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1 Introduction

Navier-Stokes and Einstein’s equations are sets of non-linear equations, which appear to be

closely related. This was first noticed in the framework of black holes, where Navier-Stokes

describe the dynamics of horizon perturbations [1]. More recently, holography has shed new

light in their relationship via the so-called fluid/gravity correspondence in asymptotically

anti-de Sitter spacetimes [2]. In this case, fluid dynamics resides on the conformal boundary,

and it corresponds to a relativistic conformal fluid described in terms of its traceless and

conserved energy-momentum tensor.

The connection between the incompressible horizon fluid and the fluid at the conformal

boundary is realized using the holographic renormalization group [3, 4]. Furthermore, an

incompressible fluid can also be generically defined in the region between these two extreme

points. Its dynamics, i.e. the conservation of its energy-momentum tensor, is inherited from

the bulk Einstein’s momentum constraints, while the Hamiltonian constraint, at leading

order of a large-mean-curvature expansion, is interpreted as the equation of state [5–7].

Such a fluid interpretation is rather formal and may not always be physically accurate since

Navier-Stokes equations appear only at first order of a derivative expansion. Moreover, as

pointed out in these references, the fluid and gravity degrees of freedom match only under

the assumption that the Einstein geometry is algebraically special in Petrov’s classification.

The evolution of geometry from the boundary towards the bulk can be formulated

as an ADM-type Hamiltonian system which, as usual, requires two pieces of fundamental
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holographic data. For pure gravity dynamics, one piece is the boundary metric and the

other one is the energy-momentum tensor. If the boundary system is in the hydrodynamic

regime, the energy-momentum tensor describes a conformal, non-perfect fluid, but this

needs not be true in general for the Hamiltonian evolution scheme to hold. Irrespective

of its physical interpretation, the boundary metric together with the energy-momentum

tensor allows us to reconstruct the Einstein bulk spacetime.

The boundary metric and the boundary energy-momentum tensor are read off in the

Fefferman-Graham expansion of the bulk metric, as leading and subleading terms, respec-

tively [8, 9]. In principle, given the two independent pieces of boundary data the bulk can be

reconstructed order by order using the Fefferman-Graham series. Alternatively, this recon-

struction can be achieved with the help of a derivative expansion. The latter was originally

proposed in [10–12], and is based on the black-brane paradigm. From the bulk perspective,

it assumes the existence of a null geodesic congruence defining tubes that extend from the

boundary inwards. On the boundary, this congruence translates into a timelike congru-

ence, and the aforementioned derivative series expansion is built on increasing derivative

order of this field. At the perturbative level, the fluid interpretation is applicable and the

boundary timelike congruence is always identified with the boundary fluid velocity field.

Beyond the perturbative framework, however, this interpretation is not faithful due to the

presence of non-hydrodynamic modes in the boundary energy-momentum tensor.

In general, from a boundary-to-bulk perspective, it is unlikely that one could explicitly

resum either expansion — the Fefferman-Graham or the derivative — and the generic bulk

solution can be achieved only in a perturbative manner.1 It makes however sense to pose

the following question: given a class of boundary metrics, what are the conditions it should

satisfy, and which energy-momentum tensor should it be accompanied with in order for an

exact dual bulk Einstein space to exist?

The aim of the present note is to provide a constructive answer to the above question

in the case of four-dimensional Einstein spaces. Of course, at this stage, one may wonder

why an answer should even exist. Actually, the resummability of the derivative expansion,

irrespective of the dimension, was observed in the original papers [11] for the Kerr black

holes. This property was latter shown to hold more systematically in four dimensions,

even in the presence of a nut charge, which accounts for asymptotically locally anti-de

Sitter spacetimes [14]. This is achieved by including an infinite, though resummable series

of terms built on the boundary Cotton tensor [15, 16]. There, the requirement was that

the Cotton tensor of the boundary metric be proportional to the energy-momentum tensor,

itself being of a perfect-fluid form. This kind of ansatz unifies all known black-hole solutions

with nut charge and rotation, and even allows us to find some new ones (in spirit, this is

what happens e.g. when imposing curvature self-duality in Euclidean gravity or in Yang-

Mills theories). It is not expected, however, to exhaust all possibilities, and many Einstein

spaces with a rich holographic content are left aside. It is therefore reasonable to attempt

1Lorentzian AdS/CFT requires also the careful treatment of initial data at timelike infinities (for a recent

mathematical review see [13]). This is related to the general discussion of black-hole formation, which is

still not fully understood. Since we deal here with exact non-singular bulk solutions, such intricacies are

not relevant for us presently.
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finding a generic pattern that guarantees the existence of a bulk dual for appropriately

chosen sets of boundary data.

Here, we will present a general boundary ansatz, which gives us more exact solutions of

Einstein’s equations in the bulk. Remarkably, we are able to show that our ansatz unifies

the above quoted black-hole solutions, described by perfect fluids, with e.g. Robinson-

Trautman solutions, whose holographic dual is highly far from equilibrium. Resummation

generates therefore non-perturbative effects i.e. non-hydrodynamic modes. The common

feature of all these solutions is that they are algebraically special with respect to Petrov’s

classification: within the proposed method, the Weyl tensor of the four-dimensional bulk

is controlled from the boundary data, and turns out to be always at least of type II.

The implications of our work are threefold. Firstly, Einstein’s equations are generically

non-integrable and the above procedure aims at unravelling integrable sectors in the phase

space of solutions, based on appropriate mappings onto integrable dynamical sectors in

the dual field theory, such as integrable configurations of Euler’s equations for relativistic

fluids. Secondly, such a mapping may provide a powerful solution-generating technique, as

opposed to standard Geroch-like methods valid in the presence of isometries, which are of

limited use in asymptotically anti-de Sitter spaces (see [17] for a recent attempt). Thirdly,

we can derive an large amount of non-trivial information about holographic strongly cou-

pled field theories: for example in ref. [16] it was shown that the existence of exact solu-

tions with perfect-fluid like equilibrium in the perfect-Cotton boundary geometries implied

that infinitely many transport coefficients of a special kind should vanish in the dual field

theories. Enlarging the class of exact solutions with a specific relationship between the

boundary data, automatically enables us to obtain highly non-trivial information of multi-

point thermal correlation functions of the energy-momentum tensor, even far from the

hydrodynamic regime.

The organisation of the paper is as follows. In the first section we present our ansatz

for shaping the boundary data in a manner that guarantees the resummability of the

derivative expansion. The relationship between the bulk Weyl tensor and the boundary

Cotton and energy-momentum tensors is also clarified. Our approach is constructive and

duly motivated, but the formal proof answering the question raised above is left aside and

will appear in a separate publication. Instead, we illustrate it in section 3 by constructing

an exact four-dimensional solution of Einstein’s equations step by step from an appropriate

set of boundary data.

2 Bulk reconstruction from boundary data

2.1 The boundary quantities

Consider a three-dimensional spacetime playing the role of the boundary, equipped with a

metric ds2 = gµνdx
µdxν (µ, ν, . . . = 0, 1, 2) and with a symmetric, traceless and covariantly

conserved tensor T = Tµνdx
µdxν . We assume for this tensor the least requirements for

being a conformal energy-momentum tensor [18], and consider systems for which it can be

put in the form

T = T(0) +Π (2.1)
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with the a perfect-fluid part

T(0) =
ε

2

(

3u2 + ds2
)

. (2.2)

The timelike congruence u = uµ(x)dx
µ is normalized (uµu

µ = −1) and defines the fluid

lines. The tensor Π captures all corrections to the perfect-fluid component, i.e. hydrody-

namic and non-hydrodynamic modes. The hydrodynamic part is the viscous fluid contri-

bution, which can be expressed as a series expansion with respect to derivatives of u. The

first derivatives of the velocity field are canonically decomposed in terms of the acceleration

a, the expansion Θ, the shear σ and the vorticity2

ω =
1

2
ωµν dx

µ ∧ dxν =
1

2
(du + u ∧ a) . (2.3)

In the Landau frame, the hydrodynamic component of Π is transverse to u. The full

Π is not transverse but

Πµνu
µuν = 0 ⇒ Tµνu

µuν = ε(x). (2.4)

The latter is the local energy density, related to the pressure via the conformal equation of

state ε = 2p. However, it should be stressed that the presence of a non-hydrodynamic com-

ponent tempers the fluid interpretation. In particular, it is not an easy task to extract the

congruence u, because its meaning as a vector tangent to fluid lines becomes questionable.

Another important structure in three spacetime dimensions, where the Weyl tensor

vanishes, is the Cotton tensor3

Cµν = ηµρσ∇ρ

(

Rν
σ −

R

4
δνσ

)

(2.5)

with ηµνσ = ǫµνσ/
√
−g. This tensor vanishes if and only if the spacetime is conformally flat.

It shares the key properties of the energy-momentum tensor, i.e. it is symmetric, traceless

and covariantly conserved. For later reference we introduce a contraction analogous to the

energy density (2.4),

Cµνu
µuν = c(x) . (2.6)

2.2 Bulk Petrov classification and the resummability conditions

The four-dimensional Weyl tensor can be classified into distinct types, i.e. according to the

algebraic Petrov types. For an Einstein space (with a given sign of the Ricci curvature)

this provides a complete classification of the curvature tensor.

In order to establish a connection with the three-dimensional boundary data it is useful

to recall how the algebraic Petrov classification is obtained from the eigenvalue equation

for the Weyl tensor. In particular, the Weyl tensor and its dual can be used to form a

pair of complex-conjugate tensors. Each of these tensors has two pairs of bivector indices,

2Reminder: aµ = uν∇νuµ, Θ = ∇µu
µ, σµν = ∇(µuν) + a(µuν) −

1
2
∆µν∇ρu

ρ, with ∆µν = uµuν + gµν

the projector onto the space orthogonal to u.
3The Cotton and Levi-Civita are pseudo-tensors, i.e. they change sign under a parity transformation. It

is therefore important to state the convention in use.
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which can be used to form a complex two-index tensor. Its components are naturally

packaged inside a complex symmetric 3× 3 matrix Q with zero trace (see e.g. [19] for this

construction). This matrix encompasses the ten independent real components of the Weyl

tensor and the associated eigenvalue equation determines the Petrov type.

Performing the Fefferman-Graham expansion of the complex Weyl tensor Q± for a gen-

eral Einstein space, one can show that the leading-order (1/r3) coefficient, say S±, exhibits

a specific combination of the components of the boundary Cotton and energy-momentum

tensors.4 The algebraic Segre type of this combination determines precisely the Petrov

type of the four-dimensional bulk metric and establishes a one-to-one map between the

bulk Petrov type and the boundary data.

Assume now that we wish to reconstruct the Einstein bulk spacetime from a set of

boundary data. Given a three-dimensional boundary metric, one can impose a desired

canonical form for the asymptotic Weyl tensor S±, as e.g. a perfect-fluid form (type D) or

matter-radiation form (type III or N) or a combination of both (type II) (see e.g. [22] for

these structures). Doing so, not only do we design from the boundary the special algebraic

structure of the bulk spacetime, but we also provide a set of conditions that turn out to

guarantee the resummability of the perturbative expansion into an exact Einstein space.

This is our central result as it answers the question asked earlier in the introduction.

The rest of the paper will be devoted to making this statement as clear as possible and

illustrating it with robust examples.

It turns out that it is somehow easier to work with a different pair of complex-conjugate

tensors

T±
µν = Tµν ±

i

8πGk2
Cµν , (2.7)

where k is a constant and T± is related to S± by a similarity transformation: T± =

PS±P−1 with P = diag(∓i,−1, 1). Choosing a specific canonical form for these tensors,

and assuming a boundary metric ds2, we are led to two conditions. The first, provides a

set of equations that the boundary metric must satisfy:

C = 8πGk2 ImT+. (2.8)

The second delivers the boundary energy-momentum tensor it should be accompanied with

for an exact bulk ascendent spacetime to exist:

T = ReT+. (2.9)

The tensors given in eq. (2.7) are by construction symmetric, traceless and conserved:

∇ · T± = 0. (2.10)

We will refer to them as the reference energy-momentum tensors as they play the role of a

pair of fictitious conserved boundary sources, always accompanying the boundary geometry.

It turns out that the particular combination (2.7) of the energy-momentum and Cotton

tensors is exactly the combination one finds if the the Weyl tensor is decomposed into

4We will provide the details in the already announced upcoming publication (see also e.g. [20, 21]).
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self-dual and anti-self-dual components, which given the Lorentzian signature are complex-

conjugate. These are nicely captured in the Cahen-Debever-Defrise5 decomposition.

Finally, we note that some care must be taken when working with T± instead of S±.

Indeed, the eigenvalues are equal, but not necessarily their eigenvectors. In particular,

this means that one cannot determine the Petrov type unambiguously if considering the

eigenvalue equation for T±.6

2.3 The derivative expansion and its ressumation ansatz

We have listed in the previous section all boundary ingredients needed for reaching holo-

graphically exact bulk Einstein spacetimes. We would like here to discuss their actual

reconstruction. We will use for that the derivative expansion, organized around the deriva-

tives of the boundary fluid velocity field u. This expansion assumes small derivatives,

small curvature, and small higher-derivative curvature tensors for the boundary metric.

This limitation is irrelevant for us since we are ultimately interested in resumming the

series. A related and potentially problematic issue, is the definition of u, which is not

automatic when the boundary energy-momentum tensor T is not of the fluid type. In that

case u should be considered as an extra ingredient of the ansatz, a posteriori justified by

the success of the resummation.

The guideline for the reconstruction of spacetime based on the derivative expansion is

Weyl covariance [10, 11]: the bulk geometry should be insensitive to a conformal rescaling

of the boundary metric ds2 → ds2/B2. The latter is accompanied with C → BC, and

at the same time T → BT, u → u/B (velocity one-form) and ω → ω/B (vorticity two-

form). Covariantization with respect to rescalings requires to introduce a Weyl connection

one-form:

A := a−
Θ

2
u , (2.11)

which transforms as A → A − d lnB. Ordinary covariant derivatives ∇ are thus traded

for Weyl-covariant ones D = ∇ + wA, w being the conformal weight of the tensor under

consideration. In three spacetime dimensions, Weyl-covariant quantities are e.g.

Dνω
ν
µ = ∇νω

ν
µ, (2.12)

R = R+ 4∇µA
µ − 2AµA

µ , (2.13)

while

Σ = Σµνdx
µdxν = −2uDνω

ν
µdx

µ − ω λ
µ ωλνdx

µdxν − u2
R

2
, (2.14)

is Weyl-invariant. Notice also that for any symmetric and traceless tensor Sµνdx
µdxν of

conformal weight 1 (like the energy-momentum tensor and the Cotton tensor) has

DνS
ν
µ = ∇νS

ν
µ . (2.15)

In the present analysis, we will be interested in situations where the boundary con-

gruence u is shear-free. Despite this limitation, wide classes of dual holographic bulk

5The decomposition is more commonly known as Atiyah-Hitchin-Singer.
6In fact, the ambiguity is only between type D and type II, since these types have the same number of

eigenvalues. This will be noticed in the example analyzed in section 3.2.
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geometries remain accessible. Vanishing shear simplifies considerably the reconstruction

of the asymptotically AdS bulk geometry because it reduces the available Weyl-invariant

terms. As a consequence, at each order of Du, the terms compatible with Weyl covariance

of the bulk metric ds2bulk are nicely organized. Even though we cannot write them all

at arbitrary order, the structure of the first orders suggests that resummation, whenever

possible, should lead to the following [10–12, 15, 16, 23]:

ds2res. = −2u(dr + rA) + r2k2ds2 +
Σ

k2
+

u2

ρ2

(

3Tλµu
λuµ

kκ
r +

Cλµu
ληµνσωνσ

2k6

)

. (2.16)

Here r the radial coordinate whose dependence is explicit, xµ are the three boundary

coordinates extended to the bulk, on which depend implicitly the various functions, ηµνσ =
ǫµνσ/

√
−g, κ = 3k/8πG, k a constant, and Σ is displayed in (2.14). Finally,7

ρ2 = r2 +
1

2k4
ωαβω

αβ := r2 +
q2

4k4
(2.17)

performs the resummation as the derivative expansion is manifestly organized in powers of

q2 = 2ωαβω
αβ . This structure is inferred by the first orders, which are the ones that have

been explicitly determined in refs. [11, 15]. In expression (2.16), we recognize the energy

density ε(x) introduced in eq. (2.4), and c(x) as in (2.6). The presence of the boundary

Cotton tensor stresses that the bulk is generically asymptotically locally anti-de Sitter. It is

readily checked that boundary Weyl transformations correspond to bulk diffeomorphisms,

which can be reabsorbed into a redefinition of the radial coordinate: r → B r.

The four-dimensional metric ds2res. displayed in (2.16) is not expected to be Einstein

for arbitrary boundary data T and ds2. Our claim is that when these data satisfy eqs. (2.8)

and (2.9), ds2res. is Einstein with Λ = −3k2. Following the discussion of section 2.2, this

spacetime is algebraically special, its Petrov type being determined directly by the a priori

chosen reference tensor T± subject to (2.10), necessary for the conditions (2.8) and (2.9)

to be used. Hence, eqs. (2.8) and (2.10) should be considered as a boundary translation of

Einstein’s equations, in some integrable sector of algebraically special geometries. This is

the central message of the present work. Scanning over canonical forms for T+ amounts

to exploring various Petrov classes. Hence, the metric (2.16) admits degenerate principal

null directions and it is thus of type II, III, N, D or O.

Several remarks are in order here. Being algebraically special, the spacetimes at hand

must admit a null, geodesic and shear-free congruence, as stated in the Goldberg-Sachs

theorem. The congruence u in the bulk is null and geodesic, and becomes timelike and

shear-free (but not longer necessarily geodesic) on the boundary, where it identifies with

the fluid velocity field. It turns out to be indeed shear-free everywhere in the bulk, provided

the conditions (2.8) and (2.9) are fulfilled. The absence of shear for the boundary fluid

congruence seem therefore to be intimately related to the resummability of the derivative

expansion into an algebraically special Einstein space. This is in agreement with the fact

7The three-dimensional Hodge dual of the vorticity is always aligned with the velocity field and this is

how q(x) is originally defined: ηµνσωνσ = quµ.
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that the large number of Weyl-covariant tensors available when the shear is non-vanishing,

makes it unlike that the resummation occurs.

As already stressed previously, the energy-momentum tensor T, obtained in the pro-

cedure described in section 2.2, is not necessarily of the fluid type (we shall soon meet

examples in section 3). Hence, it is not straightforward to extract the velocity congruence

u, required in the resummed expression (2.16) — and further check or impose the absence

of shear. The determination of a shearless u should therefore be considered as part of the

ansatz. Assume for concreteness a boundary metric of the form

ds2 = −Ω2(dt− b)2 +
2

k2P 2
dζdζ̄ , (2.18)

where P and Ω are arbitrary real functions of (t, ζ, ζ̄), and

b = B(t, ζ, ζ̄) dζ + B̄(t, ζ, ζ̄) dζ̄ . (2.19)

This is actually the most general three-dimensional metric,8 as we make no assumption

regarding isometries, with a specific choice of local frames. Part of our resummation ansatz

is to assume that the boundary frame has been adapted to the fluid shear-free congruence,

so that

u = −Ω(dt− b). (2.20)

We can thus express the resummed four-dimensional bulk metric (2.16) in terms of a null

tetrad as

ds2res. = −2kl+ 2mm̄, (2.21)

where

k = −u, m =
ρ

P
dζ (2.22)

and9

l = −dr − ra−Hu +
1

2k2
∗ (u ∧ (dq + qa)) (2.23)

with

2H = r2k2 − rΘ+
q2

k2
+

R

2k2
−

3

ρ2k

(rε

κ
+

qc

6k5

)

. (2.24)

In the latter expression we have introduced ε(x) and c(x) defined in (2.4) and (2.6) (x refers

to the coordinates t, ζ, ζ̄ common for bulk and boundary).

3 Concrete examples

3.1 The boundary metric and the reference energy-momentum tensors

The resummation method presented here generalizes previous successful attempts to recon-

struct exact Einstein spaces from boundary data [15, 16]. In these works, the boundary met-

ric was of the type (2.18) with two commuting Killing vectors, and the energy-momentum

8We could even set Ω = 1, without spoiling the generality.
9The Hodge duality is here meant with respect to the three-dimensional boundary: ∗(u ∧ dq) =

η νσ
µ uν∂σq dx

µ.
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tensor was perfect-fluid and proportional to the Cotton tensor. This is a particular case

of our present ansatz, with hydrodynamic boundary state (see section 3.3). We will now

move to a different situation and consider a specific family of boundary geometries, namely

those with

ds2 = −dt2 +
2

k2P 2
dζdζ̄ . (3.1)

This is not the most general three-dimensional metric because it follows from (2.18) with

Ω = 1 and b = 0. As we will see soon, it turns out to enable the holographic reconstruc-

tion of Robinson-Trautman Einstein metrics of all Petrov types. Here the Cotton tensor,

computed using (2.5), reads:

C = −i
(

dt dζ dζ̄
)













0 −k2

2 ∂ζK
k2

2 ∂ζ̄K

−k2

2 ∂ζK −∂t

(

∂2
ζ
P

P

)

0

k2

2 ∂ζ̄K 0 ∂t

(

∂2
ζ̄
P

P

)



















dt

dζ

dζ̄






, (3.2)

where

K = 2P 2∂ζ∂ζ̄ logP (3.3)

is the Gaussian curvature of the surfaces at constant t divided by k2. This tensor is real.

We must now introduce a canonical reference energy-momentum tensor T± and apply

the strategy displayed above: (i) impose conservation (2.10); (ii) constrain the boundary

metric using (2.8) and determine the actual energy-momentum tensor with (2.9); (iii)

reconstruct the bulk Einstein space using (2.21). Equations (2.10) and (2.8) are expected

to guarantee that Einstein’s equations are fulfilled and provide information on the reached

Petrov class. The latter must be related to the choice of reference tensor T±. There are

two basic and distinct cases will be considered here.

Perfect-fluid form. For perfect-fluid reference tensors, it is necessary to introduce two

complex-conjugate reference velocity congruences u±. It is not useful to analyze the most

general velocity congruences, but the most typical ones, keeping in mind that a redun-

dancy is expected to exist, making different-looking boundary data correspond to identical

Einstein spaces. Consider the normalized reference congruence10

u+ = u +
α+

P 2
dζ (3.4)

with (see (2.20))

u = −dt (3.5)

the physical congruence, α+ = α+(t, ζ, ζ̄), and its complex-conjugate u− = u+ α−

P 2 dζ̄ with

α− = α+∗. The physical congruence u is shear-free, has no vorticity, no acceleration but is

expanding at a rate

Θ = −2∂t logP. (3.6)

10These are the most general ones: adding an extra leg along the missing direction, and adjusting the

overall scale for keeping the norm to −1 amounts to a combination of a diffeomorphism and a Weyl

transformation.
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A perfect-fluid energy-momentum tensor based on these reference congruences reads:

T±
pf =

M±(t, ζ, ζ̄)k2

8πG

(

3
(

u±
)2

+ ds2
)

(3.7)

with M− = M∗
+. The choice of the functions α

±(t, ζ, ζ̄) and M±(t, ζ, ζ̄) should be restricted

so that T± is conserved i.e. (2.10) is fulfilled.

At this stage we may pose and ask a generic question: given a velocity congruence

with expansion and acceleration, can one find a pressure field such that the corresponding

traceless perfect-fluid energy-momentum tensor is conserved? The analysis of that question

is performed in appendix A and the answer is the following: a pressure locally exists

if and only if the Weyl connection constructed out of the velocity, the expansion and

the acceleration is flat (zero exterior derivative). If furthermore the Weyl connection is

vanishing, the pressure is a constant. Here

A− = a− −
Θ−
2

u− =
Θ−
2

dt+

(

Θ−α−

2P 2
+

∂tα
−

P 2

)

dζ̄ (3.8)

with

Θ− = k2∂ζα
− − 2

(

k2α−∂ζP

P
+

∂tP

P

)

, (3.9)

and similarly for the “+” by complex conjugation. We must impose dA± = 0 and determine

the reference pressures p±(t, ζ, ζ̄) such that A± = d ln p
−1/3
± . The closure of A± can be

worked out systematically, with a simple generic solution. Using (3.8) we find that the

functions α± must be factorized:

α±(t, ζ, ζ̄) = g±(t) α̃
±(ζ, ζ̄) (3.10)

with

Θ± = −2∂t ln g±. (3.11)

Using (3.9), the latter can be written explicitly as

∂ζα
− +

2

k2
∂t ln g± = 2

(

α−∂ζP

P
+

∂tP

k2P

)

and c.c. . (3.12)

In conclusion, a congruence solving Euler equations is characterized by two functions and

their complex conjugates: α̃±(ζ, ζ̄) and

p±(t) =
M±(t)k2

8πG
= g3±(t). (3.13)

The product (3.10) must satisfy eq. (3.12).

Radiation-matter form. Consider finally

8πGT+
rm = 2dζ

(

βdt+
γ

k2
dζ

)

. (3.14)
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In this expression β and γ are a priori functions of t, ζ and ζ̄. The tensor is the symmetrized

direct product of a light-like by a time-like vector. Its conservation enforces the dependence

β = β(t, ζ) and the condition

∂tβ − β∂t lnP
2 − 2P 2∂ζ̄γ = 0. (3.15)

Notice that for vanishing β, we obtain a pure-radiation tensor i.e. the square of of a null

vector. In this case, the conservation equation (3.14) enforces the reduced dependence

γ = γ(t, ζ).

3.2 Resummation: the Robinson-Trautman Einstein spaces

The preceding analysis has not put any restriction on the boundary metric (3.1). It simply

selected the appropriate ingredients for a reference tensor to be conserved. We will consider

a general conserved reference tensor of the form

T+ = T+
pf +T+

rm, (3.16)

the three components being given in eqs. (3.7) and (3.14). For this combination,

8πG

i
ImT+ =

(

dt dζ dζ̄
)







k2 (M− −M+)
3M+α+k2

2P 2 − β
2

−3M−α−k2

2P 2 + β̄
2

3M+α+k2

2P 2 − β
2

−3M+(α+)2k2

2P 4 − γ
k2

M−−M+

2P 2

−3M−α−k2

2P 2 + β̄
2

M−−M+

2P 2
3M−(α−)2k2

2P 4 + γ̄
k2













dt

dζ

dζ̄






(3.17)

and we can now require (2.8). The first observation is that this identification of the Cotton

tensor requires

M+(t) = M−(t), (3.18)

which we will name M(t), a real function. Furthermore, it appears a pair of independent

conditions plus their complex-conjugates. The first reads:

∂t

(

∂2
ζP

P

)

+
3

2
Mk4

(α+)2

P 4
+ γ = 0 and c.c. , (3.19)

while the second is

∂ζK + β = 3Mk2
α+

P 2
and c.c. . (3.20)

Equations (3.19) and (3.20) are algebraic constraints on the functions which determine

the boundary energy-momentum tensor: α±(t, ζ, ζ̄) = (M(t)k2/8πG)
1/3

α̃±(ζ, ζ̄), β(t, ζ) and

γ(t, ζ, ζ̄) (as well as the complex conjugate functions of β, γ). These algebraic relationships

do not constrain the three-dimensional geometry, unless we require by hand some extra

conditions on the functions α, β, γ. We will come back later to this possibility.

Besides eqs. (3.19) and (3.20), we must also impose the differential conditions (3.12)

and (3.15), which guarantee the conservation of the reference energy-momentum ten-

sor (3.16) and consequently of the genuine boundary energy-momentum (2.9). These two
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conditions are actually redundant, once (3.19) and (3.20) are taken into account. This

redundancy is due to the fact that the Cotton tensor (3.2) is identically conserved. The

resulting unique independent conservation condition obtained by combining e.g. (3.12)

with (3.20) reads:

∆K − 12M∂t logP + 4∂tM = 0, (3.21)

where ∆ = 2P 2∂ζ̄∂ζ . This is a differential equation for the boundary metric ds2 given

in (3.1), and for M(t). It should be interpreted as an integrability condition for the re-

summed series expansion (2.16) to be exactly Einstein.

We can now proceed and determine the bulk metric ds2res., using (2.16). For that we

need the energy-momentum tensor, given in terms of the reference tensor (3.16) by (2.9).

Inserting (3.18) as well as the algebraic conditions (3.19) and (3.20) in the latter, we obtain

the boundary energy-momentum tensor exclusively in terms of the metric data P,K and

the function M(t):

T =
1

16πG

(

dt dζ dζ̄
)













4Mk2 −∂ζK −∂ζ̄K

−∂ζK − 2
k2
∂t

(

∂2
ζ
P

P

)

2M
P 2

−∂ζ̄K
2M
P 2 − 2

k2
∂t

(

∂2
ζ̄
P

P

)



















dt

dζ

dζ̄






. (3.22)

This tensor can be put in the form (2.1), (2.2) with u in (3.5) and ds2 in (3.1). The energy

density is determined using (2.4) and (3.5):

ε(t) =
M(t)k2

4πG
, (3.23)

and is time-dependent. The non-perfect component reads:

Π =
1

16πG

(

dt dζ dζ̄
)













0 −∂ζK −∂ζ̄K

−∂ζK − 2
k2
∂t

(

∂2
ζ
P

P

)

0

−∂ζ̄K 0 − 2
k2
∂t

(

∂2
ζ̄
P

P

)



















dt

dζ

dζ̄






, (3.24)

and contains both hydrodynamic and non-hydrodynamic components.

Putting everything together (here ω and q vanish)11 we obtain (2.21) with

k = du, l = −dr −Hu, m =
r

P
dζ (3.25)

and

2H = k2r2 + 2r∂t logP +K −
2M

r
. (3.26)

Our claim, according to the analysis in section 2, is that under the condition (3.21),

eq. (2.16) with (3.25) and (3.26) provides an exact Einstein space. This turns out to

be precisely the case, and the reader might have recognized in eqs. (2.16), (3.25) and (3.26)

11Note also that R = 2k2K and Σ = −k2Kdt2.
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the Robinson-Trautman ansatz, which is Einstein precisely under the condition (3.21).12

This condition, found in our method from purely boundary considerations is nothing but

bulk Einstein’s equation, and M(t) the Bondi mass. This result is remarkable because

it shows, as anticipated, that eq. (2.8) together with the conservation of the reference

tensor (3.16) are indeed, from the boundary, equivalent to Einstein’s equations in some

integrable sector.

In order to close this analysis, we would like to come back to the two algebraic equa-

tions. (3.19) and (3.20) that the functions entering the boundary energy-momentum tensor

should satisfy. In order to clarify their role, it is appropriate to remind that the bulk

Robinson-Trautman metric is algebraically special, i.e. generically Petrov type II. Choos-

ing the bulk null tetrad as in (3.25), the non-vanishing components of the Weyl tensor are

Ψ2 = −
M

r3
, (3.27)

Ψ3 = −
P

2r2
∂ζK, (3.28)

Ψ4 =
1

2r2
∂ζ

(

P 2∂ζK
)

+
P 2

r
∂t

(

∂2
ζP

P

)

. (3.29)

The direction k, which on the boundary becomes the time-like congruence u, is generically

a doubly degenerate principal null direction because the conditions (3.19) and (3.20) leave

enough freedom on the a priori arbitrary functions M(t), α̃±(ζ, ζ̄), β(t, ζ) and γ(t, ζ, ζ̄) to

avoid any constraint on the functions P (t, ζ, ζ̄) or K = ∆ lnP .

We may however tune the various functions defining the reference energy-momentum

tensor (3.16), in order to increase the degeneracy of the bulk principal null direction, and

explore in a boundary-controlled manner other Petrov bulk geometries.

• Set M(t) = 0. This amounts to keeping13 a purely radiation-matter reference energy-

momentum tensor. Now (3.19) reads:

∂t

(

∂2
ζP

P

)

+ γ = 0 and c.c. , (3.30)

which defines γ(t, ζ, ζ̄). Equation (3.20)

∂ζK + β = 0 and c.c. (3.31)

defines β(t, ζ), but also contrains K since now

∂ζ̄∂ζK = 0. (3.32)

From the bulk perspective, the vanishing Bondi mass reads Ψ2 = 0. Together with

eq. (3.32), these are precisely the conditions for the Robinson-Trautman be Petrov

type III (see [19]). The principal null direction k is now triply degenerate.

12Holography in Robinson-Trautman spacetimes has recently attracted some attention [24, 25]. In par-

ticular, the holographic energy-momentum tensor found from the bulk geometry in [24] agrees with ours

(eq. (3.22)), obtained from purely boundary considerations.
13Note that for vanishing M(t), the functions α̃±(ζ, ζ̄) become irrelevant.
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• Set alternatively M(t) = 0 and β(t, ζ) = 0. This amounts to keeping a pure-radiation

reference energy-momentum tensor with γ = γ(t, ζ) due to the conservation equa-

tion (3.15). The algebraic conditions (3.19) and (3.20) become

∂t

(

∂2
ζP

P

)

+ γ = 0 and c.c. (3.33)

and

∂ζK = 0, ∂ζ̄K = 0. (3.34)

The first, eq. (3.33), defines γ(t, ζ). Since the latter does not depend on ζ̄, this imposes

∂ζ̄∂t

(

∂2
ζ
P

P

)

= 0 and its complex conjugate. However, these are automatically satis-

fied by any P (t, ζ, ζ̄) satisfying (3.34).14 Consequently, the only relevant conditions

are the vanishing Bondi mass setting Ψ2 = 0, and (3.34) setting Ψ3 = 0. With the

present choice of boundary energy-momentum tensor the bulk is Robinson-Trautman

Petrov type N and k is here quadruply degenerate.

• We can also choose a boundary reference energy-momentum tensor (3.16) of pure

perfect-fluid content, with shear-free congruences u±. This latter condition is a free

choice from our side, which simply requires the coordinate dependence α−(t, ζ) =

(M(t)k2/8πG)
1/3

α̃−(ζ). The conditions (3.19) and (3.20) read:

∂t

(

∂2
ζP

P

)

+
3

2
Mk4

(α+)2

P 4
= 0 and c.c. , (3.35)

and

∂ζK = 3Mk2
α+

P 2
and c.c. . (3.36)

These define α−(t, ζ) and α+(t, ζ̄) and set two conditions for P and K:

6M∂t

(

∂2
ζP

P

)

+ (∂ζK)2 = 0 and c.c. , (3.37)

plus

∂ζ̄
(

P 2∂ζ̄K
)

= 0 and c.c. . (3.38)

The latter stems out of the u±-shearlessness condition, while the first is just the

combination of (3.35) and (3.36). From the bulk perspective, (3.37) and (3.38) are

nicely packaged in

3Ψ2Ψ4 = 2Ψ2
3. (3.39)

14The most general P (t, ζ, ζ̄) solving (3.34) has been found in [26]. It reads:

P (t, ζ, ζ̄) =
1 + ǫ

2
h(t, ζ) h̄(t, ζ̄)

√

2f(t) ∂ζh(t, ζ̄) ∂ζ̄ h̄(t, ζ̄)

with ǫ = 0,±1 and arbitrary functions f(t) and h(t, ζ).
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With the null tetrad adopted for the bulk, this condition guarantees the Robinson-

Trautman solution be Petrov type D. In this case, the principal null direction k

remains doubly degenerate, while an extra doubly generate principal null direction

emerges.

Two remarks are in order here. The first concerns the actual solutions of Robinson-

Trautman Petrov type D. These are the Schwarzschild AdS and the C-metric AdS,

which also belongs to the class of Plebański-Demiański, with black-hole acceleration

parameter. The Plebański-Demiański, without black-hole acceleration parameter has

been obtained along the lines of though of the present work in [16]. The C-metric

holography, has also been analyzed in [27, 28], and reveals many interesting pecu-

liarities. The second remark is that a pure perfect-fluid reference energy-momentum

tensor with arbitrary congruences u± would have led to the condition (3.37) only.

Without (3.38) the bulk would have been type II — not the most general though.

This apparent violation of the one-to-one correspondence between canonical classes

of boundary tensors and bulk Petrov types is due to the fact that we are using the

reference tensors T± instead of S±, as explained in section 2.2.

• Finally, we can simply set T± = 0. This case is somehow degenerate. Indeed,

according to (2.8), the boundary has vanishing Cotton tensor and is thus conformally

flat. So is the bulk since Ψi = 0 for all i = 0, . . . , 4. The bulk Robinson-Trautman is

now Petrov type O, which reduces to pure four-dimensional anti-de Sitter spacetime.

3.3 Adding vorticity: towards Plebański-Demiański

The hydrodynamic congruence carries vorticity when allowing for non-trivial b in (2.20). In

this instance a genuine resummation operates in (2.16) because ρ 6= r (see (2.17)). Bound-

ary data of this kind were discussed in [16] together with their resummed exact ascendents,

demonstrating the power of the resummation. In the cases at hand, the boundary metric

is (2.18) with Ω = 1 and the vector ∂t tangent to the hydrodynamic congruence is assumed

to be a Killing vector. This makes u = −dt + b geodesic, shear- and expansion-free with

vorticity ω = 1
2 db. The reference tensors T± are chosen to be of the perfect-fluid form T±

pf

given in (3.7) with equal velocity fields u+ = u− = u. Being geodesic and expansion-free,

they allow the conservation of this tensor with constant M± (see appendix A):

T±
pf =

k2

8πG

(

m± i
c

2k4

)(

3 (dt− b)2 + ds2
)

. (3.40)

Imposing the conditions given by eqs. (2.8) and (2.9), this choice leads to (i) boundary

geometries with perfect-fluid-like Cotton tensor, named perfect geometries in [15, 16] and

(ii) perfect-fluid physical boundary energy-momentum tensor. The latter statement shows

that the boundary state is purely hydrodynamic with many vanishing transport coefficients,

whereas the former leads to a family of boundary metrics depending on two real parameters,

with hyperbolic, flat or spherical spatial parts.

The resulting bulk geometry (2.16) turns out to be the general AdS-Kerr-Taub-NUT

black-hole spacetime with hyperbolic, flat or spherical horizon, depending on three real
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parameters: the mass m, the angular velocity a and the nut charge n.15 The nut charge

and the angular velocity a are encapsulated inside the constant c in (3.40). These geome-

tries belong to the most general Petrov D class of Einstein solutions having two Killing

vectors, namely the Plebański-Demiański family [31]. As already mentioned when quoting

the C-metric at the end of section 3.2, the Plebański-Demiański class has an extra phys-

ical parameter (the acceleration parameter), which can be introduced from the boundary

perspective by relaxing the requirement u+ = u−. The details of this case will appear

elsewhere.

4 Conclusions

In order to put our results in perspective, let us come back to the original question asked

in the introduction: given a class of boundary metrics, what are the conditions it should

satisfy, and which energy-momentum tensor should it be accompanied with in order for an

exact dual bulk Einstein space to exist? Our answer to this question is based on three steps

and four equations:

• The first step consists in choosing a set of two complex-conjugate reference tensors

T±, symmetric, traceless and satisfying the conservation equation (2.10).

• Next, this tensor enables us (i) to set conditions on the boundary metric by imposing

its Cotton be the imaginary part of T± (up to constants), eq. (2.8); (ii) to determine

the boundary energy-momentum tensor as its real part, eq. (2.9).

• Finally, using these data and eq. (2.21), we reconstruct the bulk Einstein space.

Several comments are in order here for making the picture complete. Equation (2.21) is

obtained using the derivative expansion, which is an alternative to the Fefferman-Graham

expansion and better suited for our purposes. As such, it assumes that the boundary state

is in the hydrodynamic regime, described by an energy-momentum tensor of the fluid type.

The latter has a natural built-in velocity field, interpreted as the fluid velocity congruence.

Our method (first and second steps), however, does not necessarily lead to a fluid-like

energy-momentum tensor. This is not a principle problem, because non-perturbative con-

tributions with respect to the derivative expansion (non-hydrodynamic modes) are indeed

expected to emerge along with a resummation [32]. In practice, though, it requires an extra

piece of information regarding the velocity field around which the hydrodynamic modes

are organized. To face this issue, we made the most economical choice, with a fluid at rest

(eq. (2.20)) in the natural frames associated with the coordinates in use in the boundary

metric (2.18). This choice is in agreement with the assumption of absence of shear, crucial

for eliminating many terms in the derivative expansion of the bulk metric and making it

resummable.

15Bulk angular velocity and nut charge act both as sources for boundary vorticity [29, 30].
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We have not formally proven that the three-step procedure proposed here leads indeed

to Einstein spaces. However, our approach makes it clear that canonical boundary reference

tensors guarantee the bulk be algebraically special. As a bonus, it is possible to set a

precise relationship between the Segre type of the reference tensor and the Petrov type of

the bulk Weyl tensor. Many examples illustrate how the method works in practice and

we have presented here the reconstruction of generic boundary data with a vorticity-free

congruence. These lead to the whole family of Robinson-Trautman bulk Einstein spaces.

The formal proof of the constructive method presented in this paper will be released in

the future. Besides that technical development, which we have chosen to avoid here, several

other issues deserve further investigation. This effort aims at better understanding how

the bulk is controlled from the boundary beyond any perturbative expansion. We know

e.g. that the Petrov class of the bulk is determined by the choice of the boundary reference

tensors. Our working assumption was the absence of shear for the boundary hydrodynamic

congruence. Would shear be an obstruction to resummability? Can one reconstruct spaces

which are not algebraically special, with zero shear on the boundary? Can one better

understand the interplay between the two perturbative expansions mentioned here, namely

the Fefferman-Graham and the derivative ones? Finally, based on the fact that eqs. (2.10)

and (2.8) emerge as the boundary manifestation of Einstein’s equations, we may wonder

whether they possess some hidden symmetry à la Geroch, which would relate integrable

boundary data (see [17] and the original references cited there).
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A On perfect-fluid dynamics

In this appendix, we would like to set a useful criterion regarding the motion of confor-

mal perfect fluids. For such fluids with velocity congruence u and pressure p(x), three-

dimensional Euler’s equations read:

{

2u(p) + 3pΘ = 0,

u(p) u + dp+ 3p a = 0,
(A.1)

where u(p) = uµ∂µp. Combining these equations, we obtain:

3A +
dp

p
= 0, (A.2)

where A = a − Θ
2 u. For eq. (A.2) to hold we extract a simple integrability condition: the

Weyl connection A must be closed (hence locally exact) for a pressure field p(x) to exist

and account for the expansion and acceleration of the fluid. If A vanishes, the pressure is

constant; if A is not exact, the fluid moving on the congruence u is not perfect, or even the

hydrodynamic regime is not applicable.
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VI, (1979), http://www.ihes.fr/∼damour/Articles/these1.pdf.

[2] V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence,

arXiv:1107.5780.

[3] R. Emparan, V.E. Hubeny and M. Rangamani, Effective hydrodynamics of black D3-branes,

JHEP 06 (2013) 035 [arXiv:1303.3563] [INSPIRE].

[4] S. Kuperstein and A. Mukhopadhyay, Spacetime emergence via holographic RG flow from

incompressible Navier-Stokes at the horizon, JHEP 11 (2013) 086 [arXiv:1307.1367]

[INSPIRE].

[5] I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian Approach to Fluid/Gravity

Duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [INSPIRE].

[6] I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes To Einstein,

JHEP 07 (2012) 146 [arXiv:1101.2451] [INSPIRE].

[7] V. Lysov and A. Strominger, From Petrov-Einstein to Navier-Stokes, arXiv:1104.5502

[INSPIRE].

[8] C. Fefferman and C.R. Graham, Conformal invariants, in Elie Cartan et les mathématiques
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