of the draft
PN-model and describes the most important features
of the graphical representation of the PN-plot de-
picted in Figure 4. Notice however, that portrayals
are informative only; what is important is a back-
ground formal specification. An algorithm for driv-
ing a story according to a PN-plot (both draft and
final) is also presented.

A typical PN consists of places, tokens, transi-
tions and transition function. In our model, we talk
about containers (which are places – “the circles”:

, , ,), tokens (which are “the pellets”:),
actions (which are transition – “the rectangles”:

) and triggers (more or less, they correspond
to a transition function – to “the arrows”: ,).

The purpose of a trigger is
to fire an action according
to tokens’ location in con-
tainers, or to add or to
remove tokens from con-
tainers. Hence, tokens’
locations evolve in time.

Tokens. Every token has
a name, a colour, age, and
a state. For every colour,
there is a set of corre-
sponding states. Let us
denote TALL a set of all
possible tokens, NALL a set
of all possible names, BALL
a set of all possible col-
ours, and Sb a set of all
possible states for a col-
our b∈BALL.

Figure 4: The “pub-plot” in
the initial state is depicted.
Notice that a plot can be

much larger and several PN
can run in parallel. In par-

ticular, in our case, the
“catching-plot” is connected
to the “pub-plot” on the left

(indicated by “...”).

Presented at AISB 06, at “Narrative AI and Games” workshop
Published in the proceedings of AISB printed by the Society for the Study of Artificial Intelligence and the Simulation of
Behaviour

Then, we say that colouring is a function:
β: TALL → BALL – it gives a token’s colour – and to-
ken–status is a function (defined for each colour):
σb: TALL → NALL × Sb × N – it gives a token’s name,
state, and age. If an Sb is empty, we say that the to-
ken is stateless. A token can be located in a con-
tainer. The age stands for how long the token is lo-
cated there. As Fig. 4 depicts the PN-plot before the
simulation is started, only the initial tokens are
shown. After the start, other tokens would begin to
appear or could be removed.

Containers. Every container has a name, a type and
can be associated with a set of triggers, which are
actually if-then rules. Let us denote CALL a set of all
possible containers, YALL a set of all possible types
and IALL a set of all possible triggers. Then, we say
that container–status is a function
γ: CALL → NALL × YALL × ℘(IALL) – it gives a con-
tainer’s name, type and triggers. A container can
contain more than one token in a given simulation
time. We say that containing is a function
κ: CALL → ℘(TALL) – it provides all tokens located
in a given container in a given instant.

A semantic meaning of a token in a container is
a denotation either of a state of a group of actors
(i.e., an actor-token) or of a satisfied precondition
(i.e., a prec-token). In a drawing, containers are de-
noted according to their triggers and tokens they can
contain as (actor-tokens/without any trigger),
(actor-tokens/with triggers), (prec-tokens/without
any trigger), (prec-tokens/with triggers).

There are following main token types in our PN-
plot; italic denotes the initial state:

• “magician has” (colour m); Sm = {no-puppet,
bought, stolen, given}

• “magician where” (colour i); Si = {in-pub, out-
pub}

• “guard” (colour g); Sg = {not-caught, caught}
• “theatre troupe” (colour t); St = {arriving, in-

pub, playing, defending, burnt, thankful}
• “villagers”, “robbers” (colour o); So = {}
• a prec-token: “has-called”, “has-recognised”

(colour o)
The meaning is obvious: for example, every

“magician has” token represents that a magician has
stolen, or has bought, or has been given a puppet, or
does not have it, respectively. Similarly, the state of
“magician where” stands for a magician in a pub or
out of the pub. Notice, that these tokens can be lo-
cated only in PLAYER container. Notice also, that a
token is not a v-human itself, it is just a representa-
tion of its state for the purpose of a story manage-
ment!

Triggers. The most important primitive of the PN-
model is a trigger. A trigger can be associated with

an action (action trigger) or a container (container
trigger). Basically, a trigger is an if-p-then-c rule,
where p is a precondition and c a consequence,
which is to be performed when p holds. There are
four types of triggers (both action and container).

• A token-generating trigger is a trigger that
has a consequence of always adding some
tokens to some containers and not removing
any token.

• A token-consuming trigger has a conse-
quence of always removing at least one token
and possibly adding tokens to containers.

• An action-firing trigger neither generates nor
removes any tokens, but fires an action.

• A conflict-resolving trigger’s precondition
tests whether two or more actions are to be
fired at the same time, and its consequence
resolves the conflict.

Actions and triggers. Every action has a name, an
action-firing trigger, a token-generating trigger and
token-consuming trigger, a “ready to fire” flag, and
an effect. The precondition of the last two triggers
tests whether the action has just fired (i.e., whether
or not the flag is set). Let us denote AALL a set of all
possible actions. Then, we say that action–status is a
function α: AALL → NALL × {0,1} × IALL

3 – it returns
an action’s name, whether or not its flag is set, and
its triggers.

If an action-firing trigger holds, its consequence
sets a “ready to fire” flag. Then, the other two trig-
gers can be triggered. Notice the word “can”. In a
given instant, more actions can be ready to fire, but
not all of them can be allowed to fire for there can
be a conflict between their token-consuming triggers
(it is not possible to remove a token that has been
just removed by another trigger). A conflict can be
solved by a conflict-resolving trigger, which unsets
the flag. Finally, when an action is really allowed to
fire, its effect is performed, and its token-generating
and token-consuming triggers are triggered. See
Algorithm 1 below for details.

There is no graphical primitive corresponding to
a trigger. However, a container with a trigger is de-
noted as or , and an action trigger is depicted
as a set of arrows, each from a container to an ac-
tion, or vice versa. For example, denotes
an action-firing trigger and a token-consuming trig-
ger, which means “try to fire the action if there is at
least one token in the container” and “consume one
token when the action is fired”. An example of a
token generating trigger is (it means “gen-
erate one token when the action is fired”).

Details of a precondition or a consequence are
indicated schematically next to an arrow, next to a
container, or by a changed shape of the arrow. Pre-
cisely, a precondition can:

Presented at AISB 06, at “Narrative AI and Games” workshop
Published in the proceedings of AISB printed by the Society for the Study of Artificial Intelligence and the Simulation of
Behaviour

• test κ: i.e., whether some containers contain
() or do not contain () some tokens;
test β and σβ: i.e., colouring (<col?>) and to-
ken-status (<state?>),

• test simulation time (HH hours),
• compare age (MM minutes) or simulation time

(HH hours) to a random value generated by a
given probabilistic distribution (),

• test whether a user will alter the simulation
somehow (will),

• test whether a trigger has fired n times (n ×),
• test whether two or more actions are in a con-

flict ().
A consequence of a token-generating trigger can

generate a token of a specific colour and a state. It is
indicated as <state>, <<X>> or <col> above the arrow. <<X>>
means that the generated token has the same state as
the token that has been just consumed (see, for ex-
ample, GUARD IN PUB container).

Notice that all abovementioned acts relate to the
draft PN-plot itself, no v-world events are tested.
This is not possible with any FSM. As TEST only
models the course of a story, the effects of all ac-
tions are user notifications of an action performance.

Notice that not all conflicts are always solved in
Step 4 – there might exist a conflict not recognised
by any trigger. In this case, the action to execute
will be chosen randomly from the set of the actions
in the conflict (Step 6).

Now, consider several examples taken from Fig-
ure 4. First, focus on the container THEATRE and the
action Start parking (in the pub). There are three
triggers indicated in the
drawing. The first one
generates a token “theatre” with arriving state into the

container once at about 4 p.m. (Step 7, 8). The sec-
ond one is an action-firing trigger. It sets “ready to
fire” flag when the token in the container is at least
30 minutes old (Step 1, 2). The third one is a token-
consuming trigger, which removes “theatre” token
when the action fires (Step 5, 6).

The next example con-
cerns with the episode of the
theatrical performance. The
token-generating trigger of
the Play starts action has
generated four tokens; two
“has-recognised” into the
RECOGNISED? container, one “villagers” into the
VILLAGERS WATCHING container, and one “theatre”
with the state playing into the THEATRE container.
The action-firing trigger of the Struggle starts action
tests whether or not there is a token with the state
playing in the container THEATRE, and a token in the
container VILLAGERS, and two tokens in the con-
tainer RECOGNISED? with appropriate age. It is de-
termined randomly for the both tokens, whether or
not the token is old enough. If the action is fired, the
next trigger – the token-consuming one of Struggle
starts – consumes all four tokens. Notice that all
durative episodes are represented in a similar way
using the age of the tokens. The container THEATRE
is the same as in the previous figure, it is just de-
picted several times for convenience.

The next drawing
represents the stealing
of a puppet. If the
magician is in the pub
(denoted as WHERE:

<in?>), if she does not
have a puppet (denoted as HAS: <no-puppet?>), and if she
wants to steal, and if the brawl has already flared up
(the state of “theater” is defending), she may steal the
puppet. Notice that a token “player wants to steal” is
generated according to a choice of a user – this fea-
ture is achieved by checking a check box in TEST
now. From the perspective of the high-level plot, the
action of stealing is instantaneous: it takes no time.

Notice that there is no conflict-resolving trigger
in PN-plot of this story. Notice also that all the
properties that are only indicated in the portrayal,
such as probabilistic distributions, are specified pre-
cisely in the XML plot specification.

5 Supplementing IVE with a story
manager
In this section, we describe how to convert a draft
PN-plot to final PN-plot. We first remember IVE.
Then we extend the draft PN-model specified in
Section 3 to the final PN-model. Finally, we de-
scribe how to convert a draft to a final PN-plot.

Algorithm 1. PN-plot driving in TEST and in
a real drama manager.
Input: PN-plot.
The algorithm is performed in every time step t.
1) Iaction,t ← all action-firing triggers that fire in time t
2) Perform a consequence for all i∈Iaction,t in a random order (i.e.,

mark the “ready to fire” flag of the respective actions)
3) Iconflict,t ← all conflict-resolving triggers that fire in time t
4) Perform a consequence for all i∈Iconflict,t in a random order (it

unsets the “ready to fire” flag of some conflicting actions; it
may include asking a user for selecting the action)

5) Iremove,t ← all token-consuming triggers that fire in time t (they
test for “ready to fire”)

6) for each i∈Iremove,t (take i in a random order) do {
if all desired tokens can be still removed do {

perform the consequence of i (it includes removing the
tokens)
if i is an action trigger do perform an effect of the ac-
tion }

otherwise,
if i is an action trigger do unset the “ready to fire” flag }

7) Igenerate,t ← all token generating triggers that fire in time t
8) for each i∈Igenerate,t (take i in a random order) do {

perform the consequence of i
if i is an action trigger do unset “ready to fire” flag }

Presented at AISB 06, at “Narrative AI and Games” workshop
Published in the proceedings of AISB printed by the Society for the Study of Artificial Intelligence and the Simulation of
Behaviour

In IVE, almost all behaviour of v-humans (say,
90%) is driven by hierarchical reactive planning, in
particular by production rules organised in tree-like
structures (Brom et al., 2006)1. There are two rea-
sons for that: the reactive planning fits well in a
large, unpredictable dynamic v-world, and hierar-
chical nature of plans helps us to achieve LOD
simulation. A classical planning technique needs to
be exploited only rarely (a case in point is a path-
finding).

In order to extend the draft PN-model to the final
PN-model, we need to specify how a story manager
can alter a v-world and how a v-world can modify a
final PN-plot. The extension is founded accordingly.
First, the story manager can alter the story by per-
forming an effect of a PN-action. In the draft, the
effect is just a user notification. In contrast, in a fi-
nal PN-model, an effect is allowed to:

1. create a new virtual object, a location or a v-
human,

2. force a v-human upon a new reactive plan,
hence modify its behaviour,

3. modify an internal drive of a v-human, hence
change its needs,

4. increase or decrease LOD in a given part of a
v-world.

 For example, in Fig. 4, the effect of the action
Struggle starts would be the case 2. Second, we al-
low preconditions of triggers in the final PN-model
to test also circumstances of v-world. For example,
each trigger of “will” would correspond to an event
caused by a user actor.

Having the final PN-model, we can describe how
to convert a draft PN-plot to a final PN-plot. Sup-
pose we have a draft PN-plot of a story episode.

1. Replace every precondition of a trigger of
“will” from the draft by a final precondition
that tests whether or not a user has just
caused a respective event.

2. Replace every effect of an action beginning
the story from the draft by an effect from the
list of possible final effects (above).

3. Test in the final application, whether the
story episode begins as expected.

4. From the draft, take all action-firing trig-
gers, conflict resolving triggers, token-
generating triggers and actions not begin-
ning the story. Take them one by one in the
order of their presupposed time of firing: if
it is a trigger, ponder on whether its precon-

1 Notice that there is a distinction between pure reactive
agents employed e.g. by Brooks (1986), and v-humans
driven by reactive planning. The latter can for example
exhibit goal-directed behaviour and use their memory. A
v-human driven by a reactive planner is not “intelligence
without representation”. Notice also, that a reactive plan,
even though pre-given, is not a computer game script.

dition should be replaced; if it is an action,
ponder on whether its effect should be re-
placed. If it should, replace it.

5. Test the final application.
Since we do not have a final story manager yet,

we have converted some of our draft PN-plots veri-
fied in TEST (including the example from Sec. 3) to
the final PN-plots by hand. Notice that this proce-
dure is intended to be automated partially.

We have realised several things. Preconditions
testing an age of a token are usually replaced by a
test of occurrence of an event in a v-world. Typi-
cally, preconditions of token-generating triggers of
containers are replaced. Token-generating and to-
ken-consuming triggers of actions need to be modi-
fied only rarely. In the example from Sec. 3, about
25% of preconditions from the draft were replaced.

6 Discussion and Future work
Although our work is in progress, the results we
have collected so far show that our model allow us
to achieve the four requirements from Sec. 2. Notice
that for a story comprising several episodes, more
PN-plots can be specified and all of them can run in
parallel. The magician, for example, does not have
to be in the pub for the brawl to flare up. She can be
involved in the “robbers catching” episode (that
would decrease LOD value in the pub). Notice also
that while the story manager alters the course of the
overall simulation from a high-level perspective, the
autonomy from the point of view of individual v-
humans is retained. V-humans act according to their
reactive plans, which are only “attuned” to the story.
Our approach presents a compromise between pure
scripting and pure emergent narrative. We have also
realised that it is extremely useful to have an appli-
cation for a story prototyping. During the creation of
a plot one can make a flaw. In TEST, the flaws can
be detected easily. There are also several natural
advantages of PN. They can be formally validated
(which helps to detect unreachable parts for exam-
ple), depicted graphically and compiled at runtime.

There are also several drawbacks of our ap-
proach. First, our tokens are state-based. That means
a token can have exactly one state: e.g., “magician”
token can have stolen state, but not both stolen and,
for example, in-pub state – we need two tokens. To-
kens also can not hold variables. These are merely
technical limitations. We did not need these features
for our plots and therefore we did not specify them
in the formal model. In principle, it is possible to
formalise a PN-model so that the features are in-
cluded.

A more inherent problem is that a portrayal of
even a small story (see Fig. 4) is fairly complicated.
Assume that there are tens of such episodes; how

Presented at AISB 06, at “Narrative AI and Games” workshop
Published in the proceedings of AISB printed by the Society for the Study of Artificial Intelligence and the Simulation of
Behaviour

could a story designer cope? We think that one pos-
sible approach to this problem is to extend the PN-
model in a hierarchical manner. Microsoft Visio
(2006) might be a tool for drawing of plots in this
way. The advantage of Visio is that one can define
in it new graphical components and routines for
their conversion to XML specifications. These
specifications are needed both for TEST and a real
story manager.

Our future work concerns development of a real
story manager and addressing the problem with
large portrayals using a neat drawing tool. We re-
mark that Algorithm 1 is designed to drive both
TEST and a real story manager.

7 Conclusion
In this paper, we have described a method for speci-
fying non-linear plots for a large computer game
featuring intelligent virtual humans. The technique
exploits Petri Nets specifications. It is designed to
cope with four issues: with large virtual worlds, with
stories unfolding in several different places at the
same time, with allowing for some degree of auton-
omy of v-humans and with allowing for prototyping
of stories. The natural feature of the technique is
that the plots can be depicted graphically.

We have briefly described our application called
TEST that serves to verify plots. We have also in-
troduced IVE, which is our AI framework for pro-
gramming large virtual worlds inhabited with tens of
actors. Our future work concern supplementing IVE
with a story manager that uses our Petri Nets and
that is driven by the algorithm described in this pa-
per.

Although the technique is aimed for IVE primar-
ily, it can be used in another application as well, in
particular in an application featuring a large v-
world. TEST can be used independently as it is.
Both TEST and IVE can be downloaded at
http://urtax.ms.mff.cuni.cz/ive/.

Acknowledgements
This work is partially supported by the Program
“Information Society”, the project 1ET10030051;
and GA UK No. 351/2006. The authors would like
to thank to Joanna Bryson, Lubomír Bulej and two
anonymous referees for their valuable comments.

References
Ruth S. Aylett, S. Louchart, J. Dias, A. Paiva, M.

Vala. FearNot! – An Experiment in Emergent
Narrative. Proceedings of Intelligent Virtual
Agents, 305–316, 2005.

Ondřej Bojar, Cyril Brom, Milan Hladík, Vojtěch
Toman. The Project ENTs: Towards Modeling
Human-like Artificial Agents. SOFSEM 2005
Communications, Slovak Republic, 2005.

Michael E. Bratman. Intention, plans, and practical
reason. Cambridge, Mass: Harvard University
Press, 1987.

Rodney A. Brooks. Intelligence without reason.
Proceedings of the 1991 International Joint
Conference on Artificial Intelligence, Sydney,
569–595, 1991.

Cyril Brom, Jiří Lukavský, Ondřej Šerý, Tomáš
Poch, Pavel Šafrata. Affordances and level-of-
detail AI for virtual humans. Proceedings of
Game Set and Match 2, Delft, 2006 (to appear)

Joanna Bryson. Intelligence by Design: Principles of
Modularity and Coordination for Engineering
Complex Adaptive Agents. PhD thesis, Massa-
chusetts Institute of Technology, 2001.

Marc Cavazza, Fred Charles, and S. J. Mead. Inter-
acting with Virtual Characters in Interactive
Storytelling. ACM Joint Conference on
Autonomous Agents and Multi-Agent Systems,
Bologna, Italy, 318 – 325, 2002.

James J. Gibson. The Ecological Approach to Visual
Perception. Boston: Houghton Muffin, 1979.

Michael Mateas. Interactive Drama, Art and Artifi-
cial Intelligence. Ph.D. Dissertation. Depart-
ment of Computer Science, Carnegie Mellon
University, 2002.

Microsoft Corporation. Microsoft Office Visio 2003
www.microsoft.com/office/visio/ [14th January
2006]

Stéphane Natkin and Liliana Vega. Petri Net Model-
ling for the Analysis of the Ordering of Ac-
tions in Computer Games. Proceedings of
Game-ON, 82–92, 2003.

Lee Sheldon. Character Development and Storytel-
ling. Chapters 7 and 14. Thompson Course
Technology, 2004.

André Silva, Guilherme Raimundo, and Ana Paiva.
Tell Me That Bit Again... Bringing Interactiv-
ity to a Virtual Storyteller. Proceedings of Vir-
tual Storytelling II, 146–155, 2003.

Nicolas Szilas, Olivier Marty, Jean-Huges Réty.
Authoring highly generative Interactive
Drama. Proceedings of 2nd International Con-
ference on Virtual Storytelling, 2003

