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Layered mafic intrusions (LMI) are sporadically distributed in
the Early Permian Tarim large igneous province (LIP), NW
China, and are crosscut by numerous contemporaneous dykes. The
Xiaohaizi wehrlite intrusion is composed mainly of olivine (Fo69—
75), clinopyroxene ( Mg#f =75-84), intercumulus plagioclase
(And3-86) and Fe—Ti oxides. Both petrography and mineral com-
positions suggest that olivine and clinopyroxene crystallized earlier
than plagioclase and Fe—Ti oxides. The dykes are of alkali basalt to
trachyandesite with low Mg#f (35-39). The least-contaminated
dykes display strong rare earth element (REE) fractionation,
enrichment of Nb and Ta, and depletion of Pb relative to other
similarly incompatible elements, bearing strong similarity to ocean
wsland basalts (OIB). This, together with their positive eNd;
values (4-3-4-8), 1s consistent with derwation from an enriched
asthenospheric mantle source. Clinopyroxenes in the wehrlites display
convex-upward chondrite-normalized REE  patterns. The melts
i equiltbrium with these clinopyroxenes have very similar trace
element compositions to those of the crosscutting dykes, suggesting
a sumilar mantle source shared by the Xiaohaizi wehrlite intrusion
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and dykes. The Xiaohaizi wehrlite intrusion is characterized by
Sr=Nd isotopic disequilibrium between clinopyroxene and plagio-
clase separates: ¥ Sr/Sr; (0-7038-0-7041) and eNd; (1-0-1-9) of
clinopyroxene are lower and higher than the respective ratios of inter-
cumulus  plagioclase (¥ Sr/*°Sr;= 0-7042-0-7043, eNd; = 0-4—
10). The 7 S1/"°Sr; and eNd; of clinopyroxene separates correlate
posttively and negatively with Jr/Nb, respectively, implying vari-
able degrees of crustal contamination during the formation of
the Xiaohaizi wehrlite intrusion. 87Sr/86Sri increases  and
eNd; decreases with increasing Ca content of plagioclase, indicating
that  higher An  plagioclases experienced higher —degrees of
contamination. This can be explained by assimilation of continental
crust through a turbulent magma ascent (ATA) process. However,
this ATA model fails to account for the positive correlation be-
lween the Mg#t and e Nd; of clinopyroxene separates. The isotopic
disequilibrium in the Xiaohaizi LMI is more probably generated
during an assimilation and fractional crystallization  process
involving ~ Archean—Neoproterozoic basement and carbonales as
contaminants.
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INTRODUCTION

Layered mafic intrusions (LMI) have been intensively stu-
died for their unique trace element enrichment [e.g. PGE
(platinum group elements), Cr, Ni, V, Ti], notably the
Noril’sk—Talnakh Ni—Cu—PGE deposits in the Siberian
Traps (Lightfoot et al., 1990; Naldrett et al., 1992
Hawkesworth et al., 1995) and the Panzhihua and Hongge
V—Ti—magnetite deposits in the Emeishan large igneous
province (LIP) (Zhou et al., 2005; Pang et al., 2008b; Bai
et al., 2012; Song et al., 2013). Their typical intra-cratonic set-
ting makes them important for studying the evolution of
cratonic domains and the role of crust—-mantle interaction
in their genesis (DePaolo & Wasserburg, 1979; Kruger
et al., 1987; Zhou et al., 2005; Cawthorn, 2007; Day et al.,
2008; Richardson & Shirey, 2008; O’Driscoll et al., 2009;
Wilson, 2012; Nebel et al., 2013). Most LMI formed via mul-
tiple magma injections into crustal magma chambers
(Cawthorn et al., 1991; Tegner et al., 2006; Pang et al., 2009;
Namur ef al., 2010). The parental magmas of LMI have in-
evitably, to some extent, interacted with subcontinental
lithospheric mantle (SCLM) and crust during ascent and
emplacement (Maier et al., 2000; Prevec et al., 2005;
Richardson & Shirey, 2008; Fourie & Harris, 2011
Roclofse & Ashwal, 2012). In this regard, crustal assimila-
tion—fractional crystallization (AFC) processes may have
played an important role in the magmatic evolution and
petrogenesis of LMI. Prominent examples of AFC pro-
cesses during the formation of LMI are the existence of
isotopic disequilibrium within a single mineral or amongst
coexisting minerals of cumulus rocks (Tepley & Davidson,
2003; Prevec et al., 2005).

Study of the isotopic compositions of minerals, espe-
cially those crystallized during different stages of mag-
matic evolution from a common parental magma, may
also shed light on the role of AFC processes in the gener-
ation of LMI. The Xiaohaizi LMI in the Early Permian
Tarim LIP of NW China is composed of ~750 m of cumu-
late wehrlite consisting mainly of cumulus olivine and
clinopyroxene with interstitial plagioclase and Fe—Ti
oxides. Clinopyroxene and plagioclase in the Xiaohaizi
intrusion represent the crystallized products at different
stages of magmatic evolution; thus a careful study of min-
eral and Sr—Nd isotope compositions should provide in-
sights into the role of the AFC process in the generation
of LMI In addition, the Xiaohaizi LMI is closely asso-
ciated with syenites and crosscut by numerous contempor-
ancous mafic dykes. This also provides a good
opportunity to investigate the magma plumbing system
below an LIP.

LMI often host economic Fe—T1 oxide deposits; for ex-
ample, the Panzhihua intrusion in the Emeishan LIP
(Zhou et al., 2005; Pang et al., 20080). In the Tarim LIP,
V-Ti-magnetite mineralization is associated with the
Wajilitag LMI, which is close to the Xiaohaizi intrusion
(Zhang et al., 2008a; Li et al., 2012a; Cao et al., 2014).
Strong negative aeromagnetic anomalies also make the
Xiaohaizi area a potential target for Fe—T1 oxide deposits.
Fe—Ti oxide mineralization in LMI may be controlled by
the composition of the parental magma (e.g. Toplis &
Carroll, 1995; Zhou et al., 2005), timing of Fe—Ti oxide crys-
tallization (e.g. Namur et al., 2010) and oxygen fugacity
(Toplis & Carroll, 1993). To provide some indications for
mineral prospecting, a detailed study of the petrography
and mineral compositions is needed to characterize the
nature, liquid line of descent and oxygen fugacity of the
Xiaohaizi wehrlite intrusion.

Here we present secondary ion mass spectrometry
(SIMS) zircon U-Pb age data, i situ major and trace
element compositions of cumulus clinopyroxenes, and
Sr—Nd-Pb isotopic analyses of mineral separates and
whole-rocks. The main objectives are (1) to characterize
the nature of the parental magma and hence the mantle
source of the Xiaohaizi wehrlite intrusion and to constrain
its genetic relationship to the crosscutting dykes, and
(2) to understand the role of the AFC process in the gener-
ation of LMI.

GEOLOGICAL BACKGROUND
Regional geology

The Tarim Craton in NW China is surrounded by the
Tianshan orogenic belt to the north and NW, the Kunlun
orogenic belt to the SW and the Altyn orogenic belt to the
SE (Fig. la and b). The Tianshan orogenic belt is part
of the Central Asian Orogenic Belt (CAOB), which is the
largest Phanerozoic orogen in the world and has a complex
evolutionary history represented by multi-stage subduction
and juvenile crustal growth (Han et al., 2011, and references
therein). The basement of the Tarim Craton is composed
mainly of (I) Archean tonalite-trondhjemite—granodiorite
(TTG) gneisses and amphibolites, (2) Palaeoproterozoic
metamorphic mafic and felsic intrusions, schists and
marbles, (3) Mesoproterozoic to early Neoproterozoic low-
grade metamorphic rocks including metamorphosed car-
bonate and clastic rocks and granitoids, and (4) middle to
late Neoproterozoic mafic dykes, bimodal volcanic rocks,
granitoids and glacial deposits, which crop out along the
margins of the craton (e.g. Kuluketage, Altyn and south-
western Tarim; BGMRXUAR, 1993; Hu et al., 2000; Lu
et al., 2008). The basement is overlain by a thick sequence
of Phanerozoic shallow marine and terrestrial sandstones,

siltstones, shales, dark limestones, chert and volcanic rocks
(BGMRXUAR, 1993; Cao et al., 2011).
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Fig. 1. (a) Locations of the Tarim Craton and Emeishan large igneous province (ELIP) and the study area (rectangle), modified after
Zhou et al. (2009). (b) Simplified geological map of the Tarim Craton, showing the distribution of Permian Tarim basalts and ultramafic

mafic—felsic intrusive complexes around Bachu, modified after BGMRXUAR (1993) and Yang et al. (2007). Wj, Wajilitag mafic—ultramafic
layered intrusion; Xhz, Xiaohaizi syenite complex. (¢) Detailed geological map of the Xiaohaizi syenite, which is crosscut by numerous mafic
and felsic dykes, modified after Yang et al. (2007) and Chen et al. (2010a). Also shown is the location of drill-core ZK4202 and wehrlite outcrops

(XHZ-14 and XHZ-15).
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Several episodes of igneous activity have been identified
in the Tarim Craton, including those associated with the
formation of the Neoarchaean and Proterozoic basement,
and early Permian flood basalts and ultramafic—mafic in-
trusions. Among these the early Permian magmatic event
is the most extensive (Li et al., 2008; Pirajno et al., 2008;
Zhang et al., 2008a, 2010a, 20106; Zhou et al., 2009; Tian
et al., 2010; Yu et al., 20115). Geophysical surveys show that
the Permian basalts may extend over an area of
250 000 km? in the interior of the craton (Yang et al., 2007;
Tian et al., 2010). The early Permian basalts crop out
mainly in the northwestern and southwestern parts of the
craton, with significant exposures in the Keping area.
Based on a compilation of published age data, the basaltic
volcanism took place in the interval 292-286 Ma with a
peak at 289 Ma (Wei et al., 2014), and appears to originate
from an SCLM source (Jiang et al., 2004; Zhang et al.,
2010a; Wei et al., 2014). Apart from the voluminous
flood basalts a variety of small-volume, scattered mafic—
ultramafic intrusions, syenites, mafic dykes and quartz sy-
enite porphyries also crop out. They were formed mainly
during the interval 278-284 Ma (Yang et al., 1996, 2006,
2007; Zhang et al., 2008a, 2010a; Li et al., 2011b; Zhang &
Zou, 20136) with a peak age at ~279 Ma, and are inter-
preted to be derived from a conecting mantle source
(Zhou et al., 2009; Zhang et al., 2010a; Zhang & Zou,
2013a; Wei et al., 2014). A model involving mantle plume—
lithosphere interaction has been proposed to account for
the generation of the Tarim LIP (Wet et al., 2014; Xu et al.,
2014). The basalts were formed by partial melting of the
SCLM 1in response to the impact of a mantle plume at
the base of thickened continental lithosphere beneath
Tarim, whereas the dykes and intrusions were generated
by decompression melting of the mantle plume as a result
of its lateral deflection towards the margins of the Tarim
Craton where the lithosphere is relatively thin (Wei et al.,
2014; Xu et al., 2014).

The Xiaohaizi cumulate wehrlite, syenite
and dykes

The early Permian Xiaohaizi syenite complex is circular
in shape and crops out about 28 km SE of Bachu city in
the northwestern part of the Tarim Craton (Fig. 1b). It is
composed predominantly of syenite and quartz syenite
(Wei & Xu, 2011) and subordinate cumulate wehrlite
(Fig. Ic). The wehrlites have previously been termed olivine
gabbro (Wei & Xu, 2011, 2013) or olivine clinopyroxenite
(Chen et al., 2010a). In the field, the contact between the
wehrlite and syenite is sharp (Fig. 2a). Within the eastern
part of the syenite intrusion (Fig. 1c) irregular xenoliths of
wehrlite occur adjacent to the contact (Fig. 2a), indicating
that the wehrlites were intruded by the syenite. The wehr-
lites and syenites have a surface exposure of ~18 km” and
intrude Silurian—early Permian strata (BGMRXUAR,
1993). Previous investigations show that the Xiaohaizi

syenite was emplaced at 277-282 Ma (Yang et al., 1996,
2006; Li et al., 2007; Zhang et al., 2009; Wei & Xu, 2011).
The strata in this area include Silurian sandstone, siltstone
and silty mudstone, Devonian conglomerate, sandstone
and siltstone, Carboniferous sandstone, siltstone, gypsolith
and limestone, and lower Permian limestone, silty mud-
stone and shale (Zhang, 2003). Numerous mafic dykes and
quartz syenite porphyries crosscut the sedimentary rocks
with nearly vertical dips and variable strikes and also
intrude the Xiaohaizi syenite, although some of the dykes
intermingle with the syenite (Zhang et al., 20085). These
dykes have been dated at 278-284 Ma (Yu, 2009; Li et al.,
2011%), indistinguishable from the ages of the syenite
intrusion.

A strong negative aeromagnetic anomaly in the
Xiaohaizi area indicates the presence of a concealed
malfic intrusion. This is supported by industrial drilling
that revealed a large volume of mafic igneous rocks at
depth. One drill-core (ZK4202) recovered about 750 m
of cumulate wehrlite crosscut by numerous mafic dykes
with sharp contacts (Fig. 2b). However, the bottom of the
igneous sequence was not reached and the exact thickness
of the cumulate wehrlites remains unknown.

The relative ages of the intrusive rocks can be obtained
from crosscutting relationships. The oldest are the cumu-
late wehrlites, which are intruded by the Xiaohaizi syenite.
Alkali basalt to trachyandesite dykes intrude the Silurian—
early Permian strata, the Xiaohaizi wehrlites and the
syenites. The youngest intrusions are the quartz syenite
porphyries, which crosscut both the Xiaohaizi syenite and
the mafic dykes (Chen et al., 2010qa).

SAMPLE SELECTION AND
ANALYTICAL METHODS

Sample selection

Two coarse-grained mafic wehrlite samples from the top
(4202-a) and bottom (4202-b) of the drill-core (ZK4202)
were selected for zircon SIMS U-Pb dating. Twenty-two
cumulate wehrlites and four fine-grained crosscutting
dykes from the drill-core were selected for major and
trace element analysis. All four dykes and 18 wehrlite sam-
ples were selected for Sr—Nd isotope analysis. Whole-rock
Sr—Nd isotope analyses were carried out on seven wehr-
lites; clinopyroxene—plagioclase separates from three
of these wehrlites were also analyzed. For the rest of
the samples, only mineral separates were analyzed.
Clinopyroxene and plagioclase mineral separates were
handpicked under a binocular microscope to minimize
the effect of alteration. Pb isotopes were also analyzed
for plagioclase separates. Two wehrlites collected from the
outcrop display relatively strong alteration and thus were
analyzed only for trace elements.
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Fig. 2. (a) Field relationship between the Xiaohaizi wehrlite and the syenite intrusion. Wehrlite xenoliths occur within the syenite adjacent
to the contact. (b) Crosscutting relationship between wehrlite and a dyke in the drill-core. (c—e) Photomicrographs showing mineral textures
in the Xiaohaizi cumulate wehrlites. (¢) Large cumulus clinopyroxene and olivine with small interstitial plagioclase and Fe—'Ti oxides. Large,
euhedral clinopyroxenes include small grains of plagioclase, Fe—Ti oxides and brown amphibole. A few Fe—Ti oxide grains are rimmed by
brown amphibole or biotite (sample 4202-18; plane-polarized light). (d) Zonal structure of a large clinopyroxene grain (sample 4202-63;
plane-polarized light). (e¢) Aggregates of small olivine grains with 120° triple junctions (sample 4202-41; cross-polarized light). (f) BSE image
of coexisting magnetite and ilmenite included in clinopyroxene. Ol, olivine; Cpx, clinopyroxene; Pl, plagioclase; Mt, magnetite; Ilm, ilmenite.

Analytical methods

Zircons extracted from rock samples for U-Pb isotope
analysis were processed by conventional heavy liquid and
magnetic separation techniques. Zircon grains, together
with zircon standard 91500, were set in epoxy mounts,

which were then polished to expose the interior of the
grains. They were then imaged by cathodoluminescence
(CL) using a LEO 1450 VP (LEO Company, Germany)
scanning electron microscope connected to a Mini CL
system (Gatan Company, UK) at the Institute of Geology
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and Geophysics, Chinese Academy of Sciences in Beijing
(IGG-CAS), to characterize their internal structures and
choose potential target sites for U-Pb dating. The imaging
conditions were 15kV and 1-1nA, with a working distance
of 26 mm.

Measurements of U, Th and Pb isotopes were con-
ducted by SIMS using a Cameca IMS-1280 ion microprobe
at IGG-CAS. Analytical procedures are the same as
those described by Li et al. (2009). The O, primary ion
beam was accelerated at 13 kV, with an intensity of ~8 nA.
The ellipsoidal spot is about 20 pm x 30 um in size. U,
Th and Pb were analyzed at a mass resolution (M]AM)
of ~5400. Pb ion yields were increased by a factor of ~2
by flooding the sample surface with oxygen. Any effects
from surface contamination were minimized by pre-
rastering an ~20um surface area for 180s prior to
analysis. Each measurement consists of seven cycles,
and the total analytical time is ~12 min. U/Pb ratios were
calibrated against measured ratios in zircon standard
91500 with an age of ~1065Ma and assuming a
20pp/#BU  ratio of 017917 (Wiedenbeck et al., 1995).
Standard analyses were carried out after every three un-
known analyses. Calculated Th/U ratios in all unknown
samples were obtained by comparison with measured
Th/U ratios (Th/U=0-362) and *"Pb/**U in zircon
standard 91500 assuming closed-system behavior. A long-
term uncertainty of 15% (I RSD—Relative Standard
Deviation) for *Pb/**®U measurements of the standard
zircons was propagated to the unknowns (Li et al., 2010),
despite the fact that the measured **°Ph/**U error in a
specific session was generally around 1% (1 RSD) or less.
Measured compositions were corrected for common Pb
using 2™Pb correction. Corrections are sufficiently small
to be insensitive to the choice of common Pb composition,
and an average of present-day crustal composition
(Stacey & Kramers, 1975) was used for the common
Pb assuming that the common Pb is largely surface con-
tamination introduced during sample preparation.
Uncertainties on single analyses in the data tables are
reported at the 1o level; mean ages for pooled U/Pb (and
Pb/Pb) analyses are quoted at the 95% confidence inter-
val. ISOPLOT (version 3) was used for plots and age cal-
culations (Ludwig, 2003).

The fine-grained crosscutting dykes, clinopyroxene and
plagioclase separates from the wehrlites were cleaned
twice with 2% HCI, followed by twice with MiliQ) water,
and then powdered by hand in an agate mortar under
a fume hood at the University of Queensland (UQ),
Australia.

Major element analyses of minerals were obtained by
electron microprobe analysis (EMPA) using a JEOL
JXA-8100 Superprobe at the Guangzhou Institute of
Geochemistry, Chinese Academy of Sciences (GIG-CAS).
The accelerating voltage was set at 15kV with a beam

current of 20 nA and a beam diameter of 1-2 pm. The
peak centering and counting duration was 20s. The data
reduction was carried out using ZAF correction procedures

Whole-rock major element oxides were determined by
standard X-ray fluorescence (XRF) techniques. Samples
were prepared as glass discs using a Rigaku desktop fusion
machine. Analyses were performed on a Rigaku ZSX100e
instrument at GIG-CAS following the procedure described
by Goto & Tatsumi (1996). Analytical uncertainties are
mostly between 1 and 5%. Trace elements were determined
at GIG-CAS by inductively coupled plasma mass spectrom-
etry (ICP-MS) using a PE Elan 6000 system, following the
procedures described by Liu et al. (1996), and at the
University of Queensland (UQ) using a Thermo X-Series
II ICP-MS system following the detailed procedures
described by Wei et al. (2014), respectively. Precision and ac-
curacy of trace element analyses are commonly within
5%. Standard rock measurements at UQ), together with ref-
erence values, are listed in Supplementary Data 1 (supple-
mentary data are available for downloading at http://www.
petrology.oxfordjournals.org).

Sr, Nd and Pb chemical separation was performed
following a modified procedure described by Pin &
Zalduegui (1997), Deniel & Pin (2001) and Mikova &
Denkova (2007). Strontium was loaded on Ta filaments
with TaF; and measured fully automatically by thermal
ionization mass spectrometry (TIMS) on a VG Sector 54
system at UQ in a three-sequence dynamic mode using
858r/%Sr = 01194 for exponential mass fractionation cor-
rections. The NBS-987 standard was used as a monitor
of the detector efficiency drift of the instrument. This was
repeatedly measured during the analysis of the samples
(n=45) and yielded an average of 0-710222 20 (2c). The
deviation of this mean value from the laboratory’s previ-
ously obtained long-term average of 0-710249 28 (20)
was used to correct all samples. Nd isotopes were analyzed
fully automatically by multi-collector inductively coupled
plasma mass spectrometry (MC-ICP-MS) using a Nu
Plasma system at UQ, using a three-sequence dynamic
procedure. Instrument bias and mass fractionation
were corrected for by normalizing the raw ratios to
MONd/"*Nd = 0-7219. Eleven measurements of the JNdi-1
standard yielded an average of "*Nd/"**Nd =0-512113 +9
(20, n=11), which is consistent with the reported value of
0-512115 £7 (Tanaka et al., 2000). Seventeen analyses of an
in-house laboratory standard Ames Nd Metal yielded an
average of "Nd/"'Nd=0-511966 £16 (25). This value
was used as a calibration reference to monitor instrument
drift, which is usually less than 15 ppm. Lead separated
from column chemistry was doped with 4 ppb thallium
with a 2 T1/*®T1 ratio of 0-23875 was used for mass frac-
tionation correction. Pb isotopes were analyzed fully auto-
matically by MC-ICP-MS using the Nu Plasma system at
UQ. Repeated analyses of NBS 981 yielded average ratios
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of  2Pb/*"*Pb=36-705414, *Pb/*"*Pb=15.494 + 4
and *°Pb/**Pb=16-936+5 (=38, 20). Lead isotope
data are reported relative to NBS 981 values of
208pp 204ph = 36.718,  2Pb/***Pb=15-494 and *“°Pb/
2Ph =16-941 (Collerson ef al., 2002).

In situ trace element analyses of clinopyroxenes from
the Xiaohaizi wehrlites were made by laser ablation
(LA)-ICP-MS using an Agilent 7500a ICP-MS system
coupled with a Resolution M50-HR 193 nm ArF-excimer
laser sampler, following the analytical procedure described
by Tu et al. (2011). The laser operated at a repetition rate
of 10Hz, and the spot diameter was 53 pm. Ablation
signal and integration intervals were selected by careful in-
spection of the time-resolved analysis to ensure that no in-
clusions were present in the analyzed volume. Calibration
was carried out externally using NIST SRM 612 and KL
2 with "™Ca as an internal standard. Repeated analyses
of NIST 612 and KL 2 indicate that precision and accur-
acy are both better than 4% for most elements. For Cpx,
the relative standard deviations (RSD) of most elements
are better than 5%.

PETROGRAPHY OF THE STUDIED
SAMPLES

The cumulate wehrlites are massive, coarse-grained rocks
without prominent layering; from the bottom to the top
of the core, the amount of mafic minerals is relatively uni-
form. Clinopyroxene commonly appears as very large
grains (>>mm) and a single thin section may contain
only several clinopyroxene grains (Supplementary Fig. 1).
It is, therefore, very difficult to obtain modal proportions
by point counting. Normative compositions are therefore
calculated from bulk-rock compositions and constituent
mineral compositions using a least-squares regression
method. The mineral mode determined this way is slightly
different from that obtained by point counting
(Supplementary Dataset 2). Olivine (~22-55%) and clino-
pyroxene (~28-42%) are the most abundant cumulus
phases, whereas plagioclase (~5-8-25%) and Fe-Ti
oxides (~6-19%) are subordinate, occurring interstitially
between clinopyroxene and olivine (Fig. 2¢ and d).

Olivine occurs as large (up to 5 mm), slightly prismatic
subhedral grains or aggregates of smaller grains
(<0-2mm). The olivine aggregates commonly display
triple junctions with ~120° interfacial angles (Fig. 2e¢), a
texture considered to indicate subsolidus recrystallization
(e.g. Duchesne & Charlier, 2005). Clinopyroxene is com-
monly pinkish in color and occurs as very large (up to
15mm) euhedral to anhedral grains, often containing
abundant Fe—T1 oxides, plagioclase and rarely olivine in-
clusions (Fig. 2c). Some clinopyroxene grains display
prominent normal zoning from core to rim (Fig 2d).
Other clinopyroxene grains exhibit patchy replacement by

GENESIS OF XIAOHAIZI WEHRLITE INTRUSION

brown amphibole or biotite. Plagioclase has a grain size
ranging from 0-1 to 2 mm, forming subequant to strongly
tabular subhedral to euhedral grains (Fig. 2c and d);
no zoning in plagioclase was observed. In all samples
plagioclase inclusions are found within clinopyroxenes,
indicating that the two minerals crystallized simultan-
eously. These plagioclase inclusions are smaller than the
unenclosed plagioclase crystals (Fig. 2c and d). Fe-Ti
oxide minerals are anhedral magnetite and minor ilmen-
ite. They occur either as small (<3 mm) interstitial patches
between the silicate minerals or as tiny inclusions
(<400 pm) in the silicate minerals (Fig. 2c and d). A few
Fe—Ti oxide grains are rimmed by brown amphibole
(Fig. 2¢).

Wehrlites from the surface outcrop show identical tex-
tures to the drill-core wehrlites but are strongly altered
with clinopyroxene and plagioclase transformed to chlorite
and sericite (Supplementary Fig. 2a).

The dykes are fine-grained with a small proportion of
plagioclase phenocrysts (<1%) (Supplementary Fig. 2b).
The groundmass contains plagioclase (~60%), clinopyrox-
ene (~30%), Fe—T1 oxides (~10% ) and minor biotite.

RESULTS

Zircon U-Pb dating

Cumulate wehrlite samples 4202-a and 4202-b from the top
and bottom of the drill-core ZK4202, respectively, were
selected for zircon U-Pb dating. Most zircons are 100—
250 um 1in length, with aspect ratios between L1 and 2:1,
cuhedral to subhedral and transparent with no evident
inclusions. CL images of zircons show strong oscillatory
zoning with prominent sector zoning (Fig. 3a and b), indi-
cating a magmatic origin.

Zircons from sample 4202-a have low Th and U contents
(39-250 ppm and 44165 ppm, respectively) with relatively
highTh/U ratios of 0-62-161 (Table 1). Common Pb is gen-
erally low; values for fo05 (the proportion of common
?Ph in total measured *"°Ph) is lower than 0-4%. All 16
analyses are concordant in 206Pb/Q?’gU and 207Pb/QSE)Pb
within analytical error (Fig. 3c), yielding a concordia age
of 278:9£2.1Ma (20, MSWD of concordance = 0-20,
95% confidence level, probability of confidence = 0-65).

Zircons from sample 4202-b have low Th and U contents
(26133 ppm and 29-108 ppm, respectively) with high Th/
U ratios of 0-62—-123 and low common Pb (f505 <0-6%,
Table 1). Sixteen analyses have very similar apparent
27Ph/# U and *"°Pb/*U ages, and define a concordant
age of 278-4£21Ma (26, MSWD of concordance =
0-008, 95% confidence level, probability of confidence =
0-93; Fig. 3d).

Both samples from the top and bottom of the drill-core
7ZK4202 vyield consistent SIMS zircon U-Pb ages of
~279 Ma. However, the zircons clearly did not form at
the same time as the mafic minerals because zircon does
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Fig. 3. Cathodoluminescence (CL) images (a, b) for typical zircons and Tera—Wasserburg plots (c, d) for SIMS zircon U~Pb chronology of the
Xiaohaizi cumulate wehrlites (4202-a and 4202-b from the top and bottom of drill-core ZK4202, respectively).

not crystallize from mafic—ultramafic melts, but only from
more evolved magmas. The zircons could have formed
from the remaining magma after segregation of the mafic
minerals or from another batch of more evolved magma
of the same magmatic phase. In this case, the zircon age
gives only a minimum age for the Xiaohaizi wehrlites.
Nevertheless, the time lag between the mafic cumulate
formation and the crystallization of the zircons may be
small, probably within the uncertainty of the ages.

Mineral chemistry

Major elements

Major element compositions for olivine (171 analyses on 159
grains), clinopyroxene (428 analyses on 266 grains), plagio-
clase (278 analyses on 278 grains), magnetite (251 analyses
on 251 grains) and ilmenite (63 analyses on 63 grains) in
the cumulate wehrlites are presented in Supplementary
Datasets 3—6.

Olivine has a relatively uniform composition in
each sample. The olivine Fo [l100 x atomic Mg2+/
(Mg?* 4+ Fe?")] content in the wehrlites varies from 69
to 75 (Supplementary Dataset 3). No significant zoning
(Le. >2 in Fo content) is observed in single olivine
crystals; NiO abundances range from 0-03 to 0-24 wt %.
Olivines in the wehrlite from the surface outcrop samples

display identical compositions to those of the drill-core
samples.

Clinopyroxenes in the wehrlites are diopside in compos-
ition (Fig. 4a) with Mg# [100 x atomic Mg”"/(Mg*" +
Fe?")] ranging from 75 to 84 (Supplementary Dataset 4).
Clinopyroxene compositions fall within the field for alka-
line basalts (Fig. 4b). Variation of Mg#£ within a single
grain of clinopyroxene is generally small (<15) for grains
less than 5mm, but for three relatively larger grains
(>>mm) (see Supplementary Fig. 3 for details) the vari-
ation can be up to seven. The spread of Al,O5 and TiO,
contents within all clinopyroxene grains is wide (2-01—
547wt % and 0-69-2-20 wt %, respectively) and is nega-
tively correlated with Mg#t (for Mg#£ > 78) (Fig. 5a and
b). A weak negative trend can also be seen on an Mg# vs
Na variation plot at Mg# > 78 (not shown). CryO5 con-
tents are up to 105wt %. In contrast, CaO contents are
relatively constant. No apparent correlation exists between
CaO, CryO5 and Mg#£ (Fig. 5c and d).

Plagioclase in the wehrlites shows wide compositional
variations with An content [= 100Ca/(K + Na+ Ca)]
ranging from 53 to 86 (Supplementary Dataset 5). Some
intercumulus grains display normal zoning. Plagioclase
inclusions in clinopyroxene display similar variations
(55-83) in An content to the interstitial plagioclase
(53-86). Plagioclase inclusions typically occur within
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Fig. 4. Clinopyroxene compositions in the Xiaohaizi cumulate wehrlites. (a) Pyroxene quadrilateral (Morimoto ¢t al., 1988) showing that most
clinopyroxene analyses fall in the diopside field. Clinopyroxene compositions in the Xiaohaizi wehrlites are similar to those of the Lilloise intru-
sion, East Greenland (Chambers & Brown, 1995). (b) Variation between Ti and Ca + Na cations (a.p.f.u.; atoms per formula unit) showing
that most clinopyroxenes are similar to those in alkali basalts (Leterrier et al., 1982). Cpx, clinopyroxene.

clinopyroxenes with Mg# < 79. No correlation exists
between the Mg#£ of clinopyroxene and the An content of
plagioclase regardless of whether the grains are interstitial
or inclusions (Iig. 5e and f).

Magnetite ranges from near end-member Fe;O4 to
titanomagnetite containing up to 163wt % TiO,
(Supplementary Dataset 6). AloO3 ranges from 0-54 to
10-5wt % and MgO from 0-19 to 4-44wt %; the upper
ends of these ranges are typical of magnetites from al-
kali basalts (Frost & Lindsley, 1991). CroO5 contents of
magnetite inclusions hosted in olivine, clinopyroxene and
plagioclase show a wider range (0-51-119wt %) than in
the interstitial magmetite (0-46-3-69 wt %).

Ilmenite ranges from end-member FeliO5 to ferrian il-
menite containing 119wt % FesOs (Supplementary
Dataset 6). MgO contents range from 137 to 8:33 wt %
and MnO from 0-39 to 104wt %. CryOs is very low, up
to 0-18 wt %.

The stratigraphic variations in olivine and magnetite
composition in the drill-core are illustrated in Fig. 6b
and c¢. NiO contents in olivine and CroO3 contents in
magnetite decrease  systematically from the base
upwards.

Trace elements. 'Trace element data obtained by LA-ICP-
MS for clinopyroxenes of the cumulate wehrlites are given
in Supplementary Dataset 4. Clinopyroxenes display con-
vex chondrite-normalized rare earth element (REE) pat-
terns with negligible Eu anomalies (0-9-11, Fig. 7a,
Supplementary Dataset 4). In primitive mantle-
normalized trace element patterns (Fig. 7b), Nb, Sr, Zr
and Hf are depleted relative to neighboring REE. Th is
highly variable; in some clinopyroxenes, Th is enriched
over Nb, whereas in the others Th is depleted. This could
be ascribed to poor analytical precision for Th and Nb be-
cause the concentrations of these elements in some
samples are close to the detection limit. There is a good
agreement between trace element compositions obtained

by dissolution of mineral separates (Supplementary
Dataset 7) and n situ analyses (Fig. 7).

The trace element compositions of the clinopyroxenes
bear strong resemblance to those of the clinopyroxene
phenocrysts in the Emeishan high-Ti basalts (Fig 7,
Kamenetsky et al., 2012). We have calculated the trace elem-
ent composition of the hypothetical liquids in equilibrium
with the least evolved (Mg#£>80) clinopyroxenes, using
partition coefficients between clinopyroxene and melt (D)
taken from Hauri et al. (1994) and Norman et al. (2005),
for clinopyroxenes with similar major element compos-
itions to the clinopyroxenes from the wehrlites. The calcu-
lated melts are characterized by highly enriched light
REE (LREE) patterns [(La/Yb)x=14-27; (Dy/Yb)x=
16-2-9; Supplementary Dataset 8] and enrichment in
incompatible trace elements, (e.g. Th, U and high field
strength elements) similar to those of average ocean
island basalt (OIB; Sun & McDonough, 1989) and
Emeishan high-Ti basalts (Fig. 7; Kamenetsky et al., 2012).

Whole-rock chemistry

Major and trace element data for representative whole-
rock samples are given inTable 2. All the samples analyzed
for major and trace elements are relatively fresh and have
loss on ignition (LOI) values lower than 2:0 wt % (except
for sample 4202-16). The wehrlites have relatively low
Si0y (36:33-4168 wt %) and Al,Os (3-61-9-98 wt %),
high MgO (13-55-24-44wt %) and Fe,O5T (19-42—
2534wt %), with Mg# varying between 55 and 69
(Table 2). NasO and KyO range from 0-29 to 104wt %
and from 0-02 to 0-34 wt %, respectively; whereas CaO
contents show a relatively narrow range between 8-04
and 1249wt %. The wehrlites have very low contents
of PyO5 (0-01-0-03 wt %), except for sample 4202-49
(PoO5=0-11wt %). In Harker variation diagrams (Fig. 8),
TiOg, AlyOs, FeyO3T and CaO increase with decreasing
MgO. Sample 4202-39 has the highest Al,O5 (9-98 wt %)
and CaO (1249wt %), in keeping with the high mode of
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Fig. 5. Variation of TiOy (a), Al,O3 (b), CaO (c) and CryO;5 (d) in clinopyroxene vs Mg# and Mg# of coexisting clinopyroxene (e, {) vs An
content of plagioclase for the Xiaohaizi cumulate wehrlites. In (a)—(d) grain 1 from sample 4202-55, grain 2 from 4202-63 and grain 3 from
4202-64 (see Supplementary Data Fig. 3 for details) are distinguished from all the other analyses. In (f) fields of An—Mg## variation are
shown for the Panzhihua intrusion (Pang et al., 2009), Bushveld Complex (Ashwal et al., 2005; Tegner et al., 2006), Sept Iles intrusion (Namur
et al., 2011) and Lilloise intrusion (Chambers & Brown, 1995) for comparison. It should be noted that the Xiaohaizi wehrlites overlap with the
middle olivine—pyroxene—plagioclase cumulate zone of the Lilloise intrusion. Cpx, clinopyroxene; Pl, plagioclase; An, anorthite content.

interstitial plagioclase in this sample (Supplementary
Dataset 2).

The dykes crosscutting the wehrlites have low Mg#F
values of 35-39, with TiO, contents ranging from 168 to
294wt % (Table 2). Compared with the wehrlites, they
have higher SiO, (50-35-56-25 wt %) and Al,O5 (14-02—
16-41wt %), but lower FeoO3T (8-55-12-36 wt %). Na,O

and KyO vary from 3-51 to 4-68 wt % and from 160 to
2-89 wt %, respectively. On a volatile-free total alkalis—
510, (TAS; Le Bas et al., 1986) diagram (Fig. 9), the dykes
show alkaline affinities. On plots of major element oxides
against MgO (Fig. 8), TiO,, FeyOs3T and CaO decrease,
whereas Al,Og increases with decreasing MgO. The
dykes have very low concentrations of Ni (0-89-5-11 ppm)
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Fig. 6. (a) Schematic cross-section of the Xiaohaizi cumulate wehrlites from the drill-core (ZK4202) showing the total thickness investigated in
this study, the distribution of dykes and the positions of analysed samples; (b—f) stratigraphic variations in mineral and whole-rock compositions
within the Xiaohaizi wehrlites. (b) NiO content in olivine; (¢) CryOj content in magnetite; (d) Mg# of whole-rocks; (e) TiO, content of
whole-rocks; (f) FesO3T content of whole-rocks. Data points for minerals represent average values. Ol, olivine; Mt, magnetite; WR, whole-

rock; Q, Quaternary; Wh, wehrlite.

and Cr (0-06-3-8lppm) (Table 2), suggesting that their
parental magmas had experienced significant olivine and
Fe—Ti oxide fractionation.

The chondrite-normalized REE patterns of the wehrlites
are subparallel, characterized by a slight enrichment
of the LREE over the heavy REE (HREE) [(La/
Yb)n=2-8-7-3 with Yb enrichment ranging from 24 to
4-4 times chondrite; Fig. 10a]. The REE patterns of these
samples display a weak—moderate positive Eu anomaly
(Eu/Eu* =103-123), which may reflect the role of plagio-
clase accumulation in their genesis. In primitive mantle-
normalized trace element patterns (Fig. 10b), Ba, Ta, Sr
and Ti typically display positive anomalies compared with
the neighboring elements. The wehrlites are characterized
by Th—U depletion and striking P depletion. The positive
Sr and Ti anomalies may indicate plagioclase and Fe—Ti
oxide accumulation. The wehrlites have low concentrations
of incompatible elements (e.g. P9Os, REE, Zr) consistent
with a cumulus origin. Sample 4202-49 displays the highest
concentration of LREE. The presence of veins composed
of fine-grained plagioclase, clinopyroxene and amphibole
(Supplementary Fig. 2¢) may contribute to this LREE en-
richment. Wehrlites from the surface outcrops show similar
REE and trace element patterns to sample 4202-49
(Fig. 10). Therefore, we consider that the wehrlites
from the outcrop and the drill-cores belong to the same
intrusion.

The dykes display strong enrichment in LREE relative
to HREE (Fig. 10a) with (La/Yb)x up to 19-2 and weak
Eu anomalies (Eu/Eu* =0-95-103; Table 2). All samples

have similar trace element patterns, resembling OIB (Sun
& McDonough, 1989; Fig. 10b) and the high-Ti basalts
from the Emeishan LIP (Fig. 7, Kamenetsky et al., 2012).
All the samples except sample 4202-16 have Nb/U (36-5—
46-8) and Ce/Pb (18-2-37-8) ratios similar to those of
mantle-derived melts (Hofmann, 2003).

Sr—Nd-Pb isotopic compositions
Sr—Nd isotope data (Table 3) were obtained for whole-
rocks, clinopyroxene and plagioclase mineral separates
from the wehrlites; Pb isotope data were obtained for the
plagioclase separates (Table 4). The dykes are relatively
fresh in thin section (Supplementary Fig. 2b) and have
low LOI (Table 2), thus their Sr—Nd isotope compositions
can be considered representative of the unaltered compos-
itions. Only fresh and transparent parts of clinopyroxene
and plagioclase grains were handpicked and analyzed,
thus the effects of alteration are minimized. In addition,
plagioclase usually has negligible Rb compared with Sr
(Table 3) and thus the age-corrected initial Sr isotope com-
position is less sensitive to Rb mobility. Some wehrlite sam-
ples display local alteration of clinopyroxene, olivine and
plagioclase (Supplementary Fig. 2d and e¢), thus Rb could
be mobile during alteration and the age-corrected
8781 /%Sr of the whole-rocks could be slightly affected.
Initial isotopic compositions for the Xiaohaizi wehrlites
and the crosscutting dykes were age corrected to 279 Ma
(see Discussion section for justification for choice of ages).
The wehrlites have uniform ¥ Sr/*°Sr; (0-7042-0-7043) and
slightly positive ¢Nd; values (0-8-11) (Table 3; Fig. 1la
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Fig. 7. Chondrite-normalized REE patterns (a) and primitive
mantle-normalized multi-element patterns (b) for clinopyroxenes (in
situ LA-ICP-MS analyses) and clinopyroxene separates (ICP-MS ana-
lyses on total dissolution of 50 mg material) of the Xiaohaizi cumulate
wehrlites. Also shown for comparison is a field for clinopyroxenes
from the Emeishan high-Ti basalts (Kamenetsky et al., 2012). The com-
positions of the hypothetical liquids in equilibrium with less evolved
(Mg#t>80) clinopyroxenes were calculated using partition coeffi-
cients from Hauri et al. (1994) and Norman et al. (2005). Chondrite
and primitive mantle normalization values are from McDonough &

Sun (1995).

and b). Clinopyroxene separates from the wehrlites display
relatively lower ®’Sr/*°Sr; (0-7038-0.7041) and higher eNd;
(10-19) values than those of the respective whole-rocks.
Plagioclase separates have nearly constant %Sr/*°Sr;
(0-7042-0-7043) and eNd; (0-4—10) values that are similar
to those of the whole-rocks. The intermediate ¢Nd; values
of the whole-rocks could be accounted for by a mixture
of clinopyroxene and plagioclase. The whole-rocks have
comparable  ¥Sr*°Sr; to the plagioclase separates
(Table 3, Fig. 11b) and deviate from the possible mixing
trend between clinopyroxene and plagioclase. The shift
of whole-rock ¥’Sr/*®Sr; towards higher values can be
ascribed to alteration. Plagioclase **°Ph/**Pb; ranges
from 1746 to 17-69, *”’Pb/***Phb; from 15-47 to 15-50 and
208ph/ 2 Phy; from 3781 to 37-95 (Table 4, Fig. llc and d).
The Pb isotope compositions of plagioclase are

GENESIS OF XIAOHAIZI WEHRLITE INTRUSION

systematically lower than those of the least contaminated
dykes in the Xiaohaizi area, but similar to those of
the Keping basalts (Wei et al., 2014; Fig. 11c and d). In Pb—
Pb isotope space (Fig. llc and d), *”’Pb/***Pb; and
208ph/2*Phy; of the plagioclase separates correlate posi-
tively with *°Pb/?***Pb; and plot well above the Northern
Hemisphere Reference Line (Hart, 1984).

Initial ¥Sr/*°Sr and eNd values of the crosscutting dykes
range from 0-7034 to 0-7057 and from —3-7 to 4-8, respect-
ively. Sample 4202-16 is distinct from the other samples
in having the highest *’Sr/*®Sr; (0-7057) and lowest eNd;
(=3-7) (Table 3, Fig. lla). Except for sample 4202-16, the
dykes have lower *’Sr/*®Sr; and higher éNd; than the wehr-
lites. They also exhibit similar ¢Nd; to the least contami-
nated dykes intruding the Carboniferous—early Permian
sedimentary sequence in the Xiaohaizi area (Zhou et al.,
2009; Wei et al., 2014), but have apparently higher eNd;
than the Keping basalts (Fig. 11a; Zhou et al., 2009; Zhang
et al., 2010a; Yu et al., 2011b; Li et al., 2012b; Wet et al., 2014).

DISCUSSION
Rock types and age relations
One of the prominent features of the Xiaohaizi area is the
presence of numerous dykes that crosscut the wehrlite and
syenite. The crosscutting relationships suggest that the
wehrlites were emplaced first, followed by the Xiaohaizi
syenite, mafic dykes and quartz syenite porphyries. The
ages of the Xiaohaizi wehrlites obtained in this study are
essentially consistent with the SIMS U—Pb concordia age
of 279-7£2-0Ma (20) for the Xiaohaizi syenite (Wei &
Xu, 2011) and ages determined using other methods (277—
282 Ma; Yang et al., 2006; Li et al., 2007; Zhang et al.,
2010a). Yu (2009) reported a sensitive high-resolution
ion microprobe (SHRIMP) zircon U-Pb age of
278-4 £2-2 Ma for a quartz syenite porphyry, which is in-
distinguishable from that of the syenite and the wehrlites.
These ages suggest that diverse magmatic rocks in the
Xiaohaizi area were essentially emplaced simultaneously.
Figure 12 shows a probability density plot for all the
available ages from the Xiaohaizi and adjacent areas in
the Tarim LIP. The Tarim LIP is characterized by two
main episodes (~289 Ma and ~279 Ma) of magmatism.
The earlier episode is represented by voluminous flood
basalts and rhyolites, formed at 286-292 Ma, and peaked
at 288.9+13Ma (20; Iig 12). The later epidode is
marked by ultramafic-mafic—felsic intrusions, rhyolites,
and numerous mafic and felsic dykes in the Bachu and
Pigiang areas (Fig. 1). These rocks were emplaced between
272 and 284 Ma, with the main pulse at 277-284 Ma peak-
ing at 278-6+x12Ma (20; Fig 12). The age of the
Xiaohaizi wehrlite intrusion, combined with its genetic
relationships to the Bachu dykes and syenites (see discus-
sion below), suggests that it is an important part of the
second stage of the Tarim LIP.
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Table 2: Whole-rock major and trace element data.

Cumulate wehrlites

Sample: 4202-13'  4202-14 4202-18 4202-24 4202-27 4202-30 4202-33 4202-39 4202-41" 4202-43'  4202-47 4202-49 4202-51'  4202-52'
Major elements (wt %)

Sio, 36-83 36-45 3715 37:81 36-33 37.07 3793 3761 3853 3795 3854 3883 3826 3781
TiO, 312 315 315 3:03 3:08 316 251 354 2-30 277 2.85 2-31 244 349
Al,03 5.29 5.14 5.14 5.92 5.50 5.15 369 9.98 4.91 5.54 5.03 543 361 553
Fe 03T 25.34 24.84 25.02 24-41 2413 2491 2430 2213 2272 2365 23.06 2290 2298 2276
MnO 0-23 0-22 0-22 0-22 0-22 0-23 0-24 0-16 0-21 0-22 0-22 023 0-23 0-23
MgO 20.07 19-15 19-54 1871 18-83 19-89 2252 1355 22.00 20-25 19.87 2170 2263 20-66
Ca0 890 8-68 940 953 923 9-56 858 12-49 9.33 9-61 9-96 8-09 876 898
Na,0 0-36 0-34 0-40 0-54 0-34 0-32 0-29 0-58 0-32 0-36 0-41 0-59 043 0-45
K0 0-02 0-34 0-06 0-06 0-16 0-02 0-05 0-03 0-02 0-03 0-10 0-14 0-11 0-15
P,05 0-01 0-01 0-02 0-03 0-01 0-01 0-02 0-01 001 0-02 0-02 0-11 0-02 0-01
Lol -0-74 1-36 -0-65 -0-80 1-59 -0-87 -0-68  -0-60 -0-88 -0-94 -0-59 -0-85 -0-02 -0-60
Total 994 994 99-4 99.5 994 994 994 99.5 995 99.5 99.5 995 994 99.5
Mg# 61 60 61 60 61 61 65 55 66 63 63 65 66 64
Trace elements (ppm)

Sc 362 35-1 40-3 376 379 393 39-8 419 388 391 42.0 314 402 35-4
\ 505 372 383 359 391 380 404 548 336 47 355 331 300 422

Cr 753 539 587 551 615 597 1147 456 1056 837 727 649 1201 1026
Co 179 138 164 165 143 156 172 124 163 160 147 161 158 154

Ni 589 483 566 533 503 535 648 633 723 677 537 601 684 626
Cu 197 170 275 224 161 182 168 305 139 146 204 154 738 57-3
Zn 161 149 161 162 182 160 167 146 137 151 1563 1563 166 160
Ga 138 12.8 133 141 132 12.9 107 17-4 11-3 135 125 114 10-7 12-3
Rb 0-46 1-61 1.50 1-10 6-43 0-62 1-31 0-40 0-37 0-49 277 271 240 3:95
Sr 190 197 226 231 229 222 127 342 171 200 224 226 111 214

Y 6-02 6-15 6-63 7-26 5.82 6-19 6-79 652 5.94 6-41 7-46 8-89 7-04 5.87
Zr 286 333 327 394 256 26-8 34.3 277 24.0 279 46-8 411 332 30-7
Nb 245 2.60 2.95 4.37 1.76 1.94 353 2.00 1-60 222 414 6-11 342 5.18
Cs 0-01 0-05 0-05 0-04 0-23 0-03 0-03 0-01 0-01 0-01 0-08 0-06 0-10 0-18
Ba 34-6 695 64.2 765 632 436 40-4 52.4 243 331 80-5 136 484 57.3
La 239 2.85 2.73 392 2.01 2.02 2.96 2.50 1-80 226 384 7-53 4.78 221
Ce 6-58 7-53 7-56 10-09 5.87 6-15 866 7-36 5.45 6-47 10-10 1851 11.01 6-07
Pr 1-08 1.22 1.28 1.67 1-03 110 1-36 1-20 0-96 110 1-69 2.70 1.64 101
Nd 5.59 6-44 6-57 7-91 5.63 5.97 7-04 6-29 5.14 5.81 7-94 12:34 7-15 5.26
Sm 1-64 1.77 1.82 2.06 1-62 1.75 1.88 1-81 1.568 1.72 214 2-80 191 1.54
Eu 0-63 0-68 0-66 078 0-62 0-65 0-67 0-74 0-61 0-68 0-78 0-94 0-80 0-64
Gd 1.78 1-79 1-82 2.05 1-68 1.76 193 1-85 1.76 1-87 2-09 2-66 2.07 1.70
Tb 0-26 0-29 0-30 0-34 0-26 0-29 0-32 0-29 0-26 0-28 0-33 0-41 0-30 0-25
Dy 143 1.54 1-60 1.77 1-45 1-49 1.568 1.62 1-40 1.54 1.78 221 1.65 1.37
Ho 0-26 0-28 0-28 0-32 0-25 0-28 0-29 0-27 0-25 0-28 0-33 0-39 0-30 0-25
Er 0-61 0-67 0-68 0-76 0-58 0-66 0-69 0-63 0-60 0-65 0-78 0-94 0-71 0-60
Tm 0-08 0-08 0-08 0-10 0-08 0-08 0-09 0-08 0-08 0-08 0-10 012 0-09 0-08
Yb 0-45 0-50 0-49 0-57 043 0-48 0-50 0-46 0-44 0-47 0-58 0-70 0-53 0-45
Lu 0-06 0-07 0-07 0-08 0-07 0-07 0-08 0-06 0-06 0-06 0-09 0-10 0-07 0-06
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Cumulate webhrlites

Sample: 4202-13'  4202-14 420218 4202-24 420227 4202-30 4202-33 4202-39 4202-41" 4202-43'  4202-47 4202-49 4202-51"  4202-52'
Hf 1.06 123 114 132 1.00 11 130 119 100 110 165 1.41 121 112
Ta 027 0-24 0-30 0-42 0-18 0-24 032 024 0-18 0-22 0-38 0-47 0-29 0-44
Pb 0-99 0-83 0.87 0-66 2.43 0-87 112 108 0-33 1.67 1.55 1.36 5.32 177
Th 013 0-29 0-15 0-32 0-11 0-11 022 007 0-06 0-09 0-56 0-43 0-17 0.08
U 0.03 0.08 0.04 0-06 0.04 0.03 005 002 002 0.02 0-11 0-09 0-07 003
Eu/Eu* 112 1.15 1.09 114 114 112 106 122 111 115 111 1.03 1.22 120
Cumulate webhrlites Dykes

Sample: 4202-53' 420255 4202-57' 4202-58 4202-60 4202-61" 4202-63 4202-64 XHZ-15' XHZ-16' 4202-9' 4202-16 4202-20' 4202-45'
Major elements (wt %)

Si0, 39.68 38.78 4057 3911  39.84 39.23 4168 39.25 51.04 5239 5625 50.35
TiO, 3.85 2.04 2.04 173 175 183 173 1.94 2.62 248 168 2.94
Al,05 630 4.56 369 4.36 4.99 409 545 4.47 14.27 14.02 1641 14.28
Fe,0sT 2049 22.66 2012 2208  20-80 2174 1942 22.04 12-36 1072 855 11.99
MnO 022 0-24 0-21 023 0-21 022 020 022 0-15 013 014 018
MgO 18-81 23.63 2257 2444 2329 2432 2155 23.36 3.60 294 235 3.81
Ca0 1012 8.04 10-45 8.06 8.77 809 804 8.34 7.74 652  5.06 7-60
Na,0 0-66 0-35 035 0-36 0-42 058  1.04 0-37 3.84 351 468 3.92
K,0 0.07 0-05 0.07 0-04 0-06 006 029 0-09 1-60 234 289 1.82
P,Os 0.03 0.01 0-02 002 0-02 002 003 002 091 051 067 0.87
Lol -0-73 -0-87 -061  -093  -066 -069  0.07 -0-62 145 419 089 1.82
Total 99.50 99.47 99.48 9949  99.48 99.49 9950 99.47 99.57 99.76 9955 99.58
Mg# 65 67 69 69 69 69 69 68 37 35 35 39
Trace elements (ppm)

Sc 40.0 332 468 320 34.4 335 338 348 353 146 161 1241 15-3
v 307 324 262 278 283 242 284 150 247 81 132 42 115

Cr 830 813 1430 939 994 1256 1203 845 837 0-16 381 044 0.06
Co 146 162 153 162 155 172 166 132 121 34.7 575 129 19-4
Ni 596 708 731 750 695 826 721 795 865 4.38 511 268 0-89
Cu 132 105 59.6 68.0 745 93.0 112 25.2 194 135 678 373 74.8
Zn 140 147 136 136 126 144 149 120 127 980 104 101 935
Ga 124 9.70 9.51 8.88 9.48 9.21 931 613 9.71 26.1 231 284 25.9
Rb 1.08 1.34 173 0.79 136 1.24 240 942 105 29.7 369 545 221
Sr 273 223 116 220 233 153 159 158 197 862 614 818 918

Y 9.14 5.06 854 5.29 5.66 5.96 587  10-1 111 42.0 317 527 42.0
Zr 58.1 24.2 36.0 233 28.0 283 299 547 772 475 247 732 426
Nb 15 1.90 3.25 1.88 2.09 2.77 282 700 8.09 89.9 421 124 87.2
Cs 0.02 0.04 0-06 0.03 0-06 0.02 006 043 0-49 035 015 032 0-12
Ba 65.7 59.5 386 49.2 66.0 36.6 452 132 154 716 1128 969 697
La 459 1.97 3.09 2.23 2.65 255 295 800 9.70 793 480 114 68-1
Ce 11.95 5.56 8.95 6.06 6-92 675 800 192 229 168 97.7 250 155
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Table 2: Continued

Cumulate webhrlites Dykes

Sample: 4202-53' 4202-55 4202-57" 4202-58 4202-60 4202-61" 4202-63 4202-64 XHZ-15" XHZ-16' 4202-9' 4202-16 4202-20' 4202-45'

Pr 1-85 0-91 1.60 1.02 112 1.09 119 280 324 188 12:3 278 178

Nd 8.98 4.86 774 5.19 5.65 5.45 600 132 147 732 499 107 716

Sm 2.46 1.37 2.24 140 152 1.56 1.63 3-20 3-48 14.3 972 196 14-4

Eu 0-95 0-63 0-80 0-65 0-60 0-60 0-61 1.00 1.09 4.51 313 5.71 4.49
Gd 259 1.38 2.45 1.47 159 1.70 1.63 3.04 3.48 12.66 873 1591 12.74
Tb 0-39 0-23 0-36 0-24 0-26 0-25 0-26 0-48 0-54 1.75 1-30 224 1-80
Dy 213 118 1.99 129 1.36 1-39 1-34 251 281 9.26 680 117 9.44
Ho 0-39 0-22 0-36 0-23 0-25 025 0-26 0-44 0-49 168 1.24 212 1.70
Er 0-92 0-50 0-85 0-65 0-60 0-61 0-61 1.06 117 4.17 319 5.37 4.22
Tm 0-12 0-06 0-11 0-07 0-07 0-08 0-08 0-13 0-15 0-51 0-42 0-67 0-52
Yb 0-70 0-39 0-63 0-41 0-44 0-46 0-45 0-77 0-88 309 2.63 4.04 3.05
Lu 0-10 0-06 0-09 0-06 0-07 0-06 0.07 0-11 0-12 0-43 0-39 0-56 0-42
Hf 1.83 0-92 1.37 0-86 1.03 1.02 11 1-67 2.38 10-64 829 158 9-28
Ta 0-86 0-22 0-29 0-20 0-25 0-26 0-31 0-566 0-64 5.17 2.95 6-98 5.00
Pb 0-65 0-31 1.01 0-08 0-76 0-56 0-84 1.97 3-30 511 6-49 6-63 8.65
Th 0-31 0-17 0-20 0-16 0-26 024 043 0-92 161 7-28 850 126 71
U 0-07 0-03 0-05 0-04 0-06 0-06 0-09 0-26 0-43 1.97 1-80 3-39 1.86
Eu/Eu* 114 1.16 1.04 1.16 117 112 113 0-96 0-95 1.00 1.02 0-96 0-99

Mg# = 100 Mg/ (Mg + Fe>*); LOI, loss on ignition.
'Samples analyzed at UQ; the others were analyzed at GIG-CAS.

20

7
-(a) 1 (b)
6 | -
[ a 15
S °F Bl ¥
T 4L S
z b ° ° o = 10 °
o 3r s R ® o |
= i =
20 a oBe < 5l QB)Q)@@
1L I [6)
0 L 1 1 1 1 1 1 0 1 1 1 1 1 1
0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
MgO (wt%) MgO (wt%)
30 15
(c) | (d)
__25F & o | °
< ! o Be%y, <
- >~ L
3 20t ° o ¥ a 0o ©
- i = 9r a0 <
O 15F o} Ro
P a © Wehrlite 8 r a
[T A Dyke (this study) 6
10 - a Dyke (literature) S
r A\, Liquid line of descent [
5 L 1 L 1 L 1 n Il n Il n Il n 3 L 1 L 1 L 1 L 1 L 1 L 1 L
0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
MgO (wt%) MgO (wt%)

Fig. 8. Variation of selected major oxides vs MgO for the Xiaohaizi cumulate wehrlites and dykes. Also plotted for comparison are data for
dykes intruding the sedimentary strata around the Xiaohaizi syenite complex. Fractional crystallization was modeled for the dykes using
MELTS (Ghiorso & Sack, 1995) at 0-2 GPa for a moderately hydrous magma composition (0-8 wt % H,O in starting magma), with oxygen fu-
gacity at the quartz—fayalite-magnetite (QFM) buffer. Sample 08K'T18-9 (Zhang et al., 2010a) was chosen as the starting magma composition
as this sample had relatively higher MgO, TiOy and Fe,O3T contents. Data sources: dykes (literature) from Zhou e/ al. (2009), Zhang et al.
(2010a) and Wei et al. (2014).
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Fig. 9. (a) Total alkalis (NayO +K5,O) vs SiOy (TAS; Le Bas et al., 1986). The alkaline—subalkaline divide is from Irvine & Baragar (1971). It
should be noted that the wehrlites are plotted on the diagram only for comparison rather than classification. Data sources as in Fig. 8; syenites
from Sun et al. (2008) and Wei & Xu (2011); quartz syenite porphyries from Yang et al. (2007) and Yu (2009).

Formation of the crosscutting dyke
magmas through closed-system fractional
crystallization

The positive correlations between TiOg, FeoO5T, CaO and
MgO (Fig. 8) for the dyke are consistent with olivine,
clinopyroxene and Fe—T1 oxide fractionation. This is sup-
ported by the apparently low Ni and Cr contents. Al,Oj5
correlates negatively with MgO (Fig. 8), arguing against
significant plagioclase fractionation. The potential effects
of closed-system magmatic differentiation in a magma
chamber can be evaluated by calculating a liquid line of
descent (Fig. 8) using MELTS (Ghiorso & Sack, 1995),
assuming upper-crustal pressures, moderately oxidizing
conditions and moderate water contents. Low-pressure
fractional crystallization of olivine + magnetite followed
by clinopyroxene 4+ magnetite assemblages yields a liquid
line of descent that is consistent with the major element
variations displayed by the dykes (Fig. 8). The more
evolved dykes could be formed by 36% fractional crystal-
lization from a magma with the same composition as
sample 08KT18-9 with relatively higher MgO, TiO, and
FeoO4T contents [starting composition data from Zhang
et al. (2010a)].

The dykes (except for sample 4202-16) show enrichment
in Nb—Ta (Fig. 10b) and have relatively high Nb/U (36-5—
46-8), Cee/Pb (18-2-37-8) and Nb/La (1.08-128) ratios simi-
lar to OIB (Hofmann, 2003); they also have low

(Sr/*°Sr);  (0-70337-0-70345) and high eNd; (4-3-4-8)
(Fig. 11a). Similar compositions have also been observed
for mafic dykes intruding the Carboniferous—early
Permian sedimentary sequence in the Xiaohaizi area
(Zhou et al., 2009; Zhang et al., 2010a; Wei et al., 2014) (Figs
8 and 10a, b), suggesting a similar emplacement age. It
seems that they were not affected by crustal contamination
and that their trace element and isotopic characteristics re-
flect those of their mantle source. The exception is sample
4202-16, which may have experienced crustal contamin-
ation given its low Nb/U (23-4), Ce/Pb (15-1) and Nb/La
(0-88) ratios, high (*’Sr/*®Sr); (0-70568) and negative eNd;
(=37).

The dykes exhibit higher éNd; than the Keping basalts
(eNd; =—2 to —4), which have been proposed to be derived
from a long-term enriched Tarim subcontinental litho-
spheric mantle (SCLM) source (Zhou et al., 2009; Zhang
et al., 2010a; Li et al., 2012b; Wei et al., 2014). This implies
that the dykes cannot be derived from the Tarim SCLM
source. The uncontaminated dykes exhibit incompatible
trace element patterns (Fig. 10) and ratios (e.g. Nb/Zr,
La/Nb) strikingly similar to those of OIB and the least
contaminated Emeishan high-Ti basalts, but are distinct
from mid-ocean ridge basalt (MORB; Fig. 13). They
also have trace element ratios (e.g. Nb/La=108-128)
and Nd isotope compositions (eNd;=4-3—4-8) similar
to the proposed plume component (Nb/La=10-11,
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Fig. 10. Chondrite-normalized REE patterns (a) and primitive
mantle-normalized multi-element patterns (b) for the Xiaohaizi cu-
mulate wehrlites and dykes. Also shown for comparison are data for
dykes intruding the sedimentary strata around the Xiaohaizi syenite
complex and a typical ocean island basalt (OIB) from Sun &
McDonough (1989). Chondrite and primitive mantle normalization
values are from McDonough & Sun (1995). Data sources as in Figs 8
and 9.

eNd; =4-6-4-8) for the Emeishan high-Ti basalts (Xu
et al., 2001). These features suggest that the magmas that
formed the dykes were probably derived from an enriched
asthenospheric mantle source.

Formation of the Xiaohaizi wehrlites
through open-system fractionation

Estimates of pressure, temperature and oxygen fugacity
Establishing the pressure and temperature of formation of
the wehrlites is difficult as the mineral assemblages are
not compatible with many established thermobarometers.
The syenite, which intruded the Xiaohaizi wehrlites, is
therefore used to constrain the upper limit of the crystal-
lization pressure for the wehrlites. This pressure is esti-
mated using the Al-in-hornblende thermobarometer
(Anderson & Smith, 1995) for the Xiaohaizi syenite and

ranges between 16 and 2:1+£0-6 kbar (Supplementary
Dataset 9). The clinopyroxenes of the Xiaohaizi wehrlites
have low Na and Al contents and AIVI/AIIV ratios, indicat-
ing that they probably crystallized at low pressures, as
high Na, Al and AIY'/AI"V are characteristic of clinopyrox-
enes crystallized at high pressures (Wass, 1979; Dobosi &
Fodor, 1992; Haase et al., 1996).

Application of the magnetite—ilmenite thermometer and
oxygen barometer [using the ILMAT software of Lepage
(2003)] to the magnetite-ilmenite pairs included in clino-
pyroxene yields temperatures ranging between 609 and
698°C, with one pair yielding a significantly higher tem-
perature of 814°C (Fig. 14; Supplementary Dataset 10).
Oxygen fugacities calculated from these mineral pairs are
high to very high, ranging from FMQ — 16 to FMQ —
0-2, where FMQ is the fayalite-magnetite-quartz buffer.
The calculated temperatures and oxygen fugacities for the
interstitial magnetite—ilmenite pairs range from 571 to
762°C and from FMQ — 25 to FMQ 414, respectively.
The temperatures obtained range between 571 and 814°C;
even if these were co-precipitating phases they probably
reflect significant subsolidus re-equilibration.

Liquid line of descent

The petrography of the wehrlites suggests that olivine and
clinopyroxene are cumulus phases, whereas the Fe—T1 oxides
(magnetite and ilmenite) and plagioclase are interstitial be-
tween olivine and clinopyroxene. This suggests later crystal-
lization of plagioclase and Fe—Ti oxides compared with
cumulus olivine and clinopyroxene. In addition, smaller
plagioclase and Fe—T1 oxide grains occur as inclusions in
some clinopyroxenes, indicating that they crystallized simul-
taneously. The sequential crystallization of minerals can
alsobe determined using a geochemical approach.

At higher Mg#£ (> ~78), the increasing TiO, contents in
clinopyroxenes with decreasing Mg## (Fig. 5a) follows a
normal mafic mineral (olivine 4 clinopyroxene) fraction-
ation trend, arguing against significant Fe—Ti oxide frac-
tionation. At Mg# <~78, however, with decreasing
Mg##, TiOy does not display any significant variation
(Fig. 5a). This can be attributed to Fe—Ti oxide fraction-
ation by which the increase of TiO4 caused by olivine and
clinopyroxene fractionation is compromised. In addition,
chromium is highly incompatible in plagioclase
(D(P;l:g/hq =0-02-0-11; Bindeman et al., 1998; Aigner-Torres
et al., 2007), slightly incompatible to compatible in olivine
(DOVM1=0.6-19; Beattic, 1994), compatible in clino-
pyroxene (Dgfx/hq =3-8; Hart & Dunn, 1993), and
highly compatible in Fe-Ti osides (DM =50-230;
DC;“ "1 =11-43; Leeman et al., 1978; Klemme et al., 2006).
Fractionation of Fe—Ti oxides, therefore, will leave the
residual liquid strongly depleted in Cr; thus, clinopyroxene
crystallizing from this resultant liquid will have a low Cr
content. In the Xiaohaizi case, clinopyroxenes with
higher Mg# (>~78) are relatively rich in CroOs3 (up to
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Table 4: Pb isotopes for plagioclase separates of the Xiaohaizi cumulate wehrlites

Sample u Th  Pb  Pb/ 426 ZTh/ 2Pb/ 426 U/ 2Pb/ +2c Z8U/ 2%Pb/ +26' *Pb/ 26" *®Pb/ 420’
204Pb 204Pb 204Pb 204Pb 204Pb 204Pb 204Pbi 204Pbi 204Pbi

4202-30 PI 003 0-11 4.28 37.873 0-005 1.706 15477 0-002 0-003 17531 0.002 0442 37-849 0.006 15476 0-002 17511 0-020
4202-41 PI 001 004 1.63 37.845 0-004 1430 15482 0-001 0003 17561 0.002 0362 37-825 0.004 15481 0-001 175645 0.016
4202-51 PI 001 0.04 273 37.905 0-004 1.045 155612 0001 0.002 17-652 0-002 0-294 37-890 0-004 15511 0-001 17-639 0.013
4202-52 PI 001 0.03 153 37829 0-003 1285 15474 0-001 0.002 17470 0-001 0320 37-811 0-003 15-473 0-001 17456 0.014
4202-58 PI 001 003 205 37921 0-004 1.094 15492 0-002 0002 17-637 0-001 0-324 37905 0-004 15491 0-002 17623 0-014
4202-61 PI 003 009 271 37983 0-003 2053 15497 0-001 0004 17718 0-001 0619 37955 0.004 15496 0-002 17-690 0-027

"The quoted uncertainties in initial Pb isotopes are calculated by error propagation analysis using uncertainties of +£10%
for U, £5% for Th and +3% for Pb.
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Fig. 11. (a) Initial Sr and Nd isotopic compositions of mineral separates and whole-rock samples of the Xiaohaizi cumulate wehrlites and
dykes. The continuous line denotes a modeled AFC: trend between a parental magma with trace element characteristics similar to those of an
Emeishan high-Ti picrite (EM-79, Chung & Jahn, 1995) with 231 ppm St, 115 ppm Nd, ¥Sr/**Sr; = 0703374 and eNd; =4-75 and a hybrid crustal
contaminent of 30% carbonate and 70% Archean and Neoproterozoic basement with $74 ppm Sr, 27.6 ppm Nd, ¥Sr/*Sr;=0.7090 and
eNd; =—14-5; Ky Sr=0-71, Kp Nd =0-25 (Bohrson & Spera, 2001), 7=0-5. (b) Enlargement of (a). Continuous and dashed lines connect a set
of whole-rock, clinopyroxene and plagioclase analyses from samples 4202-41 and 4202-52, respectively; the dotted line connects a clinopyrox-
ene—plagioclase pair from sample 4202-30. Error bars for eNd; are shown at the 26 level and for *’Sr/*Sr; the error bars are smaller than the
symbols. (c, d) Initial Pb isotope compositions of plagioclase in the Xiaohaizi wehrlites and Bachu dykes. Continuous lines are modeled AFC
trends with tick marks at 10% assimilation for a parental magma similar in isotope composition to a Bachu dyke (BC-2, Wei et al., 2014) with
0-6 ppm Pb, 2%°Ph2%*Ph, =18.113, 2" Pb/***Ph; =15-591 and **Pb/***Ph; = 38-424; K1, Pb=0-17 (Bohrson & Spera, 2001), = 0-5. The crustal
end-member utilized is similar to average Neoproterozoic basement with 12 ppm Pb, 2”6Pb/204Pbi =17-226, *"Pb/***Ph; =15-415 and
208pp 20t P, = 37494 (Cao et al., 2011). Approximate locations of mantle end-members (Zindler & Hart, 1986) are indicated for reference. The
Northern Hemisphere Reference Line (NHRL; Hart, 1984) is indicated. Also shown for comparison is a field for the Keping basalts (Zhou
et al., 2009; Zhang et al., 2010a; Yu et al., 2011b; Li et al., 2012b; Wei et al., 2014) and Emeishan least-contaminated high-Ti basalts (Zhang et al.,
2006). Data sources: Xiaohaizi syenites from Sun ez al. (2008) and Wei & Xu, (2011); quartz syenite porphyries from Yu (2009); carbonate sedi-
ments from Shao et al. (2002), Zhu et al. (2002), He et al. (2004), Chen et al. (20106) and Li et al. (201la); Tarim Archean and Neoproterozoic base-
ment from Zhang et al. (2007, 2012a), Long et al. (2010, 2011), Cao et al. (2011) and Ge et al., (2012); dykes as in Fig. 8.
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105wt %, Fig. 5d; Supplementary Dataset 4), indicating
that Fe—T1 oxide has not been largely separated from the
liquid before the crystallization of high Mg## clinopyrox-
ene (Mg#>78). In contrast, CroO5 contents in clinopyr-
oxene with lower Mg# (<~78) are relatively low
(mostly falling within the range from the detection limit
to 020 wt %) (Fig. 5d; Supplementary Dataset 4), suggest-
ing significant crystallization of Fe—Ti oxides along with
clinopyroxene. At higher Mg#f values (> ~79), the
fractionation of clinopyroxene must have been associated
with negligible separation of plagioclase, given (1) the
negative correlation between AlyOs; content and Mg#£
of clinopyroxene (Fig. 5b), (2) the relatively high and

6 @ 278.6+ 1.2 Ma [ sosan
20, MSWD = 3.4 ) [
[l Mafic and felsic intrusion
5 T [] byke and rhyolite
4 =+

@ 288.9+1.3Ma
206, MSWD =1.8

Number

270 280 290 300
Age (Ma)

Fig. 12. Histogram and relative probability distribution of 25 dated
basalts, mafic—felsic intrusions, mafic and felsic dykes and rhyolites
from the Tarim LIP, showing two major peaks at ~279 and
~289 Ma. The numbers at the peaks of the probability curves (278-6
and 2889 Ma) represent the weighted mean ages of both literature
data and those reported in this study. Ages from conventional whole-
rock *°Ar/*Ar and U-Pb zircon data (Yang ef al., 1996, 2006; Li
et al., 2007, 2011b; Zhang et al., 2008a, 2009, 2010a, 20126; Yu, 2009;
Tian et al., 2010; Shangguan et al., 2011; Wei & Xu, 2011; Yu et al.,
2011a, 2011b; Weti et al., 2014 and this study).
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constant CaO content (23-24 %) without correlation
with Mg## of clinopyroxene (Fig. 5c¢), and (3) plagioclase
inclusions commonly occurring in clinopyroxenes with

relatively low Mg# (< ~79) (Fig. 5e).

Parental magmas of the cumulate wehrlites and thewr
genelic relationship with the dykes

The whole-rock Mg#f of the cumulate wehrlites decreases
and TiOy and FeyO4T increase from the base of the core
upwards (Fig. 6d—f), consistent with the stratigraphic vari-
ations of NiO in olivine and CryO3 in magnetite (Fig. 6b
and c). The CryOj3 content in magnetite decreases system-
atically from the base upwards. Chromium is slightly in-
compatible to compatible in olivine (Dgi/ Y9 —0.6-19;
Beattie, 1994), and compatible in clinopyroxene
(DP9 =3.8; Hart & Dunn, 1993). Considering the min-
eral proportions of cumulus olivine (22-55%) and

10

13
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19

_Ig foz

22

25 - ¢ Oxide inclusion
3 < Interstitial oxide

28 L | L | L
500 700 900 1100

Temperature (°C)

Fig. 14. Oxygen fugacity vs temperature calculated for the Xiaohaizi
cumulate wehrlites based on magnetite—ilmenite equilibria. MN,
magnetite—nickel buffer; NNO, nickel-nickel oxide; FMQ, fayalite
quartz—magnetite; WM, wiistite-magnetite; IW, iron—wiistite
(Eugster & Wones, 1962).
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Fig. 13. Variation of La/Nb vs Nb/Zr (a) and Th/Nb (b) for the crosscutting dykes. For comparison fields are shown for enriched mantle type I
(EMI) OIB (including Walvis Ridge, Gough and Iristan) from Willbold & Stracke (2006), Class & le Roex (2008) and Salters &
Sachi-Kocher (2010); MORB from Salters & Stracke (2004); Hawaiian OIB from http://georoc.mpch-mainz.gwdg.de/georoc/; Emeishan least-
contaminated high-Ti basalts from Xu et al. (2001), Xiao et al. (2004), Zhang et al. (2006) and Qi & Zhou (2008). Data sources for the dykes as

in Fig. 8.
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clinopyroxene (28-42%), Cr is overall compatible
(Dcy>1) in the cumulus assemblage. Therefore, the
upward decrease in the Cr content of magnetite reflects a
decrease in the Cr content of the residual liquid as a result
of olivine and clinopyroxene fractionation. Magma cham-
ber replenishment is common in large layered mafic intru-
sions, which will cause the cessation of magmatic
differentiation and significant compositional reversals
(e.g. Cawthorn et al., 1991; Namur et al., 2010). The lack of
compositional reversals in the Xiaohaizi wehrlites from
this interval suggests that they formed from a single
magma pulse.

Major element variations can be ascribed to crystalliza-
tion of cumulus phases from magmas evolving through
fractional crystallization. For example, their high MgO,
Cr and N1 (Table 2) contents reflect accumulation of oliv-
ine + clinopyroxene. Likewise, negative correlations
between TiOg, FeoO3T and MgO (Fig. 8a and c), and the
ubiquitous positive Eu anomaly in the wehrlite REE pat-
terns (Fig. 10a) are consistent with variable amounts of
interstitial Fe—T1 oxides and plagioclase. In addition, clino-
pyroxenes exhibit subparallel trace element patterns
(Fig. 7) consistent with crystallization from similar paren-
tal melts. The low Mg## values of olivine and clinopyrox-
ene (Supplementary Datasets 3 and 4) indicate that the
wehrlites crystallized from a melt that had previously
experienced fractional crystallization. The Mg# of the
melts in equilibrium with the most primitive olivine (Fo =
75) and clinopyroxene rim (Mg#f =79), calculated using
the partition coefficients for Fe and Mg between olivine
or clinopyroxene and melt (Roeder & Emslie, 1970; Wood
& Blundy, 1997) are 47 and 48, respectively. In addition,
the calculated Mg## of the melt in equilibrium with the
most primitive clinopyroxene core (Mg#f =84) is 57.

The calculated melts in equilibrium with the least
evolved clinopyroxenes (Mg#£>80) have similar trace
element patterns to the Emeishan high-Ti basalts (Fig. 7;
Kamenetsky et al, 2012), average OIB (Sun &
McDonough, 1989) and the crosscutting dykes (Fig. 10).
This suggests that the Xiaohaizi wehrlites were derived
from melts with similar trace element compositions to the
crosscutting dykes. However, the uncontaminated dykes
have higher &Nd; values than the wehrlites (Table 3;
Fig. 1la). The Mg# value of the liquid in equilibrium
with the cumulus olivine and clinopyroxene is~48, which
is significantly higher than that of the dykes (35-39).
In addition, the isotopic differences between the cumulus
clinopyroxene and intercumulus plagioclase in the
Xiaohaizi wehrlite intrusion suggest that the extent of
crustal contamination increases with magmatic differenti-
ation (see discussion below). Therefore, the dykes and cu-
mulate wehrlites cannot be derived from a common
parental magma; rather they are more probably derived
from different magma pulses in keeping with the field

relationships indicating that the dykes formed relatively
later than the cumulate wehrlites.

Assimilation and fractional crystallization (AFC) as a
cause of isotopic disequilibrium

Sr—Nd isotopic disequilibrium is evident between the
clinopyroxene and plagioclase populations in the
Xiaohaizi wehrlites. Within a single sample clinopyroxene
mineral separates have lower 87Sr/868ri and higher eNd;
than the whole-rocks and plagioclase separates (Table 3;
Fig. 11b). The discrepancies between the Sr—Nd isotope
compositions of the clinopyroxene and plagioclase separ-
ates are significantly greater than the analytical uncertain-
ties calculated by error propagation (Table 3). In the
Xiaohaizi wehrlites, olivine and clinopyroxene are
cumulus phases, whereas plagioclase occurs interstitially
between the silicates, thus representing trapped post-
cumulus liquid. This suggests that clinopyroxene and
plagioclase crystallized at different times from the same
magma batch. Therefore, the initial isotope compositions
of the clinopyroxene and plagioclase may be considered
representative of those of magmas that had evolved to dif-
ferent stages; that is, earlier liquid crystallizing clinopyrox-
ene and later interstitial liquid crystallizing plagioclase.
Similar isotopic disequilibrium has also been observed for
the Bushveld intrusion in South Africa and the Rum intru-
sion in Scotland and has been interpreted to reflect crystal-
lization from magmas with different isotopic compositions
(Mathez & Waight, 2003; Tepley & Davidson, 2003;
Prevec et al., 2005; Mathez & Kent, 2007, Chutas et al.,
2012; Roelofse & Ashwal, 2012; Yang et al., 2013).

Higher ¥Sr/*®Sr; and lower eNd; values of plagioclase
relative to clinopyroxene in the Xiaohaizi wehrlites could
be explained by increasing degrees of crustal contamin-
ation during magmatic differentiation. Crustal contamin-
ation is supported by the positive correlation of *’Sr/*®Sr;
with the Zr/Nb ratio of the clinopyroxenes (Iig. 15a), and
a negative correlation between eNd; and Zr/Nb (Fig. 15b).
These compositional trends are similar to that expected
for contamination of mantle-derived magmas by crustal
contaminants (DePaolo, 198]; DePaolo & Wasserburg,
1979).

The upper crust in Tarim is dominated by Archean
gneisses reworked during the Proterozoic and
Neoproterozoic (Hu et al., 2000; Cao et al., 2011; Long
et al., 2011; Zhu et al., 2011. The Archean and
Neoproterozoic basement is characterized by high
¥78r/%Sr; (0-7075-0-7166) and low eNd; (~13 to —37, cor-
rected to 279 Ma) (Fig. 1la). If the Tarim Archean base-
ment and Neoproterozoic igneous rocks were the
contaminants the earliest plagioclase formed during the
AFC process would have a higher An content and reflect
lower degrees of crustal contamination (i.e. lower
¥Sr/*Sr; and higher eNd;). As shown in Fig. 15¢ and d,
87Sr/86Sri increases and ¢Nd; decreases with increasing Ca
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content in plagioclase. This suggests that the higher An
plagioclase crystallized from a magma that had experi-
enced higher degrees of contamination, inconsistent with
the trend expected for an AFC process involving the
Archean basement and Neoproterozoic igneous rocks as
contaminants.

Assimilation of continental crust by hot, primitive mafic
magmas during turbulent ascent (ATA) through conduits
with very limited crystallization (Huppert & Sparks, 1985)
could, however, produce trends that are opposite to those
produced by an AFC process; that is, the most primitive

samples being the most contaminated (e.g. Huppert &
Sparks, 1985; Kerr et al., 1995). This could explain the obser-
vation made in the Xiaohaizi case that plagioclases with
higher An contents have higher #’Sr/*°Sr; and lower eNd;.
In principle, such an ATA process could also explain the
Nd-Sr isotope compositions of the clinopyroxenes. It has
been suggested that ATA is mathematically equivalent to
simple binary mixing between a primitive magma and
the continental crust (Kerr et al., 1995). In this scheme, dif-
ferent isotopic compositions are expected for the more
primitive (more contaminated) and the more evolved
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(less contaminated) samples (Merle et al., 2014). However,
this is not the case for the clinopyroxene separates
(Fig. 15e and f). The Nd content (i situ LA-ICP-MS ana-
lyses) of clinopyroxene correlates negatively with Mg#f£
(Fig. 15¢), indicating that more primitive clinopyroxene
compositions have lower Nd contents. Clinopyroxene sep-
arates with low Nd contents have high eéNd; (Fig. 15f), sug-
gesting that the more primitive clinopyroxene has a
higher eNd; (i.e. is less contaminated). This is inconsistent
with ATA predictions (Kerr et al., 1995). Our favored ex-
planation for the higher An plagioclases reflecting more
contamination (Fig. 15¢ and d) is that the parental
magma assimilated carbonate sediments with high CaO
contents in addition to the Tarim igneous basement during
AFC processes. In the Bachu area, the Cambrian and
Ordovician strata are dominated by dolostone and lime-
stone, respectively, and the Carboniferous—Early Permian
strata contain abundant limestone (BGMRXUAR, 1993;
Zhang, 2003). Moreover, industrial drilling has revealed
that mafic cumulates are restricted around the Xiaohaizi
syenite, indicating that the Xiaohaizi intrusion probably
represents a small magma storage system. The rate of
change in magma composition owing to putative i silu
wall-rock contamination would very probably have been
much quicker than in larger intrusions, having a great
effect on the magma composition. Therefore, bulk assimi-
lation of crustal carbonates will increase the CaO content
of the magma, or at least compensate for the decrease in
magma CaO content caused by clinopyroxene fraction-
ation. Thus the resultant magma will crystallize higher
An plagioclase.

Crustal assimilation was investigated using the approach
of DePaolo (1981) for bulk assimilation with concomitant
fractional crystallization (AFC). A hybrid crustal compo-
nent of 30% carbonate and 70% Tarim Archean and
Neoproterozoic basement was utilized as the contaminant.
The Xiaohaizi dykes have higher Pb isotopic compositions
than the plagioclase separates (Iig. llc and d) and also
have the lowest Sr isotope and highest Nd isotope compos-
ition among all the rocks found in the Xiaohaizi area.
The Sr-Nd-Pb isotopic composition of the dykes, there-
fore, is a good proxy for the uncontaminated magma and
is chosen as the starting isotopic composition. Because
clinopyroxenes in the Xiaohaizi wehrlite intrusion and the
Xiaohaizi dykes display similar trace element patterns to
the Emeishan clinopyroxenes and their host high-Ti bas-
alts, respectively, an Emeishan high-Ti picrite (EM-79;
Chung & Jahn, 1995) was chosen as the starting magma
composition. Figure 11a shows that the total Sr—Nd isotope
dataset  conforms well to an AFC  model
The clinopyroxenes and plagioclases require 7-10% and
10-13% contamination, respectively. In Pb isotope space
(Fig. llc and d), calculations show that to explain the Pb
isotopic variations of plagioclase, 5-14% contamination is

required. The degree of contamination calculated from
the plagioclase Pb isotope compositions is more variable
than that from Sr—Nd isotopes. Few Pb isotope data are
available for the Tarim basement and crustal carbonates.
As a consequence, the modeling for Pb isotope is less well
constrained than for Sr and Nd isotopes.

It has been suggested that modeling AFC processes
without considering the energy constraint is physically un-
realistic (Spera & Bohrson, 2001). As a consequence, a
more consistent model for AFC (EC-AFC; Spera &
Bohrson, 2001) has been developed to constrain this param-
eter. In the case of the Xiaohaizi wehrlite intrusion, this
model cannot be employed accurately as many of the
required input data (e.g. magma liquidus temperature,
country-rock temperature at the timing of magma injec-
tion) are not well constrained. However, the results of
EC-AFC simulations for intrusion of basaltic magma into
the upper continental crust demonstrate that the amount
of assimilation calculated with EC-AFC (Bohrson &
Spera, 2001) is lower than that calculated using the equa-
tions of DePaolo (1981). Therefore, our estimates of 7-10%
and 10-13% contamination for clinopyroxene and plagio-
clase, respectively, in the Xiaohaizi wehrlite intrusion are
an upper limit.

Genetic relationships between wehrlites,
dykes, syenites and quartz syenite
porphyries

The Xiaohaizi intrusive complex includes wehrlites, dykes,
syenites and quartz syenite porphyries. Field relationships
demonstrate that the wehrlites were formed earlier than
the syenites, dykes and quartz syenite porphyries. The
dykes, syenites and quartz syenite porphyries have higher
eNd; and lower (¥Sr/*Sr); than the wehrlites (Fig. 1la),
indicating that they were derived from different magma
pulses.

We suggest that the Xiaohaizi syenites and quartz syen-
ite porphyries are formed from closed-system crystal frac-
tionation of magmas similar to the parental magma of
the dykes based on the following: (1) on various major and
trace element plots they form coherent correlations
(Supplementary Figs 4 and 5 Wei & Xu, 2011); (2) these
rocks display similar REE and trace element patterns
(Fig. 10) and have near identical Sr—Nd isotopic compos-
itions (Fig. 1la); (3) geochemical modeling indicates that
covariations of compatible (e.g. Vand Ni) versus incompat-
ible elements (e.g. Zr) can be reproduced by fractional
crystallization rather than single-stage partial melting of
the mafic dykes (Supplementary Fig. 5¢c and d). The similar
trace element characteristics of the syenites and the dykes
(Table 2, Fig. 10 and Supplementary Dataset 11) can be ac-
counted for by K-feldspar accumulation in the syenites, as
suggested by the moderate Eu anomalies (12-17; Wei &
Xu, 2011). Accumulation of K-feldspars in the syenites
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can significantly dilute certain trace elements (e.g. REE
except Eu; Rollinson, 1993) that are not hosted in feldspar
(Peccerillo et al., 2003).

The Xijaohaizi intrusive complex might have been a
long-lived, periodically refilled magma chamber with dif-
ferent batches of primitive magma introduced into the
chamber. The cumulate wehrlites could be the products of
a batch of magma that ‘matured’ in the chamber. After em-
placement into the upper crust the magma will begin to
crystallize and assimilate its wall-rocks (igneous rocks and
carbonate sediments) by an AFC process. Olivine and
clinopyroxene accumulated first and then plagioclase crys-
tallized from the interstitial liquid, which was increasingly
contaminated. Following deposition of the cumulate wehr-
lites the chamber was refilled with a fresh batch of primi-
tive magma that evolved only through fractional
crystallization forming the syenites and quartz syenite
porphyries.

Origin of high An content plagioclase
Plagioclase An content is a reliable indicator of magmatic
differentiation and is frequently utilized to investigate pro-
cesses involved in the formation of igneous cumulates (e.g.
Humphreys, 2009; Egorova & Latypov, 2012, 2013). In
layered intrusions formed from a single magma pulse the
An contents of cumulus plagioclase can vary considerably;
for example, 45-70 for megacyclic unit (MCU) I of the
Sept Iles intrusion of Canada (Namur et al., 2010), 24-70
for the Middle Zone of the Panzhihua intrusion of the
Emeishan LIP (Pang et al., 2009), and 3361 for interstitial
plagioclases in the clinopyroxenites of the Wajilitag layered
intrusion (Cao et al., 2014). The decreasing An contents
reflect increasing differentiation of the melt forming the cu-
mulus plagioclase. Additionally, plagioclase in layered in-
trusions in equilibrium with clinopyroxene of Mg# <80
commonly has low An contents; for example, An<72 for
the Sept Iles layered intrusion (Namur et al., 2011), An<77
for the Hongge layered intrusion of the Emeishan LIP
(Bai, 2011), An<70 for the Panzhihua layered intrusion
of the Emeishan LIP (Pang et al., 2009) and An<80 for
the Bushveld Complex of South Africa (Ashwal et al.,
2003; Tegner et al., 2006; Fig. 5f).

Plagioclase in the Xiaohaizi cumulate wehrlites displays
a wide range in An content (53-86) (Supplementary
Dataset 5), consistent with differentiation of the interstitial
liquid. More interestingly, some of the Xiaohaizi plagio-
clases have unusually high An contents (up to 86). Similar
high-An plagioclase (~87) is found in the middle olivine—
pyroxene—plagioclase cumulate zone of the Lilloise intru-
sion of East Greenland (Chambers & Brown, 1995). The
Lilloise intrusion has been interpreted as being formed
from a hydrous alkali picritic magma (Chambers &
Brown, 1995). The Xiaohaizi wehrlites display many fea-
tures (e.g. cumulus mineral assemblages, clinopyroxene
compositions and alkali parental magma; Fig. 4) similar

GENESIS OF XIAOHAIZI WEHRLITE INTRUSION

to those of the lower zone of the Lilloise intrusion. We dis-
cuss below whether Hy,O exerts a major control in the gen-
eration of high-An plagioclase in the Xiaohaizi wehrlite
intrusion.

The formation of high-An plagioclase is dependent upon
three parameters: (1) melt Ca/Na and Al/Si; (2) pressure;
(3) the abundance of HyO in the magma. Melt Ca/Na
and Al/Si are the major controls on the plagioclase com-
position: melts with high Ca/Na (and Al/Si) will crystal-
lize plagioclase with a high An content (Elthon & Casey,
1985; Panjasawatwong et al., 1995; Namur et al., 2012). The
parental magma of the Xiaohaizi wehrlites is an alkali
basalt (Fig. 4b), compositionally similar to the crosscutting
dykes. In the Xiaohaizi area the least evolved mafic dyke
(WI13) with a relatively high Mg## (~56) is regarded as
the parental magma of the dykes and the mafic—ultramafic
rocks in the Wajilitag complex (Zhang et al., 2008a; Cao
et al., 2014). This dyke has a similar Ca/Na ratio (molar
Ca/Na=4-0) to Emeishan high-T1 melt inclusions (2:5—
4-5, Kamenetsky et al., 2012). In addition, the compositions
of clinopyroxenes in the Xiaohaizi wehrlites bear a strong
resemblance to those in the Panzhihua and Hongge
layered intrusions (Pang et al., 2009; Bai et al., 2012). It has
been widely proposed that the parental magma of the
Panzhihua and Hongge layered intrusions is similar in
composition to that of the Emeishan high-T1 basalts (Pang
et al., 2008a, 2009; Zhou et al., 2008; Bai et al., 2012; Song
et al., 2013). All these considerations lead us to suggest that
the CaO content of the parental magma of the Xiaohaizi
wehrlites is similar to that of the Emeishan high-Ti basalts.
Melts with such Ca/Na ratios are incapable of crystallizing
high-An plagioclase under relatively low pressure
(<3 kbar, Pang et al., 2008a; Song et al., 2013) and water
contents (~1Hwt %, Pang et al., 2008a). Assimilation of
carbonate sediments in mafic—ultramafic intrusions is ex-
pected to increase the Ca content in the melt, thus prob-
ably resulting in crystallization of high-An plagioclase.
The Panzhihua intrusion experienced 8-14% contamin-
ation by carbonate wall-rocks (marls and dolomites)
(Ganino et al., 2008, 20134, 2013b). However, no plagioclase
with an An content higher than 80 was observed in the
Panzhihua intrusion (Pang et al., 2009). As discussed
above, the Xiaohaizi wehrlites experienced similar
amount (<13%) of assimilation of sedimentary carbonate.
Therefore, assimilation of carbonates was unlikely to be re-
sponsible for the formation of high-An content plagioclase.

Pressure also exerts a control on the anorthite content
of plagioclase, with an approximate increase of ~2 mol %
anorthite expected per 1 kbar drop in pressure
(Panjasawatwong et al., 1995). Higher HyO activity in-
creases the equilibrium anorthite content of the melt by
~2mol % per 1wt % HyO (Panjasawatwong ¢t al., 1995).
Modelling results for the Panzhihua intrusion show that
the initial An content of plagioclase increases from 55 for
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a dry magma to 73 for a magma containing 3wt % HoO
(Howarth et al., 2013). Experiments have demonstrated
that water lowers the liquidus temperature of silicate
phases, mainly plagioclase, which saturates before Ca-rich
pyroxene at low water contents and after Ca-rich pyroxene
and Fe—Ti oxides at high water contents (Toplis &
Carroll, 1995; Feig et al., 2006, 2010; Botcharnikov et al.,
2008). The absence of plagioclase as a cumulus phase,
therefore, indicates that the parental magma of the
Xiaohaizi cumulate wehrlites was originally hydrous.
Clinopyroxene in the wehrlites exhibits sporadic, patchy
replacement by brown amphibole, and interstitial plagio-
clase and Fe—Ti oxides display reaction rims of brown
amphibole. These amphiboles cannot be products of low-
temperature alteration, because (1) they are closely asso-
ciated with Fe—T1 oxides and occur as inclusions (Fig. 2¢)
and thus are isolated from any external fluid and conse-
quent alteration; (2) the host clinopyroxenes are fairly
fresh; (3) strong alteration of clinopyroxenes in some wehr-
lites did not give rise to amphibole (Supplementary Fig.
2d and e). Rather this could be presumably related to an
aqueous vapor phase present at a later stage in the evolu-
tion of the Xiaohaizi wehrlites, supporting the suggestion
of a hydrous parental magma for the wehrlites. In add-
ition, in the Xiaohaizi wehrlites both Fe—Ti oxides and
plagioclase occur as inclusions in clinopyroxene; the
Fe—Ti oxides and plagioclase inclusions coexist with
clinopyroxene of Mg#£ of up to ~84 and ~79, respectively,
indicating that the crystallization of Fe—T1 oxides is earlier
than that of plagioclase. This also suggests that the paren-
tal magma of the Xiaohaizi wehrlites may have been rich
in HyO (Toplis & Carroll, 1995; Feig et al., 2006, 2010,
Botcharnikov et al., 2008). HyO, therefore, might play an
important role in the generation of high-An plagioclase
in the Xiaohaizi wehrlite intrusion.

CONCLUSIONS

Petrological and Sr—Nd-Pb isotopic data for selected
whole-rock samples and clinopyroxene and plagioclase
mineral separates allow the following conclusions to be
reached regarding the genesis of the Xiaohaizi wehrlite
intrusion.

(I) The calculated liquids in equilibrium with the least
evolved clinopyroxenes in the Xiaohaizi wehrlite in-
trusion have trace element compositions similar to
those of the crosscutting dykes. However, the least
contaminated dykes have apparently lower ®Sr/*°Sr;
and higher ¢Nd; than the intrusion. These data indi-
cate that the Xiaohaizi wehrlite intrusion and the
crosscutting dykes formed from different batches of
magma derived from a similar OIB-like, enriched as-
thenospheric mantle source.

(2) The cumulus clinopyroxenes and intercumulus
plagioclases in the Xiaohaizi wehrlite intrusion dis-
play distinct initial Sr and Nd isotope compositions.
Such isotopic disequilibrium between constituent min-
erals demonstrates that the plagioclase crystallized
from a magma with greater extent of crustal contam-
ination. Our Sr—-Nd isotope data provide a good
example of AFC processes operating during the mag-
matic evolution of layered mafic intrusions.

(3) Plagioclases in the Xiaohaizi cumulate wehrlites have
unusually high An contents (up to ~86), which are
comparable with those in the Lilloise intrusion of
East Greenland. Such high-An plagioclase cannot be
formed at relatively low pressure and magma H,O
contents. In considering the fractionation sequence
(Ol > Cpx > Pl) in the context of experimental results,
we speculate that HyO might have played an import-
ant role in the generation and evolution of the
Xiaohaizi wehrlite intrusion.
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