88

PETROSIN-A AND -B, TWO NEW BIS-QUINOLIZIDINE ALKALOIDS FROM THE SPONGE PETROSIA SERIATA⁽¹⁾

J.C. BRAEKMAN⁽²⁾*, D. DALOZE^{*}, N. DEFAY[§] and D. ZIMMERMANN * Unité de Chimie Bio-organique - Faculté des Sciences § Service de Chimie Organique - Faculté des Sciences * Service de Chimie Organique - Ecole Polytechnique Université Libre de Bruxelles - 1050 Brussels - Belgium

Dedicated to Prof. R.H. MARTIN for his 70th birthday Received : 29/08/1984 - Accepted : 04/10/1984

<u>Abstract</u> : This paper describes the structure determinations of two new ichthyotoxic bis-quinolizidine alkaloids from the marine sponge *Petrosia seriata*. The structural elucidations are mostly based on homonuclear 2D-¹H NMR experiments.

In a previous paper we reported that the methanolic extract of the marine sponge Petrosia aeriata is ichthyotoxic⁽³⁾. This toxicity is associated with a basic fraction which contains at least eight different alkaloids. A bis-quinolizidine alkaloid, named petrosin (<u>1</u>), could be isolated from this complex mixture as a crystalline compound. Its structure was established by X-ray diffraction analysis⁽³⁾. In this note we amplify upon our earlier work by reporting more complete spectral data for petrosin along with the structure determinations of two further ichthyotoxic stereoisomers of <u>1</u>, petrosin -A (<u>2</u>) and petrosin -B (<u>3</u>). The structural elucidations are mostly based on homonuclear J-resolved and shift-correlated 2D-¹H NMR experiments.

Repetitive alumina column chromatographies of the basic extract of *P. seriata* resulted in the isolation of the major alkaloid <u>1</u> and of a mixture of <u>2</u> and <u>3</u>, the separation of which was achieved by preparative tlc on alumina. In contrast to petrosin (<u>1</u>), derivatives <u>2</u> ([α]₅₇₉ -5°(CH₂Cl₂, c = 0.71)) and <u>3</u> ([α]₅₇₉ - 12° (CH₂Cl₂, c = 0.79)) could not be induced to crystallize.

All three compounds have almost identical mass spectra (M⁺ at m/z 470), only small variations of peaks intensity being observed. This fact and the similarity of their ¹H and ¹³C NMR spectra (see table 1 and 2) indicate that petrosin -A (2) and -B (3) are stereoisomers of petrosin (1). The latter is racemic and possess a two-fold rotation axis (C₂) passing through the middle of the 16-membered ring and perpendicular to the mean plane of the same ring ⁽³⁾. Accordingly, although petrosin (2) is a C₁₀-molecule only 15 peaks are observed in the proton noise-decoupled ¹³C NMR spectrum. Petrosin -A (2) behaves in the same way, showing 15 peaks in the ¹³C NMR spectrum and only one 6H doublet at δ 0.96 attributable to the two methyl groups, in the ¹H NMR spectrum. This indicates that 2 also has a two-fold rotation axis. In contrast, petrosin -B (3) has no element of symmetry. All three alkaloids exhibit a characteristic series of IR bands between 2700 and 2850 cm⁻¹ (Bohlmann bands), in accordance with a *trans*-fused ring conformation for the quinolizidine systems ⁽⁴⁾. The equatorial position of the methyl groups in 2 and 3 follows from the comparison of their ¹H and ¹³C chemical shifts and J₁₋₁₆ coupling constants with those of 1 (see table 1 and 2). Axial methyl groups should afford much more different values (5, 6). These data indicate that the three petrosins differ only by the configuration at C-9, C-9', C-1 and/or C-1'.

The assignments of the signals in the ¹H NMR spectrum of <u>1</u> (see table 1) are based on the spin-spin couplings observed in the 2D-COSY 45 spectrum and on the fact that in *trana*-fused quinolizidines the H-4 and H-6 equatorial protons appear at lower field (\sim 2.8 ppm) than the corresponding axial protons (\sim 2.0 ppm)⁽⁵⁾. The J-resolved 2D-¹H NMR allows to measure the coupling constants and in particular J₁₋₁₀ (\equiv J₁'₋₁₀'; 3.5 Hz) and J₉₋₁₀ (\equiv J₉'₋₁₀'; 10.0 Hz), wich are in agreement with the configurations at C-1 (C-1') and C-10 (C-10') determined by X-ray diffraction analysis⁽³⁾.

Signal assignment in the ¹³C NMR spectrum of <u>1</u> (see table 2) is based on chemical shift comparison with the model compounds $\underline{4}^{(7)}$, $\underline{5}^{(6)}$ and $\underline{6}^{(6)}$ and by using the DEPT pulse sequence⁽⁸⁾.

Assignment	1	2	<u>3</u> 0.95 3H d (6.5) 0.96 3H d (6.5)				
H ₃ C-16 H ₃ C-16'	0.96 6H d (6.5)	0.96 6H d (6.5)					
H-1	2,53 2H	2.56 2H	2.42 IH ddd (11, 11, 1)				
H-1'	ddd (3.5, 5, 11)	ddd (4, 5, 10.5)	2.55 IH ddd (11, 3.5, 3.5)				
H-3	2.89 2H	2.95 2H	2.76 1H ddq (6, 6.5, 12.5)				
H-3'	ddq (6, 6.5, 12.5)	ddq (6.5, 6.5, 12.5)	2.94 1H ddq (6, 6.5, 12.5)				
H-4 (eq)	3.01 2H	3.07 2H	3.06 2H				
H-4' (eq)	dd (6, 11)	dd (6.5, 11)	dd (6, 11)				
H-4 (ax)	1.90 2H	1.88 2H	1.91 2H				
H-4' (ax)	dd (11, 12.5)	dd (11, 12.5)	dd (11, 12.5)				
H-6 (eq)	2.96 ZH	3.01 2H	∿ 3.0 2H				
H-6' (eq)		m	m				
H-6 (ax)	1.92 2H	1.94 2H	∿ 1.9 2H				
H-6' (ax)	m	m	m				
H-10	1.84 2H	1.82 2H	1.94 1H dd (4.5, 11)				
H-10*	dd (3.5, 10)	dd (3, 10.5)	1.86 1H dd (3.5, 9.5)				

 $\frac{\text{Table 1}}{(\text{CDCl}_3, \text{ TMS, δ (J)})} : \ \text{Characteristic signals in the 250 1H NMR spectra of $\underline{1}$, $\underline{2}$, and $\underline{3}$}$

Table 2 : 62.8 MHz ¹³C NMR spectra of 1, 2 and 3 (CDC13, TMS, 5)

As	si	gnment	<u>Multiplicity</u> *		1_	3	Z			3		
2	+	2'	с	213.8		213.9		214.1 + 212.4				
10	+	10*	CH	70.4		70.8		70.6 + 72.0				
4	+	4'	CH 2	64.8		64.8		64.9 + 65.8				
6	+	6'	CH 2	56.0		55.9		56.0 + 56.7				
1	+	1*	CH	51.9		51.6		51.8 + 51.7				
3	+	3'	CH	40.5		40.3		40.3 + 44.6				
9	+	9'	CH	37.0		36.0		36.2 + 34.8				
			CH ₂	29.5	28.8	32.0	30.3	29.5	29.4	28.2	27.7	
				27.4	25.1	29.1	26.3	26.6	26.5	25.0	25.0	
				24.4	24.1	26.1	25.6	24.4	24.4	24.4	23.2	
				23.9		25.0		22.7	20.0			
16	+	16'	CH ₂	11.3		11.3		11.3 + 11.3				

* Assigned by using the DEPT pulse sequence.

The spectral properties of 2 are closely related to those of 1 and, as already mentioned, it also possesses a two-fold rotation axis. 2D-1H NMR⁽⁹⁾ experiments (J-RES and COSY 45)⁽¹⁰⁾ demonstrate that the signal attributable to H-10 (H-10') is a double doublet with coupling constants of 3 and 10.5 Hz. This implies that it is coupled to both an axial and an equatorial proton. The only way to satisfy these requirements is to admit that petrosin -A (2) has the reverse configuration at C-1 (C-1') and C-10 (C-10') with respect to those of petrosin (1).

Because of the absence of symmetry, the ¹H and ¹³C NMR spectra of 3 are more complex. As for the two other derivatives, the assignments of the signals in the "H NMR spectrum of 3 (see table 1), are mainly based on homonuclear 2D-1H NMR experiments (J-RES, COSY 45 and COSY 90) (10). Although these experiments allowed us to measure the 8 and J of most of the rele vant protons, H-6 and H-6' did not come out clearly, thus precluding to measure with precision their chemical shifts. The H-10 appears in the COSY 90 spectrum as a double doublet with J1-10 = 11 Hz and J9-10 = 4.5 Hz. The coupling constants J1'-10' (3.5 Hz) and J9'-10' (9.5 Hz) could not be measured by this way, but were obtained from spin decoupling and pseudo-INDOR experiments. Thus, 3 appears as a combination of the quinolizidine ring systems found in 1 and 2.

We have to point out that the spectroscopic values obtained for 3 do not rule out the struc ture where the two quinolizidine ring systems are linked tête-bêche (C-1 to C-1' and C-9 to C-9'). But, this alternative may be considered as much less probable on the basis of biogenetic arguments.

ACKNOWLEDGEMENTS

We gratefully acknowledge the "Fonds National de la Recherche Scientifique" for financial support and H. SCHEPERS for technical assistance.

References

- (1) King Leopold III Biological Station, Laing Island, Papua New-Guinea, Contribution nº 74.
- (2) Maître de Recherche du Fonds National de la Recherche Scientifique.
- (3) J.C. BRAEKMAN, D. DALOZE, P. MACEDO de ABREU, C. PICCINNI-LEOPARDI, G. GERMAIN,
- M. VAN MEERSSCHE Tetrahedron Letters, 23, 4277 (1982).
- (4) F. BOHLMANN Angew. Chem., <u>69</u>, 541 (1957).
 (5) T.A. CRABB, R.F. NEWTON, D. JACKSON Chem. Rev., <u>71</u>, 109 (1971).
 (6) R.T. LALONDE, T.N. DONVITO Can. J. Chem., <u>52</u>, 3778 (1974).
- (7) D. TOURWE, G. VAN BINST Heterocycles, 9, 507 (1978).
- (8) D. PEGG, M. BENDALL, D. DODDRELL J. Mag. Res., 44, 238 (1981) and Bruker Brochure (1982) (9) ¹H NMR and ¹³C NMR measurements were carried out on a BRUKER WM250 spectrometer, equipped with an Aspect 2000 computer. 256 x IK files and 128 x 2K files (with zero filling in F1) were respectively used for the 2D COSY and J-RES experiments.
- (10) A. BAX in "Two-dimensional NMR in liquids" Delft University Press (1982).