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Abstract. Pex automatically produces a small test suite with high code
coverage for a .NET program. To this end, Pex performs a systematic
program analysis (using dynamic symbolic execution, similar to path-
bounded model-checking) to determine test inputs for Parameterized
Unit Tests. Pex learns the program behavior by monitoring execution
traces. Pex uses a constraint solver to produce new test inputs which
exercise different program behavior. The result is an automatically gen-
erated small test suite which often achieves high code coverage. In one
case study, we applied Pex to a core component of the .NET runtime
which had already been extensively tested over several years. Pex found
errors, including a serious issue.

1 Overview

Pex [24] is an automatic white-box test generation tool for .NET. Starting from
a method that takes parameters, Pex performs path-bounded model-checking
by repeatedly executing the program and solving constraint systems to obtain
inputs that will steer the program along different execution paths, following the
idea of dynamic symbolic execution [12,6]. Pex uses the theorem prover and
constraint solver Z3 [3] to reason about the feasibility of execution paths, and
to obtain ground models for constraint systems.

While the concept of dynamic symbolic execution is not new, Pex extends the
previous work in several ways:

– Pex can build faithful symbolic representations of constraints that charac-
terize execution paths of safe .NET programs. In other words, Pex contains
a complete symbolic interpreter for safe programs that run in the .NET vir-
tual machine. (And the constraint solver Z3 comes with decision procedures
for most such constraints.)

– Pex can reason about a commonly used set of unsafe features of .NET.
(Unsafe means unverifiable memory accesses involving pointer arithmetic.)

– Pex employs a set of search strategies with the goal to achieve high statement
coverage in a short amount of time.

We have integrated Pex into Visual Studio as an add-in. Pex can generate test-
cases that can be integrated with various unit testing frameworks, including
NUnit [20] and MSTest [22]. Pex is an extensible dynamic program analysis
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platform; one recent plug-in is DySy [7], an invariant inference tool based on
dynamic symbolic execution. We are working towards making the symbolic ex-
ecution analysis compositional [1].

We have conducted a case study in which we applied Pex to a core component
of the .NET architecture which had already been extensively tested over five
years by approximately 40 testers. The component is the basis for other libraries,
which are used by thousands of developers and millions of end users. Pex found
errors, including a serious issue. Because of proprietary concerns, we cannot
identify the .NET component on which this case study was based. We will refer
to it as the “core .NET component” in the following.

The rest of the paper is structured as follows: Section 2 contains an intro-
duction to Pex. Section 3 discusses the implementation of Pex in more detail.
Section 4 shows a particular application of Pex to unsafe .NET code. Section 5
presents the results of applying Pex to a core .NET component. Section 6 com-
pares Pex with other related technologies, and Section 7 concludes.

2 An Introduction to Pex

2.1 Parameterized Unit Testing

At its core, Pex is a test input generator. A test input generator is only useful
in practice

– if we have a program to generate test inputs for, and
– if we have a test oracle that decides whether a program execution was suc-

cessful for some given test inputs.

For Pex, we have adopted the notion of parameterized unit tests [28,29] which
meet both requirements. A parameterized unit test is simply a method that takes
parameters, performs a sequence of method calls that exercise the code-under-
test, and asserts properties of the code’s expected behavior.

For example, the following parameterized unit test written in C# creates an
array-list with a non-negative initial capacity, adds an element to the list, and
then asserts that the added element is indeed present.

[PexMethod ]
public void AddSpec(

// data
int capacity , object element) {
// assumptions
PexAssume .IsTrue(capacity >= 0);
// method sequence
ArrayList a = new ArrayList (capacity );
a.Add(element );
// assertions
Assert.IsTrue(a[0] == element );

}

Here, AddSpec is decorated with the custom attribute [PexMethod], which Pex
uses to distinguish parameterized unit tests from ordinary methods.
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2.2 The Testing Problem

Starting from parameterized unit tests as specification, we formulate the testing
problem as follows.

Given a sequential program P with statements S, compute a set of pro-
gram inputs I such that for all reachable statements s in S there exists
an input i in I such that P (i) executes s.

Remarks:

– By sequential we mean that the program is single-threaded.
– We consider failing an assertion, or violating an implicit contract of the

execution engine (e.g. NullReferenceException when null is dereferenced) as
special statements.

2.3 The Testing Problem in Practice

In general, the reachability of program statements is not decidable. Therefore, in
practice we aim for a good approximation, e.g. high coverage of the statements
of the program. Instead of statement coverage, other coverage metrics such as
arc coverage can be used.

In a system with dynamic class loading such as .NET, it is not always possible
to determine the statements of the programs ahead of time. In the worst case,
the only way to determine all reachable statements is an incremental analysis of
all possible behaviors of the program.

The analysis of all possible program behaviors, i.e. all execution paths, may
take an infinite amount of time. In practice, we have only a limited amount of
time available, so we aim for an analysis that can produce test inputs for most
reachable statements fast.

Another problem arises from the fact that most interesting programs interact
with the environment. In other words, the semantics of some program statements
may not be known ahead of time. Most static analysis tools make conservative
assumptions in such cases and may produce many false positives, e.g. test-cases
that supposedly may exhibit an error, but in practice do not. For test generation
tools it is more appropriate to take into account environment interactions in
order to filter out false positives.

In the remainder of this section we describe the foundations on which Pex
tries to address the testing problem, and the next section describes Pex’ imple-
mentation in more detail, including how heuristic search strategies often solve
the problem of achieving high coverage fast.

2.4 Symbolic Execution

Pex implements a white box test input generation technique that is based on
the concept of symbolic execution. Symbolic execution works similar to concrete
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execution, only that symbolic variables are used for the program inputs instead
of concrete values. When a program variable is updated to a new value during
program execution, then this new value may be an expression over the symbolic
variables. When the program executes a conditional branch statement where the
condition is an expression over the symbolic variables, symbolic execution has to
consider two possible continuations, since the condition may evaluate to either
true or false, depending on the program inputs. For each path explored by sym-
bolic execution in this way, a path condition is built over symbolic variables. The
path condition is the conjunction of the expressions that represent the branch
conditions of the program. In this manner all constraints are collected which are
needed to deduce what inputs cause an execution path to be taken.

A constraint solver or automatic theorem prover is used to decide the feasi-
bility of individual execution paths, and to obtain concrete test inputs as repre-
sentatives of individual execution paths.

2.5 Dynamic Symbolic Execution

Pex explores the reachable statements of a parameterized unit test using a tech-
nique called dynamic symbolic execution [12,6]. This technique consists in execut-
ing the program, starting with very simple inputs, while performing a symbolic
execution in parallel to collect symbolic constraints on inputs obtained from
predicates in branch statements along the execution. Then Pex uses a constraint
solver to compute variations of the previous inputs in order to steer future pro-
gram executions along different execution paths. In this way, all execution paths
will be exercised eventually.

Dynamic symbolic execution extends conventional static symbolic execution
[16] with additional information that is collected at runtime, which makes the
analysis more precise [12,11]. While additional information is collected by moni-
toring concrete traces, each of these traces is representative of an execution path,
i.e. the equivalence class of test inputs that steer the program along this par-
ticular execution path. By taking into account more details of structure of the
program (e.g. boundaries of basic blocks or functions), even bigger equivalences
classes can be analyzed at once [12,1].

Algorithm 2.1 shows the general dynamic symbolic execution algorithm imple-
mented in Pex. The choice of the new program inputs i in each loop iteration de-
cides in which order the different execution paths of the program are enumerated.

Pex uses several heuristics that take into account the structure of the program
and the already covered statements when deciding on the next program inputs.
While the ultimate goal of Pex is to discover all reachable statements, which
is an undecidable problem, in practice Pex attempts to achieve high statement
coverage fast. This simplifies the configuration of Pex greatly: the user just has
to set a time limit or another rough exploration bound. Other dynamic symbolic
execution tools ([12,11,12,6]) perform an exhaustive search of all the execution
paths in a fixed order, within bounds on the size and structure of the input given
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by the user. In the case of Pex the inputs are often richly structured object
graphs for which it is a difficult problem to define practical and useful bounds.

Algorithm 2.1. Dynamic symbolic execution
Set J := ∅ (intuitively, J is the set of already
loop analyzed program inputs)

Choose program input i /∈ J (stop if no such i can be found)
Output i
Execute P (i); record path condition C (in particular, C(i) holds)
Set J := J ∪ C (viewing C as the set {i | C(i)})

end loop

2.6 More Reasons for Dynamic Symbolic Execution

Symbolic execution was originally proposed [16] as a static program analysis
technique, i.e. an analysis that only considered the source code of the analyzed
program. This approach works well as long as all decisions about the feasibility
of execution paths can be made on basis of the source code alone. It becomes
problematic when the program contains statements that cannot be reasoned
about easily (e.g. memory accesses through arbitrary pointers, or floating point
arithmetic), or when parts of the program are actually unknown (e.g. when
the program communicates with the environment, for which no source code is
available, and whose behavior has not been specified rigorously).

It is not uncommon for .NET programs to use unsafe .NET features, i.e. using
pointer arithmetic to access memory for performance reasons, and most .NET
programs interact with other unmanaged (i.e. non-.NET) components or the
Windows API for legacy reasons.

While static symbolic execution algorithms do not use any information about
the environment into which the program is embedded, dynamic symbolic execu-
tion can leverage dynamic information that it observes during concrete program
executions, i.e. the memory locations which are actually accessed through point-
ers and the data that is passed around between the analyzed program and the
environment.

As a result, Pex can prune the search space. When the program communi-
cates with the environment, Pex builds a model of the environment from the
actual data that the environment receives and returns. This model is an under-
approximation of the environment, since Pex does not know the conditions under
which the environment produces its output. The resulting constraint systems
that Pex builds may no longer accurately characterize the program’s behavior.
In practice this means that for a computed input the program may not take the
predicted execution path. Since Pex does not have a precise abstraction of the
program’s behavior in such cases, Pex may not discover all reachable execution
paths, and thus all reachable statements.

In any case, Pex always maintains an under-approximation of the program’s
behavior, which is appropriate for testing.
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3 Pex Implementation Details

3.1 Instrumentation

Pex monitors the execution of a .NET program through code instrumentation.
Pex plugs into the .NET profiling API [21]. It inspects the instructions of a
method in the intermediate language [15] which all .NET compilers target. Pex
rewrites the instructions just before they are translated into the machine code
at runtime. The instrumented code drives a “shadow interpreter” in parallel to
the actual program execution. The “shadow interpreter”

– constructs symbolic representations of the executed operations over logical
variables instead of the concrete program inputs;

– maintains and evolves a symbolic representation of the entire program’s state
at any point in time;

– records the conditions over which the program branches.

Pex’ “shadow interpreter” models the behavior of all verifiable .NET instruc-
tions precisely, and models most unverifiable (involving unsafe memory accesses)
instructions as well.

3.2 Symbolic Representation of Values and Program State

A symbolic program state is a predicate over logical variables together with an
assignment of expressions over logical variables to locations, just as a concrete
program state is an assignment of values to locations. For Pex, the locations of
a state consist of static fields, instance fields, method arguments, local variables,
and positions on the operand stack.

Pex’ expression constructors include primitive constants for all basic .NET
data types (integers, floating point numbers, object references), and functions
over those basic types representing particular machine instructions, e.g. addition
and multiplication. Pex uses tuples to represent .NET value types (“structs”)
as well as indices of multi-dimensional arrays, and maps to represent instance
fields and arrays, similar to the heap encoding of ESC/Java [10]: An instance
field of an object is represented by a field map which associates object references
with field values. (For each declared field in the program, there is one location
in the state that holds current field map value.) An array type is represented
by a class with two fields: a length field, and a field that holds a mapping from
integers (or tuples of integers for multi-dimensional arrays) to the array elements.
Constraints over the .NET type system and virtual method dispatch lookups
are encoded in expressions as well. Predicates are represented by boolean-valued
expressions.

We will illustrate the representation of the state with the following class.

class C {
int X;
int GetXPlusOne () { return this.X + 1; }
void SetX(int newX) { this.X = newX; }

}
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Symbolically executing the method c.GetXPlusOne() with the receiver object
given by the object reference c will yield the expression add(select(X_Map,c), 1)

where the select function represents the selection of c’s X-field value from the
current field map X_Map. After symbolically executing c.SetX(42), the final state
will assign the expression update(X_Map,c,42) to the location that holds the
current field map of X. X_Map denotes the value of the field map of X before the
execution of the method.

Pex implements various techniques to reduce the enormous overhead of the
symbolic state representation. Before building a new expression, Pex always ap-
plies a set of reduction rules which compute a normal form. A simple example
of a reduction rule is constant folding, e.g. 1 + 1 is reduced to 2. All logical con-
nectives are transformed into a binary decision diagram (BDD) representation
with if-then-else expressions [5]. All expressions are hash-consed, i.e. only one
instance is ever allocated in memory for all structurally equivalent expressions.
Map updates, which are used extensively to represent the evolving heap of a
program, are compactly stored in tries, indexed over unique expression indices.

Based on the already accumulated path condition, expressions are further
simplified. For example, if the path condition already established that x > 0,
then x < 0 simplifies to false.

3.3 Symbolic Pointers

Pex represents pointers as expressions as well. Pex distinguishes the following
pointer constructors.

– Pointer to nowhere. Represents an invalid pointer, or just null.
– Pointer to value. Represent a pointer to an immutable value, e.g. a pointer

to the first character of a string.
– Pointer to static field.
– Pointer to instance field map. Represents a pointer to the mapping of an

instance field that associates object references with field values.
– Pointer to method argument or local variable.
– Pointer to element. Given a pointer to a mapping and an index expression,

represents a pointer to the indexed value.

While the pointers in safe, managed .NET programs are guaranteed to be
either null or pointing to a valid memory location, unsafe .NET code that is
sufficiently trusted to bypass .NET’s byte code verifier does not come with such
a guarantee. Thus, when the user enables Pex’ strict pointer checking mode,
Pex builds a verification condition whenever the program is about to perform
an indirect memory access through a pointer. In particular, given a pointer to
an element of an array, the condition states that the index must be within the
bounds of the array.

In practice, the verification conditions can verify most uses of unsafe point-
ers. For example, the following code shows a common use of pointers, with the
intention of simply avoiding the overhead of repeated array-bounds checking.
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public unsafe bool BuggyContainsZero (byte [] a) {
if (a == null || a.Length == null) return false;
fixed (byte * p = a)

for (int i = 0; i <= a.Length; i++)
if (p[i] == 0) return true;

return true;
}

This code contains an error: The loop condition should be i < a.Length in-
stead of i <= a.Length. This error might not be detected with conventional test-
ing, since reading beyond the bounds of an array with a pointer often does not
trigger an exception (the allocated memory is usually advanced to another block
of allocated memory).

While the problem of buffer overflows has been well studied, e.g. in the context
of C programs that are compiled to machine code directly, we are not aware
of a thorough checker in the context of managed execution environments, in
particular .NET.

Pex can not only detect the error in strict pointer-checking mode, Pex will even
steer the program towards obscure program behaviors by test input generation
through dynamic symbolic execution.

However, Pex cannot symbolically reason about all operations that involve
pointers. In particular, Pex does not track when the content of a memory is
reinterpreted, e.g. a pointer to an array of bytes is cast to a pointer of an integer,
and when the memory was obtained from the environment, e.g. through a call
to a Windows API.

3.4 Search Strategy

Deciding reachability of program statements is a hard problem. In a system with
dynamic class loading and virtual method dispatch the problem does not become
easier. As discussed earlier, Pex’ approach based on dynamic symbolic execution
enumerates feasible execution paths, where information from previously executed
paths is used to compute test inputs for the next execution paths. Most earlier
approach to dynamic symbolic execution [12,27,26,6] in fact only use information
from the last execution path to determine test inputs that will exercise the
next path. This restriction forces them to use a fixed “depth-first, backtracking”
search order, where the next execution path would always share the longest
possible prefix with the previous execution path. As a result, a lot of time may be
spent analyzing small parts of the program before moving on. These approaches
require well defined bounds on the program inputs to avoid unfolding the same
program loop forever, and they may discover “easy” to cover statements only
after an exhaustive search. (To avoid getting stuck in the depth-first search,
these earlier approaches frequently inject random test inputs to steer the search
towards other parts of the program. However, this prevents any deep symbolic
analysis.)

Pex uses the information of all previously executed paths: During exploration,
Pex maintains a representation of the explored execution tree of the program,
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whose paths are the explored execution paths. In each step of the test generation
algorithm, Pex picks an outgoing unexplored branch of the tree, i.e. the prefix
of a feasible execution path plus an outgoing branch that has not been exercised
yet. The next test inputs are the solution (if any) of the constraint system that
is built from the conjunction of the path condition of the feasible path prefix,
and the condition of the unexercised outgoing branch. If the constraint system
has no solution, or it cannot be computed by the constraint solver, the search
marks the branch as infeasible and moves on.

In earlier experiments, we tried well-known search strategies to traverse the
execution tree, such as breadth-first search. While this strategy does not get
stuck in the same way as depth-first search, it does not take into account the
structure of the program either.

The program consists of building blocks such as methods and loops, which
may get instantiated and unfolded many times along each execution path, giv-
ing rise to multiple branch instances in the execution path (and tree). For our
ultimate goal, to cover all reachable statements, the number of unfoldings is ir-
relevant, although a certain number of unfoldings might be required to discover
that a statement is reachable. How many and which unfoldings are required is
undecidable.

In order to avoid getting stuck in a particular area of the program by a fixed
search order, Pex implements a fair choice between all such unexplored branches
of the explored execution tree. Pex includes various fair strategies which partition
all branches into equivalence classes, and then pick a representative of the least
often chosen class. The equivalence classes cluster branches by mapping them

– to the branch statement in the program of which the execution tree branch
is an instance (each branch statement may give rise to multiple branch in-
stances in the execution tree, e.g. when loops are unfolded),

– to the stack trace at the time the brach was recorded,
– to the overall branch coverage at the time the branch was recorded,
– to the depth of the branch in the execution tree.

Pex combines all such fair strategies into a meta-strategy that performs a fair
choice between the strategies.

Creating complex objects. When an argument of a parameterized unit test
is an object that has non-public fields, Pex will still collect constraints over the
usage of that field. Later, new test inputs may be computed which assign partic-
ular values to those fields. But then Pex may not know how to create an object
through the publicly available constructors such that the object’s private fields
are in the desired state. (Of course, Pex could use .NET’s reflection mechanism
to set private fields in arbitrary ways, but then Pex might violate the (implicit)
class invariant.)

In such cases, Pex selects a constructor of the class (the user may configure
which constructor is chosen), and Pex includes this constructor in the exploration
of the parameterized unit test. As a result, Pex will first try to find a non-
exceptional path through the control-flow of the constructor, and then use the
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created object to further explore the parameterized unit test that required the
object. In other words, Pex tries to avoid the backward search to find a way to
reach a target state; instead, it will perform a forward search that is compatible
with dynamic symbolic execution.

In this way, directed object graphs can easily be created, where arguments
to constructors can refer to earlier constructed objects. Cyclic object graphs
can only result if a constructor updates a field of an argument to point to the
constructed object.

As an alternative to employing only existing constructors to configure objects,
the user may also provide factory methods, which could invoke a sequence of
method calls to construct and configure a new object, possibly creating cyclic
references as well.

3.5 Constraint Solving

For each chosen unexplored branch, Pex builds a formula that represents the
condition under which this branch may be reached. Pex performs various pre-
processing steps to reduce the size of the formula before handing it over to
the constraint solver, similar to constraint caching, and independent constraint
optimization [6].

Pex employs Z3 as its constraint solver. Pex faithfully encodes all constraints
arising in safe .NET programs such that Z3 can decide them with its built-in
decision procedures for propositional logic, fixed sized bit-vectors, tuples, arrays,
and quantifiers. Arithmetic constraints over floating point numbers are approx-
imated by a translation to rational numbers. Pex also encodes the constraints
of the .NET type system and virtual method dispatch lookups as universally
quantified formulas.

3.6 Pex Architecture

Internally, Pex consists of several libraries:

Microsoft.ExtendedReflection. Extended Reflection (ER) is a library that
enables the monitoring of .NET applications at the instruction level. It uses
the unmanaged profiling API to instrument the monitored .NET program
with callbacks to the managed ER library. The callbacks are used to drive
the “shadow interpreter” mentioned in Section 3.1.

Microsoft.Pex.Framework. This library is serves as a front-end for the user
to configure Pex. It defines a number of .NET custom attributes, including
the PexMethod attribute that we used in the earlier example.

Microsoft.Pex. The Pex engine implements the search for test inputs, by re-
peatedly executing the program while monitoring it, and building constraint
systems to obtain new test inputs.

Microsoft.Z3. [3] is the constraint solver that Pex uses.
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Pex is built from individual components, that are organized in three layers:

1) A set of components is alive for the entire lifetime of the Pex engine.
2) In addition, a set of components is created and kept alive for the duration
of the exploration of a single parameterized unit test. 3) In addition, a set of
components is created and kept alive for each execution path that is executed
and monitored.

Pex’ monitoring library, ER, is a quite general monitoring library that can
be used in isolation. In addition to Pex itself, we have built PexCop on top of
ER, a dynamic program analysis application which analyzes individual execution
traces, looking for common programming errors, e.g. resource leaks.

Pex itself provides an extension mechanism, where a user can hook into any
of the three component layers of Pex (engine, exploration, path). For example,
DySy [7], an invariant inference tool based on dynamic symbolic execution, uses
this extension mechanism to analyze all execution path of a parameterized unit
test.

3.7 Limitations

There are certain situations in which Pex cannot analyze the code properly:

Nondeterminism. Pex assumes that the analyzed program is deterministic;
this means in particular that all environment interactions should be deter-
ministic. Pex detects non-determinism by comparing the program’s actual
execution path with the predicted execution path. When non-deterministic
behavior is detected, Pex prunes the test inputs that caused it. Pex also
gives feedback to the user, showing the program branches where monitored
execution paths began to deviate from the prediction. The user can decide
to ignore the problems, or the user can change the code to make it more
testable.

To alleviate the problem, Pex has a mechanism for substituting methods
that have a known non-deterministic behavior with deterministic alterna-
tives. For example, Pex routinely substitutes the TickCount property of the
System.Environment class that measures time with a constant alternative.
Substitutions are easy to write by users; they are applied by Pex through
name matching.

namespace __Substitutions .System {
public static class Environment {

public static int get_TickCount___redirect() {
return 0;

}
}

}

Concurrency. Today, Pex does not handle multithreaded programs. Pex only
monitors the main thread of the program. Other threads may cause non-
deterministic behavior of the main thread, which results in feedback to the
user just like other non-deterministic program behavior.
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Native Code, .NET code that is not instrumented. Pex does not moni-
tor native code, e.g. x86 instructions called through the P/Invoke mechanism
of .NET. Also, since instrumentation of managed code comes with a signif-
icant performance overhead, Pex instruments code only selectively. In both
cases, the effect is the same: constraints are lost. However, even if some meth-
ods are implemented in native code or are uninstrumented, Pex will still try
to cover the instrumented code as much as possible.

The concept of redirecting method calls to alternative substitution meth-
ods is also used sometimes to give managed alternatives to native methods,
so that Pex can determine the constraints of native methods by monitoring
the managed alternative.

Symbolic Reasoning. Pex uses an automatic constraint solver (Z3) to de-
termine which values are relevant for the test and the program-under-test.
However, the abilities of the constraint solver are, and always will be, lim-
ited. In particular, Z3 cannot reason about floating point arithmetic, and
Pex imposes a configurable memory and time consumption limit on Z3.

Language. Pex can analyze arbitrary .NET programs, written in any .NET
language. Today, the Visual Studio add-in and the test code generation only
support C#.

4 Application

Pex is integrated into Visual Studio as an add-in. The user writes parameterized
unit tests as public instance methods decorated the custom attribute PexMethod,
as shown in the following example.

[PexMethod ]
public void ParameterizedTest (int i) {

if (i == 123)
throw new ArgumentException ("i");

}

Then, the user simply right-clicks the parameterized unit test, and selects the
Pex It menu item.

Pex will then launch a process in the background which analyzes the code,
executing it multiple times. The results are shown in a Pex Results window,
that lists the computed parameter values in a table for each parameterized unit
test.
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As expected, Pex generated 2 tests to cover ParameterizedTest. The first tests
uses the “default” value 0 for an integer, and Pex records the constraint i!=123.
The negation of this constraint leads to the second test, where i==123, which
triggers the branch that throws a ArgumentNullException.

In the following example, we show that Pex can analyze unsafe managed
.NET code. We wrote the following parameterized unit test, that obtains an
unsafe pointer from a (safe) byte array, then passes the pointer to the .NET
UnmanagedMemoryStream, which is in turn given to the ResourceReader.

[PexClass]
...
public partial class ResourceReaderTest {

[PexMethod ]
public unsafe void ReadEntriesFromUnmanagedMemoryStream(

[PexAssumeNotNull ]byte [] data) {
fixed (byte* p = data)

using (UnmanagedMemoryStream stream =
new UnmanagedMemoryStream (p, data.Length)) {
ResourceReader reader =

new ResourceReader (stream);
readEntries (reader);

}
}

private static void readEntries (ResourceReader reader) {
int i = 0;
foreach (DictionaryEntry entry in reader) {

PexAssert .IsNotNull (entry.Key);
i++;

}
}

}

We further decorate the test with the following attributes, to suppress certain
exceptions that the documentation deems acceptable, and to enable Pex’ strict
checking of unsafe memory accesses.

[PexInjectExceptionsOnUnverifiableUnsafeMemoryAccess]
[PexAllowedException (typeof(BadImageFormatException))]
[PexAllowedException (typeof(IOException ))]
[PexAllowedException (typeof(NotSupportedException ))]
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From the parameterized unit test, Pex generates several test inputs. After
around one minute, and executing the parameterized unit tests for 576 times
with different inputs, Pex generates test-cases such as the following. (Most of
the generated test-cases represent invalid resource file, but some represent legal
resource files with one or more entries. The byte array shown here is an illegal
resource file.)

public void ReadEntriesFromUnmanagedMemoryStream_576() {
byte [] bs0 = new byte [56];
bs0[0] = (byte )206;
bs0[1] = (byte )202;
bs0[2] = (byte )239;
bs0[3] = (byte )190;
bs0[7] = (byte )64;
bs0 [12] = (byte )2;
bs0 [16] = (byte )2;
bs0 [24] = (byte )192;
bs0 [25] = (byte )203;
bs0 [26] = (byte )25;
bs0 [27] = (byte )176;
bs0 [28] = (byte )1;
bs0 [29] = (byte )145;
bs0 [30] = (byte )88;
bs0 [40] = (byte )34;
bs0 [41] = (byte )128;
bs0 [42] = (byte )132;
bs0 [43] = (byte )113;
bs0 [44] = (byte )132;
bs0 [46] = (byte )168;
bs0 [47] = (byte )5;
bs0 [48] = (byte )172;
bs0 [49] = (byte )32;
this.ReadEntriesFromUnmanagedMemoryStream(bs0);

}

Pex deduced the entire file contents from the ResourceReader implementation.
Note that the first four bytes represent a magic number which the ResourceReader

expects. The later bytes form resource entries. The following code is part of
the resource reader implementation. ReadInt32 combines four bytes to a 32-bit
integer through bitwise operations.

// Read ResourceManager header
// Check for magic number
// _store wraps the input stream
int magicNum = _store.ReadInt32 ();
if (magicNum != ResourceManager .MagicNumber )

throw new ArgumentException ("Resource file not valid!");
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5 Evaluation

We applied Pex on a core .NET component that had already been extensively
tested over several years.

We used a version of the component which contains assertion checks that the
developers of the component embedded into the code. These checks are very
expensive, and they are removed from the retail version of the component that
is normally deployed by the users. These additional consistency checks, realized
by conditional branch instructions, greatly increase the number of potential ex-
ecution paths that must be analyzed. As a result, Pex analysis takes at least an
order of magnitude longer than it does when applied on the retail version.

We used the Pex Wizard to generate individual parameterized unit tests for
each public method of all public classes. These automatically generated unit
tests do not contain any additional assertion validation; they simply pass the
arguments through to the method-under-test. Thus, the test oracle only consists
of the assertions that are embedded in the product code, and the pattern that
certain exceptions should not be thrown by any code, e.g. access violation ex-
ceptions that indicate that an unsafe operation has corrupted the memory. In
addition, we wrote about ten parameterized unit tests by hand which exercise
common call sequences.

For example, for a method Parse that creates a data type DataType instance
by parsing a string, the Wizard generates parameterized unit tests such as the
following.

[PexMethod ]
public void Parse(string s) {

DataType result = DataType .Parse(s);
PexValue .AddForValidation ("result", result);

}

The parameterized unit test calls DataType.Parse with a given string and
stores the result in a local variable. The call to PexValue.AddForValidation logs
the result of the call to Parse, and it the test suite which Pex creates will include
verification code that can be used in future regression testing to ensure that the
Parse will not change its behavior but always return the same output as when
Pex explored it.

We ran Pex on about 10 machines (different configurations, similar to P4,
2GHz, 2GB RAM) for three days; each machine was processing one class at a
time.

In total, the analysis involved more than 10,000 public methods with more
than 100,000 blocks and more than 100,000 arcs. When executing the code as
part of the analysis, Pex created a sand-box with security permissions “Internet”,
i.e. permissions that correspond to the default policy permission set suitable for
content from unknown origin, which means in particular that most operations
involving the environment, e.g. file accesses, were blocked, Starting from the
public methods, Pex achieved about 43% block coverage and 36% arc coverage.
We do not know how many blocks and arcs are actually reachable.
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Table 1. Automatically achieved coverage on selected classes of the core .NET com-
ponent

Because of the restricted security permissions, and the fact that Pex was
only testing one method at a time, the overall coverage numbers clearly can
be improved. However, Pex did very well on many classes which do not require
many method calls to access their functionality. Table 1 shows a selection of
classes of the core .NET component on which Pex fully automatically achieved
high block and arc coverage. Only lower bounds for the block and arc numbers
are given for proprietary reasons.

One category of errors that Pex found contains test cases that trigger rather
benign exceptions, e.g. NullReferenceException and IndexOutOfRangeException.
Another more interesting category of 17 unique errors involves the violation of
assertions which the developers wrote in the code, and the exhaustion of memory,
and other serious issues.

Most of the errors that Pex found required very carefully chosen argument val-
ues (e.g. a string of length 100 filled with particular characters), and it is unlikely
that a random test input generator would find them. While some of the errors
could be found by assertion-targetting techniques, e.g. [18], the branch conditions
that guarded the errors were usually quite complex (involving bitvector arith-
metic, indirect memory accesses) and were spread over multiple methods, and
incorporated values obtained from the environment (here, the Windows API).
It requires a dynamic analysis (to obtain the values from the environment) with
a precise symbolic abstraction of the program’s behavior to find these errors.

6 Related Work

Pex performs path-bounded model-checking of .NET programs. Pex is related
to other program model checkers, in particular JPF [2] and XRT [14] which also
operate on managed programs (Java and .NET). Both JPF and XRT have ex-
tensions for symbolic execution. However, both can only perform static symbolic
execution, and they cannot deal with stateful environment interactions. Also, in
the case of JPF, only some aspects of the program execution can be encoded
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symbolically (linear integer arithmetic constraints), while others must always be
explored explicitly (constraints over indirect memory accesses).

The idea of symbolic execution was pioneered by [16]. Later work on dynamic
test generation, e.g. [17,18], mainly discussed the generation of test inputs to
determine whether a particular execution path or branch was feasible. While
Pex’ search strategies try to exercise individual execution paths in a particular
(heuristically chosen) sequence, the strategies are complete and will eventually
exercise all execution paths. This is important in an environment such as .NET
where the program can load new code dynamically, and not all branches and
assertions are known ahead of time.

Dynamic symbolic execution was first suggested in DART [12]. Their tool in-
struments C programs at the source code level, and it tracks linear integer arith-
metic constraints. CUTE [27] follows the approach of DART, but it can track
and reason about not only linear integer arithmetic, but also pointer aliasing
constraints. jCUTE [26] is an implementation of CUTE for Java, a managed en-
vironment without pointers. EXE [6] is another implementation of C source code
based dynamic symbolic execution, and EXE implements a number of further
improvements, including constraint caching, independent constraint optimiza-
tion, bitvector arithmetic, and tracking indirect memory accesses symbolically.
Each of these approaches is specialized for a particular source language, and
they only include certain operations in the symbolic analysis. Also, their search
order is not prioritized to achieve high coverage quickly, which forces the user
to precisely define bounds on the size of the program inputs and to perform an
exhaustive search. Pex is language independent, and it can symbolically reason
about pointer arithmetic as well as constraints from object oriented programs.
Pex search strategies aim at achieving high coverage fast without much user
annotations.

Another language agnostic tool is SAGE [13], which is used internally at Mi-
crosoft. It virtualizes a Windows process on the x86 instruction level, and it
tracks integer constraints as bitvectors. While operating at the instruction level
makes it a very general tool, this generality also comes with a high instrumen-
tation overhead which is significantly smaller for Pex.

Several improvements have been proposed recently to improve the scalability
of dynamic symbolic execution, by making it compositional [11,19], and demand-
driven [19,8]. We are working on related improvements in Pex [1] with encour-
aging early results.

Randoop [23] is a tool that generates new test-cases by composing previously
found test-case fragments, supplying random input data. Randoop was also used
internally in Microsoft to test core .NET components. While Pex and Randoop
found some of the same errors, the error findings were generally different in that
Randoop found errors that needed two or more method calls, while most of the
errors that Pex found involved just a single method calls, but with very carefully
chosen argument values.

The commercial tool AgitarOne from Agitar [4] generates test-cases for Java
by analyzing the source code, using information about program invariants
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obtained in a way similar to [9]. Similar to idea of parameterized unit test-
ing [25], work building on Agitar proposes a concept called theories [25] to write
and explore general test-cases.

7 Conclusion

Pex [24] is an automatic white-box test generation tool for .NET that explores
the code-under test by dynamic symbolic execution. Pex analyzes safe, man-
aged code, and it can validate unsafe memory accesses on individual execution
paths. We applied Pex on a extremely well tested core .NET component, and
found errors, including a serious issue. The automatically achieved results are
encouraging. However, the combined coverage of the test-cases that Pex gener-
ated fully automatically clearly show that there is room for future research, e.g.
leveraging information about the structure of the program to construct method
call sequences automatically.
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