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Pex3-anchored Atg36 tags peroxisomes for
degradation in Saccharomyces cerevisiae
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Peroxisomes undergo rapid, selective autophagic degrada-

tion (pexophagy) when the metabolic pathways they con-

tain are no longer required for cellular metabolism. Pex3 is

central to the formation of peroxisomes and their segrega-

tion because it recruits factors specific for these functions.

Here, we describe a novel Saccharomyces cerevisiae protein

that interacts with Pex3 at the peroxisomal membrane. We

name this protein Atg36 as its absence blocks pexophagy,

and its overexpression induces pexophagy. We have isolated

pex3 alleles blocked specifically in pexophagy that cannot

recruit Atg36 to peroxisomes. Atg36 is recruited to mito-

chondria if Pex3 is redirected there, where it restores

mitophagy in cells lacking the mitophagy receptor Atg32.

Furthermore, Atg36 binds Atg8 and the adaptor Atg11 that

links receptors for selective types of autophagy to the core

autophagy machinery. Atg36 delivers peroxisomes to the

preautophagosomal structure before being internalised into

the vacuole with peroxisomes. We conclude that Pex3

recruits the pexophagy receptor Atg36. This reinforces the

pivotal role played by Pex3 in coordinating the size of the

peroxisome pool, and establishes its role in pexophagy in

S. cerevisiae.
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Introduction

Saccharomyces cerevisiae depends exclusively on the extracel-

lular medium for its supply of nutrients to sustain growth. It is

able to respond rapidly to changing environmental conditions,

and some organelles, such as peroxisomes, fluctuate in size

and number. Peroxisomes carry out a number of metabolic

functions, including a variety of hydrogen peroxide-producing

oxidation reactions, and their abundance reflects the require-

ment of the pathways they contain for cellular metabolism.

Peroxisomes multiply by growth and division and under

certain conditions can form directly from the ER. Genetic

dissection of peroxisome biogenesis has identified a large

number of genes (known as PEX genes) required for peroxi-

some multiplication and segregation, as well as for import of

peroxisomal luminal proteins and peroxisomal membrane

biogenesis. Many of the genes required for peroxisome biogen-

esis are evolutionarily conserved, and mutations in the human

orthologues cause Zellweger spectrum disorders (ZSDs). Two

of these genes, PEX3 and PEX19, are required for peroxisomal

membrane biogenesis. Peroxisomal structures are absent in

pex3 and pex19 mutants, and as a consequence most perox-

isomal membrane proteins (PMPs) are broken down. The exact

role of Pex3 and Pex19 in peroxisomal membrane biogenesis is

under intensive study, and several roles have been proposed,

including import of PMPs into the ER, exit of PMPs from the

ER, and direct import of PMPs into peroxisomal structures

(for reviews, see Ma et al, 2011; Rucktaschel et al, 2011).

Additionally, Pex3 has been implicated in peroxisome

segregation in S. cerevisiae (Munck et al, 2009), and a Pex3-

like protein has been implicated in this process in Yarrowia

lipolytica (Chang et al, 2009). An additional role for Pex3 comes

from work in methylotrophic yeast where it has been

implicated in the selective autophagic breakdown of

peroxisomes, a process known as pexophagy (Bellu et al,

2002; Farre et al, 2008; van Zutphen et al, 2011).

Macroautophagy (hereafter referred to as autophagy) is a

catabolic process that allows recycling of cytoplasmic compo-

nents, and in yeast functions primarily as an adaptive mechan-

ism for survival in response to changes in the availability of

nutrients in the environment (de Duve and Wattiaux, 1966;

Mitchener et al, 1976; Takeshige et al, 1992; Levine and

Klionsky, 2004; Yorimitsu and Klionsky, 2005b). During

autophagy, cytoplasmic contents are enclosed by a de novo-

synthesised double membrane to form a structure termed an

autophagosome (Baba et al, 1994; Mizushima et al, 2001). The

outer layer of the autophagosome then fuses with the vacuolar

membrane and a single membrane structure, referred to as an

autophagic body, enters the vacuole lumen where it is degraded

by the vacuolar hydrolases and recycled into reusable

components. Although this process is mainly non-selective,

some cargoes are selectively sequestered by preautophago-

somal structures (PAS). These selective autophagy pathways

include mitophagy, ER-phagy, ribophagy, xenophagy, aggre-

phagy, pexophagy and the cytoplasm-to-vacuole targeting

(Cvt) pathway, a biosynthetic pathway that delivers some

vacuolar hydrolases from the cytosol to the vacuole (Harding

et al, 1995, 1996; Campbell and Thorsness, 1998; Hutchins

et al, 1999; Kim et al, 2002; Ravikumar et al, 2002; Suzuki et al,

2002; Rich et al, 2003; Bernales et al, 2006; Xie and Klionsky,

2007; Kraft et al, 2008; Lynch-Day and Klionsky, 2010). In

selective processes, cargo recognition is an important step and

requires a specific receptor-like protein that links the protein/

organelle to the autophagy machinery at the PAS (Scott et al,

2001; Lynch-Day and Klionsky, 2010; Weidberg et al, 2011).

Genetic approaches in yeasts have identified 430 compo-

nents required for selective or non-selective autophagy, and

these have been designated Atg proteins (Xie and Klionsky,
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2007; Suzuki and Ohsumi, 2010). A subset of these Atg

proteins is required for autophagosome formation. This

subset is referred to as the ‘core’ autophagy machinery, and

its role in double-membrane vesicle formation has been well

studied (Suzuki et al, 2007; Xie and Klionsky, 2007;

Nakatogawa et al, 2009). The core machinery is modulated

with additional Atg components to accommodate the non-

selective sequestration of bulk cytosol or the selective

sequestration of specific cargoes. In S. cerevisiae, cargo-

specific receptors for the Cvt pathway (Atg19 and Atg34)

(Shintani et al, 2002; Suzuki et al, 2010) and mitophagy

(Atg32) (Kanki et al, 2009; Okamoto et al, 2009) have been

identified, and in Pichia pastoris, the pexophagy receptor has

been identified (PpAtg30) (Farre et al, 2008). These cargo-

specific receptors link to the core autophagy machinery via

Atg11. The Cvt receptors Atg19 and Atg34 also interact stably

with Atg8 via an Atg8-interacting motif (AIM), and this

interaction is required for cargo delivery to the vacuole

(Noda et al, 2008; Suzuki et al, 2010). Likewise, in

mammalian cells, known autophagy receptors bind to Atg8-

family orthologues via conserved LIRs (LC3-interacting

region), and these interactions are essential for function

(Kirkin et al, 2009; Novak et al, 2010; Wild et al, 2011). For

one of these receptors, optineurin, a serine residue directly

flanking the LIR can be phosphorylated, and this phos-

phorylation stimulates interaction with LC3 (Wild et al,

2011). This has been proposed to be a general mechanism

to regulate selective autophagy (Wild et al, 2011).

Surprisingly, although the yeast mitophagy receptor Atg32

contains an AIM that interacts with Atg8, inactivation of this

AIM has only a mild effect on function (Okamoto et al, 2009;

Kondo-Okamoto et al, 2012). No interaction between the

pexophagy receptor Atg30 and Atg8 has been described.

To date, most mechanistic insight into pexophagy has come

from dissection in methylotrophic yeasts, namely P. pastoris and

Hansenula polymorpha (for reviews, see Dunn et al, 2005; Sakai

et al, 2006; Manjithaya et al, 2010b). In P. pastoris, Atg30 marks

peroxisomes for breakdown by linking peroxisomes with the

autophagy machinery (Farre et al, 2008). Atg30 binds two

PMPs, Pex3 and Pex14, and although these proteins have also

been implicated in pexophagy in mammalian cells (Hara-Kuge

and Fujiki, 2008) and H. polymorpha (van Zutphen et al, 2008),

their role in pexophagy is not understood. In mammalian cells,

attaching ubiquitin to peroxisomes via Pex3 or PMP34 targets

them for autophagic degradation (Kim et al, 2008), whereas

removal of Pex3 from peroxisomes was shown to precede

pexophagy in H. polymorpha (Bellu et al, 2002; van Zutphen

et al, 2011). Studies into the role of Pex3 in pexophagy are

complicated by the multiple roles of Pex3 in peroxisome

formation and segregation.

In this paper, we report the isolation of pex3 alleles,

including pex3-177, affected specifically in pexophagy. We

describe the identification and initial characterisation of a

new Pex3-interacting protein, which we have named Atg36,

as it is required for pexophagy in S. cerevisiae: its over-

expression induced pexophagy, and its absence prevented

pexophagy. We found that pex3-177 cells are defective in the

recruitment of Atg36 to peroxisomes. Furthermore, we show

that Atg36 binds Atg8 and Atg11 in vivo, and is required to

link peroxisomes to Atg11-positive structures. We analysed

eight motifs in Atg36 that weakly resemble the AIM/LIR

consensus (Noda et al, 2008; Johansen and Lamark, 2011),

and found that although one of these sequences is required

for Atg36-driven pexophagy, it is not conserved and does not

constitute a functional AIM. We show that Atg36 is present

on peroxisomes, and that it is cotransported with pero-

xisomes into the vacuole during pexophagy where it is

broken down. We found that Atg36–GFP targets to mitochon-

dria if Pex3 is mislocalised there, where it can drive mito-

phagy. Finally, we found that endogenous Atg36 can restore

mitophagy in atg32D cells expressing a mitochondrial version

of Pex3. This shows that Pex3 can act as a transplantable

module that links its cargo to the autophagy apparatus via

Atg36. We conclude that Atg36 comprises the pexophagy

receptor and that Pex14 is not required for pexophagy in

S. cerevisiae. We show the role of Pex3 in pexophagy is to

recruit Atg36 to peroxisomes, which in turn links peroxi-

somes to the autophagy apparatus. This finding reinforces the

central role that Pex3 plays in coordinating peroxisome

formation, segregation and breakdown.

Results

Atg36 is required for autophagic breakdown of

peroxisomes

S. cerevisiae Pex3 is a membrane protein with a short luminal

N-terminus followed by a single transmembrane segment and a

cytosolic domain (residues 40–441) (Hohfeld et al, 1991). We

performed a yeast two-hybrid screen with the cytosolic domain

of S. cerevisiae Pex3 and identified a novel uncharacterised

protein, encoded by YJL185c, as a potential Pex3-interacting

protein. We have named this gene ATG36. ATG36 encodes a

34-kDa protein that is not well conserved. Using BLASTP

searches we identified a few putative orthologues among

Saccharomycetaceae species, including Zygosaccharomyces

rouxii (CAQ43500), Ashbya gossypii (NP_984715), Lanchancea

thermotolerans (XP-002554387) and Vanderwaltozyma polyspora

(XP-001646846).

To investigate the possible function of Atg36 in peroxisome

biogenesis, we compared atg36D cells with WTcells for their

ability to form peroxisomes and segregate them during cell

division. GFP appended with a peroxisomal targeting signal

type 1 (GFP–PTS1) is imported post-translationally into per-

oxisomes, and cytosolic labelling is observed in cells that lack

peroxisomes or are defective in lumenal protein import.

When import is intact, GFP–PTS1 is imported into puncta

that represent individual peroxisomes or small clusters of

peroxisomes. The number of peroxisomes in a cell is a

reflection of the processes of peroxisome formation and the

mechanisms that regulate peroxisome number including

degradation and segregation. The relative distribution of

puncta between mother and bud is a measure for segregation

of peroxisomes during cell division.

Peroxisome number is increased in atg36D cells under

most growth conditions (Supplementary Figure S1A and B).

This increase is best illustrated by switching cells from

conditions of peroxisome proliferation (oleate medium) to

glucose starvation medium (SD-N), a condition that induces

pexophagy. In WT cells, peroxisome numbers decreased

dramatically whereas peroxisome numbers remained high

in atg36D cells.

Prolonged growth on glucose medium at log-phase condi-

tions, however, results in normalisation of peroxisome num-

ber (Supplementary Figure S1B). This clearly demonstrates
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that replicative peroxisome multiplication is unaffected. Both

mother and daughter cells contain peroxisomes under

all growth conditions tested, indicating that segregation is

unaffected. Since atg36D cells grow normally on oleate

(Supplementary Figure S1C), peroxisome function is not

severely affected. This indicates the b-oxidation machinery

is properly induced, and that peroxisomes proliferate nor-

mally in response to oleate. Indeed, Pex11 levels are induced

on oleate to a level comparable to that in WTcells. Import of

the luminal marker GFP–PTS1 is unaffected.

The finding that post-log phase and nitrogen-starved

atg36D cells have increased peroxisome numbers suggests

that Atg36 may be required for peroxisome turnover. We

investigated this phenotype further using biochemical and

microscopy-based pexophagy assays. The biochemical assay

measures degradation of Pex11 expressed from its own

promoter and tagged at its C-terminus with GFP. Pex11 is

the most abundant PMP and is induced on oleate. Knoblach

and Rachubinski (2010) show that a minor fraction of Pex11

locates to the peripheral ER during growth on oleate, and

subsequently translocates to peroxisomes when cells are

switched to glucose medium. We find Pex11–GFP colocalises

with HcRed–PTS1 in cells grown on glucose. In cells grown

overnight on oleate, Pex11–GFP-labelled peroxisomes tend to

cluster somewhat, although even under this condition, the

overlap is almost complete, with just occasional Pex11–GFP-

containing membrane extensions not containing HcRed–PTS1

(Supplementary Figure S1E). This clustering also occurs with

Pex11-monomeric GFP (Supplementary Figure S1D). Switching

the Pex11–GFP-labelled cells from oleate to SD-N medium

restores complete overlap of the two peroxisomal markers:

3 h after switching most of the clustered structures have

disappeared, punctate structures are present, and some faint

labelling of the vacuole became apparent (Supplementary

Figure S1E). A further reduction in peroxisome number and a

clear vacuolar labelling can be seen in WT cells after 22h

(Figure 1A). This shows that Pex11–GFP can be used as a

marker to follow peroxisome degradation. Vacuolar labelling in

WTcells corresponds by western blot to the appearance of GFP,

the protease-resistant breakdown product of Pex11–GFP

(Figure 1B). In WT cells, this breakdown product is evident

after 6h on starvation medium, in contrast to in atg36D and

atg1D cells, where peroxisomes remain intact (Figure 1A) and

Pex11–GFP remains stable even after 22h on starvation med-

ium (Figure 1B).

We tested a series of mutants for their ability to induce

Pex11–GFP breakdown under starvation conditions. Immuno-

blotting of pex1D, pex2D, pex4D, pex5D, pex6D, pex7D,

pex10D, pex11D, pex12D, pex13D, pex14D, pex15D, pex17D,

pex18D, pex22D, pex25D, pex27D, pex28Dpex29D, pex30

Dpex31Dpex32D, pex34D, djp1D, inp1D, inp2D, pxa1D,

pxa2D, and ant1D cells revealed that all these mutants

formed the typical Pex11–GFP breakdown product (data not

shown). Surprisingly, pexophagy is fully functional in pex14D

cells (Figure 1B).

We also used GFP–PTS1 expressed from the oleate-induci-

ble promoter of the peroxisomal catalase gene (CTA1) to

monitor pexophagy (Figure 1C). The decrease in fluorescent

puncta and the appearance of a vacuolar GFP signal, as seen

above for Pex11–GFP and HcRed–PTS1, is indicative of pex-

ophagy in WT cells. Peroxisomes remained intact in atg1D

and atg36D cells, and also in pep4-3, prb1-1122 cells, in which

many of the vacuolar hydrolases fail to become activated.

The identity of the vacuolar compartment was confirmed

with FM4-64 (Figure 1D) (Vida and Emr, 1995). Therefore,

pexophagy as assayed by western blot correlates with

pexophagy as assayed by microscopy.

As described above, peroxisomes were more numerous in

post-log phase glucose-grown atg36D cells compared with

WT cells, suggesting that peroxisome degradation in post-log

cells also depends on Atg36. To test this, we grew cells

expressing Pex11–GFP in either glucose, glycerol or oleate

medium for 3 days continuously and monitored pexophagy at

24 h intervals by immunoblotting. We found pexophagy

occurred under all these conditions, and in all cases was

Atg36-dependent (Figure 1E).

Atg36 is not required for mitophagy, the Cvt pathway or

non-specific macroautophagy

To test whether the requirement for Atg36 is specific to

pexophagy, we examined the functionality of other types of

autophagy in atg36D cells.

The Cvt pathway was tested by the accumulation of the

marker Ape1–GFP in the vacuole. This pathway is function-

ing normally in atg36D cells (Figure 2A). Mitophagy was

measured by degradation of the mitochondrial outer mem-

brane marker OM45–GFP after growing cells for up to 72 h in

glycerol (Kanki and Klionsky, 2008; Okamoto et al, 2009).

The appearance of free GFP indicates vacuolar degradation of

OM45–GFP. As shown in Figure 2B, mitophagy occurs in

atg36D cells after 2 days growth, similar to WT cells. In

contrast, atg1D cells are unable to degrade OM45–GFP.

Non-selective autophagy induced by nitrogen starvation

was monitored by measuring the uptake of a cytosolic form

of alkaline phosphatase into vacuoles. As shown in

Figure 2C, this pathway is fully functional in atg36D cells.

We conclude that Atg36 is a new autophagy factor required

specifically for pexophagy.

Atg36 localises to peroxisomes and its overexpression

induces pexophagy

To examine the localisation of Atg36, we tagged it in the

genome with GFP. The signal was very low under most

conditions tested (Supplementary Figure S2). However, a

faint punctate pattern became apparent in post-log glucose

or oleate-grown cells that was absent in pex3D cells.

Coexpression in WT cells with HcRed–PTS1 confirmed colo-

calisation with peroxisomes. Peroxisomes labelled with

Atg36–GFP are clustered rather than dispersed throughout

the cell. This clustering is also observed when Atg36 is tagged

with monomeric GFP (Supplementary Figure S2), indicating

that dimerisation of GFP is not the cause of the clustering.

We expressed Atg36 from a centromeric plasmid either

untagged or with an N- or a C-terminal GFP or mRFP tag

under control of the GAL1 promoter (Figure 3). We noticed

that at early time points after growth in galactose, Atg36

could be seen colocalising with the peroxisomal marker

HcRed–PTS1 (Figure 3A). After 5 h induction of GFP–Atg36,

the punctate pattern of HcRed–PTS1 had disappeared and

labelling of the vacuole became apparent. The autophagic

nature of this degradation was confirmed by overexpressing

GFP–Atg36 in atg1D cells, where Atg36-labelled peroxisomes,

but no degradation occurred (Figure 3A). Autophagic degra-

dation of peroxisomes was less evident at this time point

Pex3 recruits Atg36 to peroxisomes
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when overexpressing C-tagged Atg36 (right hand panel). We

compared the galactose-inducible pexophagy activity of the

various tagged versions with pexophagy by endogenous

Atg36 in WT cells grown for 6 h on galactose, then switched

to starvation conditions (Figure 3B). WT cells contained

either empty plasmid (W), GAL1–mRFP–Atg36 (N), GAL1–

Atg36–mRFP (C) or GAL1–Atg36 (U) (Figure 3B). Cells

overexpressing any of the three versions of Atg36 induce

A

C GFP–PTS1 FM4-64 MergeWT atg36Δ

atg1Δ pep4-3, prb1-1122

B

25 kDa

WT atg1Δ atg36Δ pex14Δ

Starvation (h) 0 6 22

Pex11–GFP

*GFP

50 kDa

0 6 220 6 220 6 22

Pex11–GFP HcRed–PTS1 Merge

atg1Δ

starve 22 h

WT

starve 22 h

atg36Δ

starve 22 h

BF

*GFP

Pex11

–GFP

atg36ΔWTDays on: 

1 2 3

Glucose Oleate Glycerol Glucose Oleate Glycerol

D

E

WT

atg36Δ

atg1Δ

pep4-3,

prb1-1122

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Figure 1 Atg36 is required for pexophagy. Validation of Pex11–GFP as a marker for pexophagy in WT, atg1D, and atg36D cells by
(A) microscopy and (B) western blot including pex14D cells. The fluorescence assay shows that like HcRed–PTS1, Pex11–GFP accumulates
in the vacuole in starvation medium (A), which corresponds to the accumulation of GFP on a western blot (B). (B) Cells were grown 18h in
oleate medium and switched to glucose medium lacking nitrogen (SD-N) for the times indicated. GFP* indicates the relatively protease-
resistant degradation product indicative of vacuolar breakdown. (C) Pexophagy assay by fluorescence of GFP–PTS1 expressed from the CTA1
promoter in WT, atg36D, atg1D, and pep4-3, prb1-1122 strains. Cells were grown as above for Pex11–GFP pexophagy assay and imaged after
22 h in SD-N medium. Multiple fluorescent images were acquired in Z-axis and flattened into a single image. Bright-field image is a single plane.
(D) FM4-64 labelling of cells grown as in (C). The three central images of a Z-stack were flattened into a single plane. Bright-field image is a
single plane. Bar, 5 mm. (E) Pexophagy as assayed by Pex11–GFP western blot of cells grown for up to 3 days in glucose, oleate or glycerol
medium. Samples of WT cells (left panel) and atg36D cells (right panel) were taken from the cultures after 24, 48 and 72 h.

Pex3 recruits Atg36 to peroxisomes
AM Motley et al

2855&2012 European Molecular Biology Organization The EMBO Journal VOL 31 | NO 13 | 2012



pexophagy above endogenous level in WTcells. The N-tagged

version is much more active than the C-tagged or untagged

versions, and its activity is less dependent on switching

to starvation conditions. Interestingly, the C-tagged and

untagged versions are activated to the level of the N-tagged

version by growth in starvation medium. Furthermore, the

N-tagged version induced pexophagy even under peroxi-

some proliferation conditions (Figure 3C). This suggests

that N-tagged Atg36 is constitutively active. The N- and

C-tagged versions are expressed at similar levels after 6 h

galactose induction (Supplementary Figure S3B), and this

level is B50- to 100-fold the endogenous level under the

same growth conditions (Supplementary Figure S3B and C).

Although the tagged versions are enormously overexpressed,

pexophagy is only moderately induced, suggesting that the

level of Atg36 on its own does not determine the magnitude

of the pexophagy response (see also below).

Pex3 recruits Atg36 to peroxisomes

Bioinformatic analysis of the Atg36 amino-acid sequence did

not reveal any characteristics that indicate it could associate

with membranes or be imported into organelles, as no

potential transmembrane region, lipid-binding domain or

targeting signal was detected. However, binding of Atg36 to

peroxisomes is saturable: Atg36-labelled peroxisomes at early

time points after galactose induction, but further expression

resulted in cytosolic accumulation of GFP–Atg36 (Figure 3A).

Since we identified Atg36 in a yeast two-hybrid screen

using the cytosolic domain of Pex3 as bait, we expected Pex3

to interact physically with Atg36. To test this, we incubated

the Escherichia coli-expressed cytoplasmic domain of Pex3 (as

a GST fusion immobilised to beads) with a reticulocyte lysate

in which Atg36 was produced radioactively. As shown in

Figure 4A, Atg36 bound specifically to Pex3.

We have previously used a Tom70–Pex3–mRFP fusion to

show Inp1 binds Pex3 when Pex3 is present on mitochondria

(Munck et al, 2009). Although a fusion of the Tom20

mitochondrial targeting signal to Pex3 cytosolic domain was

shown to restore peroxisome formation in pex3D cells

(Rucktaschel et al, 2010), this is not the case for our full-

length Tom70 fusion to the cytsolic domain of Pex3. We found

that whereas GFP–Atg36 labelled the cytoplasm of

pex3Datg36D cells, it bound to mitochondria when coex-

pressed with Tom70–Pex3–mRFP (Figure 4B). The finding

that Atg36 binds Pex3 even when Pex3 is mislocalised to

mitochondria indicates that the cytosolic domain of Pex3 is

sufficient to localise Atg36 to membranes. Occasional puncta

of GFP–Atg36 are present in some cells lacking peroxisomes

(Figure 4B). Since they do not colocalise with Atg11, nor are

they present on the vacuolar membrane (not shown) we did

not investigate them further.

Our results indicate that Pex3 and Atg36 interact both

in vitro and in vivo. The interaction was examined further

by split-GFP analysis in atg8D cells to prevent pexophagy and

degradation of the signal we are trying to detect.

Colocalisation of the split-GFP interaction with HcRed–PTS1

in mating cells shows that Pex3 and Atg36 interact at the

peroxisomal membrane (Figure 4C). We confirmed the Pex3–

Atg36 interaction by a coimmunoprecipitation experiment

(Figure 4D): Atg36–PtA brings Pex3–GFP down specifically.

Ape1–GFPA
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B

Figure 2 Atg36 is not required for the Cvt pathway, mitophagy or non-specific autophagy. (A) Cvt pathway activity was assessed by
endogenous expression of Ape1–GFP in WT, atg36D and atg1D cells. Cells were grown for 18 h in glucose medium and vacuoles were stained
with FM4-64. Accumulation of GFP in the vacuole indicates normal function of pathway. Bar, 5mm. (B) Mitophagy of WT, atg36D and atg1D
cells was assayed by western blot analysis of OM45–GFP after culturing cells for up to 3 days in glycerol medium. Samples were taken at 24 h
intervals. (C) WT, atg36D and atg1D cells were assayed for non-specific autophagy by alkaline phosphatase assay. Cells were grown in YPD and
shifted to SD-N medium for 4 h. Samples were collected and processed for Pho8D60 activity. The results represent the mean and s.d. of three
experiments. WT 4h starvation is set at 100%.
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These observations suggest that Pex3 alone may be respon-

sible for recruiting Atg36 to peroxisomes.

Isolation of pexophagy-specific mutants of PEX3

Pex3 is required for peroxisome segregation in dividing cells

via its binding to the inheritance factor Inp1. We have

previously used a library of pex3 alleles to identify mutations

in PEX3 that give rise to a peroxisome segregation defect

phenotype like that of inp1D cells (Munck et al, 2009). The

pex3-1 allele gives rise to this segregation phenotype and

encodes a mutant Pex3 protein that cannot bind Inp1. Based

on our finding that Pex3 binds the pexophagy factor Atg36

and on the observations in methylotrophic yeast that

implicate Pex3 in pexophagy, we decided to screen the

library of pex3 alleles for pexophagy defective mutants.

We screened our library of pex3 alleles by microscopy

using the GFP–PTS1 pexophagy assay. Most of the alleles

show cytoplasmic localisation of GFP–PTS1 with at most a

few peroxisomes per cell, that is, Pex3 function is severely

compromised. These mutants were not considered. Among

the 191 mutants that contain peroxisomes and show no

cytoplasmic labelling when grown on oleate medium, we

found three pex3 mutants that have a phenotype similar to

atg36D cells, that is, peroxisomes remain intact and GFP–

PTS1 does not accumulate in the vacuole on starvation. All

other 188 mutants displayed vacuolar GFP labelling upon

starvation. We recovered the PEX3 plasmids from the three

mutants and reintroduced them into pex3D cells expressing

GFP–PTS1. Again these alleles restored peroxisome formation

to pex3D cells, but failed to support pexophagy (shown for the

pex3-177 allele in Figure 5A; Supplementary Figure S4D).

We investigated the pexophagy phenotype further by follow-

ing the degradation of Pex11–GFP (Figure 5B; Supplementary

Figure S4A). In pex3D cells, most PMPs including Pex11 are

rapidly broken down, which results in low levels of these PMPs

(Hettema et al, 2000). As expected, the level of Pex11–GFP is

low in pex3D cells grown on oleate (Figure 5B, ycplac111).

Subsequent disruption of ATG1 does not stabilise Pex11–GFP

(Figure 5B, atg1Dpex3D cells, ycplac111), furthermore, the lack

of the GFP breakdown product in atg1Dpex3D cells indicates

that Pex11–GFP is degraded by autophagy-independent

pathways (e.g., the ubiquitin/proteasome machinery) in the

absence of Pex3 (Figure 5B).

Pex11–GFP is stabilised in pex3D cells containing the pex3-177

allele (Figure 5A and B) and is present in peroxisomes

(Supplementary Figure S4C). Upon shifting these cells to starva-

tion medium, only a minor fraction of Pex11–GFP is broken

down (Figure 5B), showing that this allele is strongly defective in

pexophagy. A second peroxisomal membrane marker (Pex13–

GFP) confirmed these observations (Figure 5C). Therefore, three
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independent markers (GFP–PTS1, Pex11–GFP and Pex13–GFP)

indicate that peroxisomes in pex3-177 cells are resistant to

breakdown under pexophagy conditions. Two further Pex3

alleles were isolated using the microscopic pexophagy screen,

and both of these alleles stabilise Pex11–GFP under pexophagy

conditions (Supplementary Figure S4A).

We analysed peroxisome distribution between mother cell

and bud in pex3D cells containing the segregation deficient

pex3-1 allele or the pexophagy-deficient pex3-177 allele

(Supplementary Figure S4B). In contrast to in pex3-1 cells,

we found peroxisome segregation was intact and Inp1–GFP

was recruited to peroxisomes in pex3-177 cells (Supplementary

Figure S4D).

To test whether the pexophagy phenotype in pex3-177 cells

results from an inability of peroxisomes to bind Atg36, we

expressed Atg36–GFP on a plasmid from the ATG36 promoter

in pex3-177 or pex3-1 cells (Figure 5D). We found Atg36–GFP

binding to peroxisomes was undetectable in pex3-177 cells.

Furthermore, we show that Pex3-177 does not interact in vivo

with Atg36–PtA (Figure 5E).

We conclude that cells containing the pex3-177 allele are

able to form peroxisomal structures and segregate them

during cell division, but are defective in Atg36 recruitment,

and this results in the pexophagy defect. This Atg36-binding

function of Pex3 can be separated genetically from that

required for peroxisome formation and segregation.

ATG36 expression is induced prior to pexophagy

If Atg36 marks peroxisomes for autophagic degradation, we

would expect its expression to be highest prior to degradation

of peroxisomes. In order to compare the timing of ATG36

expression with that of pexophagy, we tagged Atg36 in the

genome Atg36 at the C-terminus with PtA and analysed its

expression under various growth conditions in cells also

C
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expressing Pex11–GFP (Figure 6A). We found the level of

Atg36 increased on oleate without inducing pexophagy, and

started to decrease when cells were switched to starvation

medium and pexophagy commenced as seen by Pex11–GFP

degradation. Together with the overexpression experiments

described in Figure 3 it is clear that there is no direct

correlation between the level of Atg36 expression and pex-

ophagy, that is, an increase in the level of Atg36 (either

endogenous, or induced) is not sufficient to trigger pexo-

phagy, which occurs only after switching to starvation med-

ium (Figures 3B and 6A, with the exception of the N-tagged

version, which appears to be constitutively active). This

suggests that Atg36 is activated by switching to starvation

medium. Notably, it appears that Atg36–PtA is differentially

modified depending on growth conditions: Atg36–PtA

migrates as a set of fuzzy bands whose mobility changes

upon starvation and which displays differential sensitivity to

CIP treatment (Figure 6A; Supplementary Figure S3D). The

observation that Atg36 is upregulated in oleate and declines

when cells are switched to starvation conditions was exam-

ined further in WTcells expressing GFP-tagged Atg36 from its

genomic locus (Figure 6B). After 6 h on starvation medium,
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most Atg36–GFP is cleaved as seen by the appearance of the

typical GFP-specific breakdown product that accumulates

upon vacuolar entry of GFP fusion proteins, and the appear-

ance of this cleavage is Atg1-dependent. Interestingly, Atg36–

GFP disappears also from atg1D cells, but since no GFP

cleavage product accumulates, this breakdown is not occur-

ring in the vacuole. We conclude that in WT cells, Atg36 is

degraded by autophagy after being cotransported with per-

oxisomes into the vacuole, but in atg1D cells, atg36 is

degraded via an autophagy-independent process.

We investigated the degradation of Atg36–GFP in cells grown

continuously for 3 days in oleate medium (Figure 6C). As was

seen in Figure 1E, pexophagy commences on day 2. Whereas

Atg36–GFP is broken down and the protease-resistant GFP

fragment appears during pexophagy in WT cells, it does not

appear in pex3D or atg1D cells (Figure 6C). Atg36–GFP is

cleaved in pex14D cells, which is in line with our finding that

pexophagy is intact in these cells. We conclude that Atg36

enters the vacuole with peroxisomes via an autophagy process,

as Atg36–GFP is not cleaved in pex3D or atg1D cells.

Bellu et al (2002) have reported that H. polymorpha Pex3 is

rapidly removed from peroxisomes when pexophagy was

induced and degraded prior to vacuolar uptake of the

whole organelle. To investigate whether this is the case in

S. cerevisiae, we followed stability of endogenous Pex3

(Figure 6D) and Pex3–GFP (Figure 6E) in cells grown on

glucose, oleate and starvation medium. We found that

the time course of both Pex3 and Pex3–GFP degradation is

comparable to that of Atg36–PtA and Pex11–GFP (Figure 6A),

with most degradation occurring for all three proteins

between 3 and 6h on starvation medium. The finding that

Pex3 is degraded with the same kinetics as the peroxisomal

marker Pex11 and Atg36 suggests that S. cerevisiae Pex3 is not

removed from peroxisomes and degraded prior to pexophagy,

in contrast to what has been found for H. polymorpha Pex3

(Bellu et al, 2002). Furthermore, H. polymorpha Pex3 is

degraded even in cells blocked in autophagy, whereas in

S. cerevisiae, Pex3–GFP remains intact in atg36D cells

(Figure 6E). This clearly indicates a mechanistic difference

between pexophagy in H. polymorpha and S. cerevisiae.

Atg36 is required to link peroxisomes to the autophagy

apparatus

Atg11 has been proposed to act as an adaptor protein that

links receptors for selective cargo to the core autophagy

machinery. For instance, the receptors for mitophagy and

the Cvt pathway in S. cerevisiae (Atg32, Atg19, respectively)

and pexophagy in P. pastoris (PpAtg30) bind Atg11 (Yorimitsu

and Klionsky, 2005a; Farre et al, 2008; Kanki et al, 2009;

Okamoto et al, 2009). Atg32 has also been shown to bind
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Atg8 (Okamoto et al, 2009) and in mammalian cells, many

selective receptors interact with LC3, the mammalian Atg8

orthologue (Johansen and Lamark, 2011). We therefore

sought to determine whether Atg11 and Atg8 interact with

Atg36. We expressed Atg36–PtA tagged from its chromosomal

locus in cells coexpressing either HA–Atg11 or HA–Atg8. Cells

were grown under oleate and starvation conditions. Atg36–

PtA was immunoprecipitated with IgG sepharose beads and

copurified proteins were eluted by Tev protease cleavage. The

eluate was tested for the presence of HA–Atg11 and HA–Atg8

by immunoblotting (Figure 7A). Both HA–Atg11 and HA–

Atg8 copurified with Atg36–PtA from lysate prepared from

starved cells. A low level of binding was also observed under

oleate conditions but a similar level of HA–Atg11 and HA–

Atg8 copurified with the negative control Mvp1–PtA. We

conclude that Atg36 interacts with both Atg11 and Atg8 and

that this interaction is induced under pexophagy conditions.

Many cargo receptors have been shown to contain an AIM/

LIR that links them to Atg8/LC3. Analysis of Atg36 reveals

eight amino-acid sequences weakly resembling the AIM/LIR

consensus (Supplementary Figure S5). Mutational analysis

shows that although one of these sequences is required for

Atg36 function, it is not conserved and does not constitute a

functional AIM (Supplementary Figure S5).
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We then examined the requirement for Atg36 to link peroxi-

somes to Atg11-positive structures in cells where autophagy is

blocked (atg1D cells): we expressed GFP–Atg11 and quantified

the degree of colocalisation with peroxisomes in the presence

(Figure 7B) or absence (Figure 7C) of ATG36. We used atg1D

cells as they assemble PAS containing Atg proteins but are

blocked in the further formation of autophagosomes (Suzuki

et al, 2007). Most post-log atg1D cells (465%) expressing both

markers showed close proximity or colocalisation of GFP–Atg11

puncta with peroxisomes, whereas in atg1D atg36D cells, only

a minority (o15%) of cells showed close proximity between

these two markers. This confirms that Atg36 is required to

bring peroxisomes to the autophagy structure marked by GFP–

Atg11, and indicates that in atg1D cells, peroxisomes, like

mitochondria, associate with Atg11-positive structures, most

likely to be the PAS (Kanki et al, 2009).

In a similar experiment, we found the degree of proximity

between peroxisomes and Atg11 is reduced to 30% in

pex3Datg1D cells containing pex3-177 compared with 75%

in pex3Datg1D cells containing PEX3 (Figure 7D).

Mitochondria-targeted Pex3 can drive mitophagy

We have shown above that Pex3 recruits GFP–Atg36 to

membranes, even when Pex3 is mislocalised to mitochondria.

We have also shown that induction of mRFP–Atg36 causes

pexophagy, even under conditions that normally stimulate

peroxisome proliferation. We hypothesised that overexpres-

sion of GFP–Atg36 may cause mitophagy if Atg36 is targeted

to mitochondria by coexpression of Tom70–Pex3–mRFP.

We found indeed that prolonged (22 h) expression of GFP–

Atg36 in pex3D cells resulted in vacuolar localisation of

Tom70–Pex3–mRFP, and this effect was enhanced when

cells were shifted to starvation medium (Figure 8A). This

effect of GFP–Atg36 expression occurred only when GFP–

Atg36 and Tom70–Pex3–mRFP were expressed together, and

was Atg1-dependent. This effect of overexpression was also

seen in atg32D pex3D cells, which are otherwise mitophagy-

deficient. This suggests that Tom70–Pex3–mRFP and Atg36

can function together as a transplantable module to bring

about autophagic degradation of mitochondria.

We investigated this observation further by testing whether

endogenous Atg36 can restore mitophagy in cells lacking the

mitophagy receptor Atg32. This was assessed by OM45–GFP

breakdown during growth on glycerol for 3 days (Figure 8B).

These growth conditions induce mitophagy (Figure 2B)

and pexophagy (Figure 1E) starting at day 2. Endogenous

Atg36 was directed to mitochondria of atg32D pex3D cells

by expressing OM45–Pex3, which for these experiments
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comprised a plasmid encoding an OM45–Pex3 fusion protein

under control of the OM45 promoter. This fusion does not

rescue peroxisome formation in pex3D cells (data not

shown). Mitophagy was measured by immunoblotting of

OM45–GFP.

As can be seen in Figure 8B, free GFP indicative of

mitophagy becomes evident only in atg32D pex3D cells

expressing OM45–Pex3. Disruption of ATG36 in atg32D

pex3D cells abolished the ability of OM45–Pex3 to rescue

mitophagy, which confirms that it is indeed endogenous

Atg36 that is responsible for the mitophagy activity. We

conclude that Atg36 acts as a tag to link its cargo to the

autophagy machinery, and can even replace Atg32 if it is

targeted to mitochondria.

Discussion

We set out to understand the role of Pex3 in peroxisome

turnover and have isolated a pex3 allele (pex3-177) that is

blocked specifically in autophagic breakdown of peroxi-

somes. This allele fails to recruit a novel autophagy factor,

Atg36, that links peroxisomes to the autophagy machinery.

These observations support a model whereby Pex3 acts as an

anchor for a pexophagy-specific factor that tags peroxisomes

for degradation.

Pex3 recruitment of Atg36 is required for pexophagy

We show that pex3 is required for pexophagy as we isolated

three pex3 alleles (including pex3-177) that are affected in

pexophagy. We identified a novel Pex3-interacting protein,

Atg36. Pex3 is both sufficient and necessary to recruit Atg36

from the cytosol to peroxisomes as Pex3 and Atg36 interact

both in vitro and in vivo. If we redirect the cytosolic domain of

Pex3 to mitochondria, Atg36 follows. The pex3 pexophagy-

deficient alleles have mutations in their cytosolic domain and

we show that one of these alleles, pex3-177, fails to bind Atg36

in vivo and consequently does not recruit Atg36 to peroxi-

somes. Comparison of the mutant alleles did not reveal a

mutation hotspot. This suggests that rather than disrupting a

linear binding motif, the mutations are more likely to affect the

tertiary structure of Pex3 and thereby inhibit binding of Atg36.

The mutations still, however, allow binding of Inp1 and Pex19,

as pex3-177 is active in peroxisome formation and segregation.

Our data show that atg36D cells are not affected in peroxisome

formation, segregation or functioning. The increase in peroxi-

some number under most growth conditions is a consequence

of a defect in peroxisome turnover.

Atg36 was shown to interact with Pex34 and Inp1 in genome-

wide two-hybrid screens (Ito et al, 2001; Yu et al, 2008). These

two proteins are involved in peroxisome multiplication and

segregation, respectively. We have found no requirement for

Inp1 or Pex34 in pexophagy, neither did we find a requirement

for Atg36 in peroxisome multiplication nor segregation.

Furthermore, the pex3 alleles that are affected in pexophagy

or segregation are selectively deficient in peroxisomal

recruitment of Atg36 or Inp1, respectively. This implies that

these factors are recruited to peroxisomes by Pex3 indepen-

dently of each other. Pex34 is an integral membrane protein

that travels via the ER to peroxisomes (Tower et al, 2011).

When we redirect Pex3 to mitochondria, Atg36 follows where it

stimulates mitophagy. The simplest interpretation of these

results is that Pex34 is not required for Atg36 recruitment or

activity. Therefore, the relevance of the observed two-hybrid

interactions in genome-wide screens is unclear.

What is the role of Atg36 in pexophagy?

First, we established that Atg36 is specifically required for

pexophagy and not for a variety of other autophagic pro-

cesses including non-selective autophagy, mitophagy or Ape1

targetting to the vacuole via the Cvt pathway.

We propose that Atg36 is the pexophagy receptor in

S. cerevisiae based on the following observations. When

expressing GFP-tagged Atg36 from the GAL1 promoter, we

see its binding to peroxisomes precedes pexophagy, and that

continued overexpression of Atg36 induces pexophagy.

Fungal receptors for selective autophagy link their cargoes

via Atg11 to the core autophagy machinery (Yorimitsu and

Klionsky, 2005a; Farre et al, 2008; Kanki et al, 2009; Okamoto

et al, 2009). The mitophagy and Cvt receptors Atg32, and

Atg19 and Atg34, respectively also interact with Atg8

(Shintani et al, 2002; Okamoto et al, 2009; Suzuki et al,

2010), and in vivo mutational studies have revealed the AIM

sequences of Atg19 and Atg34 are crucial for activity of the

Cvt pathway (Noda et al, 2008; Suzuki et al, 2010). In

mammalian cells, Atg11 appears to be absent but the Atg8-

family orthologues, LC3/GABARAP, interact with cargo

receptors for selective autophagy via an LIR, and these

interactions have been shown to be crucial for function

(Pankiv et al, 2007; Noda et al, 2008; Kirkin et al, 2009;

Novak et al, 2010; Wild et al, 2011). However, mutation of

the AIM of Atg32 does not abolish its in vivo interaction with

Atg8, as determined by coimmunoprecipitation, and this

mutation has only a mild effect on mitophagy (Okamoto

et al, 2009; Kondo-Okamoto et al, 2012). In contrast,

interaction of Atg32 with Atg11 is crucial for mitophagy

(Kondo-Okamoto et al, 2012). The authors propose that

‘other protein–protein interfaces could contribute to the inter-

action between Atg32 and Atg8 in vivo’. Likewise, the interac-

tion between P. pastoris Atg11 and Atg30 is crucial for

pexophagy but no canonical AIM is present in this protein

and no binding to Atg8 has been described.

We show that Atg36 interacts in vivo with both Atg11 and

Atg8. Although we identified eight sequences in Atg36 that

weakly resemble the AIM/LIR consensus, disruption of seven

of them did not affect pexophagy (Supplementary Figure S5).

Further analysis of Y191/L194 that is required for Atg36

activity suggests that it is not an AIM, however, as it is not

conserved, and it is missing a serine or threonine at � 1

which has been found in all yeast AIMs identified to date

(Supplementary Figure S5). Furthermore, it lacks the nega-

tively charged residues characteristic of AIM/LIRs at posi-

tions X1/X2 or X� 1/X� 3 (Johansen and Lamark, 2011), and

substitution of the D at � 2 to A did not affect function.

Finally, the finding that a single substitution of Y191 with L

(which is present at this position in most yeast Atg36

orthologues (Supplementary Figure S5)) did not affect pex-

ophagy confirms that Y191/L194 is not an AIM. Whether

Atg8 interacts with Atg36 via a different motif, or whether

these motifs are redundant, remains to be tested. We were

unable to detect an interaction between Atg8 and Atg36

in vitro or with yeast two-hybrid (data not shown).

However, we do find an interaction in vivo (Figure 7A), and

it is possible that Atg8 does not bind Atg36 directly.
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In atg1D cells, most Atg proteins accumulate at the PAS

(Suzuki et al, 2007), but later steps in the autophagic process

are blocked. We show that peroxisomes frequently localise to

Atg11-containing structures in atg1D cells, and that this

colocalisation requires Atg36 recruitment to peroxisomes, as

atg36D cells and pex3-177 cells have reduced colocalisation of

peroxisomes with Atg11. All these observations qualify Atg36

as a receptor for pexophagy that links peroxisomes to

autophagosomal membranes. This was further tested and

confirmed by our transplantation experiment where we

directed Pex3 to mitochondria and restored the mitophagy

defect of atg32D. This restoration was dependent upon Atg36.

An important question that is raised by our observations

relates to how pexophagy is regulated. At this stage, we can

only hypothesise as to how Atg36 activates pexophagy. We

propose that Atg36 does this in a two-step process, that is,

first accumulation of Atg36 on the peroxisomal surface

followed by an activation event. When cells are grown on

oleate, Atg36 levels on peroxisomes increase but this does not

correlate with pexophagy. This indicates a second event is

required. Pexophagy is activated when cells are subsequently

shifted to starvation medium, and western blot analysis

shows that this correlates with a shift in mobility of Atg36,

implying that Atg36 is post-translationally modified. Under

these conditions, we also observe an increased interaction of

Atg36 with Atg11 and Atg8. The nature of the modification is

complex. Phosphatase treatment suggests that Atg36 is phos-

phorylated both during growth on oleate and during starva-

tion. However, phosphatase treatment before and during

starvation does not result in the same mobility of Atg36.

This indicates that Atg36 is differentially modified under

these conditions and that this modification may stimulate

interactions with the autophagy machinery. A precedent for

this is the phosphorylation dependent interaction of Atg11

with ScAtg32 and PpAtg30 (Farre et al, 2008; Aoki et al, 2011).

Furthermore, phosphorylation of a serine residue at position

� 1 of the LIR of optineurin stimulates binding to ATG8-

family orthologues and selective autophagy of Salmonella

(Wild et al, 2011). There are frequently negative charges or

serines or threonines adjacent to position 1 of the AIM/LIR

(Noda et al, 2010; Supplementary Figure S5) and it has been

proposed that phosphorylation of LIRs is a common mechan-

ism for regulation of autophagy receptors (Wild et al, 2011).

Currently, we can only correlate the appearance of the

modified forms of Atg36 with induction of pexophagy but

are not able to test their relevance. We found that

overexpression of Atg36 induces pexophagy even under

non-starvation conditions. Since overexpression is at least

50- to 100-fold, it seems plausible that under these conditions

the second step in the regulation process can be bypassed. Of

particular interest is the effect of ectopically expressed

N-tagged Atg36, which seems to be constitutively active,

that is, not starvation-dependent.

As discussed above, Atg36 can replace Atg32 in media-

ting mitophagy, and the timing of Atg36-mediated mitophagy

mirrors that of Atg32-mediated mitophagy and Atg36-medi-

ated pexophagy. Whether the artificial Atg36-dependent

mitophagy is dependent upon the pexophagy-specific regula-

tory mechanism is not clear and awaits further investigation.

Recently, the MAPKs Slt2 and Hog1 were implicated in

selective autophagy. Both Hog1 and Slt2 have been impli-

cated in mitophagy and pexophagy although the data are

conflicting for a role for Hog1 in pexophagy (Manjithaya et al,

2010a; Aoki et al, 2011; Mao and Klionsky, 2011; Mao et al,

2011). Their autophagic targets, however, are unknown. Both

level and migration pattern of Atg36 in slt2D and hog1D cells

was unaffected compared with WT cells (data not shown).

This suggests that neither Slt2 nor Hog1 act at the level of

Atg36. This is in agreement with the observations that

suggest that Slt2 acts at a late stage of pexophagy, after

pexophagosome formation (Manjithaya et al, 2010a).

S. cerevisiae pexophagy differs mechanistically from

that of methylotropic yeast

Atg36 homologues can be identified only in closely related

species, and no homologue is present in P. pastoris. Likewise,

PpAtg30 is not conserved in S. cerevisiae. Our study shows

many features are common between PpAtg30 and ScAtg36,

including the induction of pexophagy upon overexpression,

post-translational modification during conditions of nitrogen

starvation and interaction with Pex3 and Atg11 (Farre et al,

2008). Although there are many similarities, there are

major differences between pexophagy in P. pastoris and

S. cerevisiae. Pex14 is required for recruitment of PpAtg30

to peroxisomes in P. pastoris and is essential for pexophagy

induced by PpAtg30 overexpression. A role for Pex3 was

suggested as it interacts with PpAtg30, but since PpAtg30

does not localise to Pex3-containing structures in pex14D

cells, the exact role of Pex3 in P. pastoris pexophagy

remains unclear.

Bellu et al (2002) have reported that in the related

methylotrophic yeast H. polymorpha, Pex3 is rapidly

removed from peroxisomes under pexophagy inducing

conditions, prior to sequestration and degradation of

peroxisomes in vacuoles. It is also reported that removal of

Pex3 is a prerequisite for peroxisome degradation and occurs

independently of autophagy (Bellu et al, 2002; van Zutphen

et al, 2011). In contrast to this, we find that Pex3 is degraded

in parallel with peroxisomes and is not removed from

peroxisomes prior to their degradation in the vacuole in

S. cerevisiae. Furthermore, in contrast to in H. polymorpha,

ScPex3 is not degraded under starvation conditions when

autophagy is blocked. Our data strongly support a role for

ScPex3 in coupling peroxisomes via Atg36 to the autophagy

machinery. This role may be fulfilled by Pex14 in

methylotropic yeasts, as P. pastoris Pex14 is required for

PpAtg30 to localise to peroxisomes (Farre et al, 2008) and

Pex14 is also required for pexophagy in H. polymorpha (Bellu

et al, 2001). In mammalian cells, Pex14 has been shown to

interact via tubulin to LC3 and thereby has been suggested to

play a role in pexophagy (Hara-Kuge and Fujiki, 2008). In

contrast, we show that S. cerevisiae Pex14 is completely

dispensable for pexophagy (Figure 1B).

We conclude that ScPex3 acts in (at least) three different

processes and that these processes can be separated geneti-

cally. Pex3 acts as docking factor for Pex19 in peroxisome

formation, and it also recruits Inp1 to peroxisomes as part of

its role in peroxisome segregation. Now we show that Pex3

recruits the pexophagy-specific protein, Atg36, to peroxi-

somes and that this recruitment is required for pexophagy.

A model emerges whereby Pex3 coordinates the biogenesis

and maintenance of the peroxisomal compartment by recruit-

ing process-specific factors. How this is achieved awaits

further investigation.
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Materials and methods

Yeast strains, media and growth conditions
The yeast strains used in this study are listed in Supplementary
Table S1. Gene tagging and disruptions were performed by homo-
logous recombination and strains were checked by PCR. For all
experiments, cells were grown overnight in defined selective glu-
cose medium. For analysis of phenotypes by microscopy, cells were
subsequently diluted to 0.1 OD600 in fresh selective glucose medium
and grown for two to three cell divisions (4–6h), prior to imaging.
Where the induction of a reporter protein was required, cells were
transferred to selective galactose medium at 0.1 OD600 and grown
for the time indicated in the figures and text. Yeast cells were growth
at 301C in either of the following mediums: rich YPD media (1%
yeast extract, 2% peptone, 2% glucose), minimal media (YM2) for
the selection of the uracil prototrophic marker (carbon source,
0.17% yeast nitrogen base without amino acids and ammonium
sulphate, 0.5% ammonium sulphate, 1% casamino acids) or mini-
mal media (YM1) for the selection of all prototrophic markers
(carbon source, 0.17% yeast nitrogen base without amino acids
and ammonium sulphate, 0.5% ammonium sulphate). Regarding
the carbon sources, glucose and galactose were added to 2% (w/v)
and glycerol 3% (v/v). For peroxisome induction, cells were
transferred to oleate medium (YM2 oleate: YM2 plus 0.12% oleate
(v/v), 0.2% Tween-40s (v/v), 0.1% yeast extract) at a 1/10 over-
night dilution. Pexophagy was induced by transferring cells to
starvation medium lacking a nitrogen source (SD-N; 0.17% yeast
nitrogen base without amino acids and ammonium sulphate, 2%
glucose) (Hutchins et al, 1999; Manjithaya et al, 2010a). The
appropriate amino-acid stocks were added to minimal media as
required. In all, 5–10 OD600 units were collected at selected time
points as indicated in the figures and text. Cells were either
analysed by immunoblotting or by fluorescence microscopy. For
mitophagy induction, mid-log phase yeast cells were grown for
3 days in YM2 glycerol medium (Okamoto et al, 2009). This method
was also used as a measure of pexophagy substituting YM2 glycerol
for YM2 oleate or YM2 glucose. In all, 5–10 OD600 units were
collected at selected time points as indicated in the figures and
text. Oleate plates contained 0.67% yeast nitrogen base without
amino acids and ammonium sulphate, 0.1% yeast extract, 0.1%
oleate (v/v), 0.25% Tween-40 (v/v), 2% agar and amino acids as
needed.

Mating experiments were performed as described previously
(Motley and Hettema, 2007). The vacuolar membrane was stained
as previously described (Vida and Emr, 1995).

Plasmids
Yeast expression plasmids were based on the parental plasmids
ycplac33 and ycplac111 (Gietz and Sugino, 1988). The majority of
constructs used in this study were generated by homologous
recombination in yeast (Uetz et al, 2000). The ORF of interest was
amplified by PCR. The 50 ends of the primers included 18nt
extensions homologous to plasmid sequences flanking the
intended insertion site, to enable repair of gapped plasmids by
homologous recombination. For expression of genes under control
of their endogenous promoter, 500 nt upstream from the ORF were
included. Galactose-inducible constructs contained the GAL1 and
GAL10 intragenic region. All yeast constructs contain the PGK1
terminator. 3HA–Atg11 and 3HA–Atg8 expression plasmids were
constructed by in-frame fusion of either the ATG11 or ATG8 ORF
under control of the TPI1 promoter with N-tagged 3HA. The
galactose-inducible Tom70–Pex3–mRFP fusion and constitutive
expression constructs for HcRED–PTS1 and GFP–PTS1 have been
described previously (Motley and Hettema, 2007; Munck et al,
2009). Oleate-inducible GFP–PTS1 is controlled by the peroxisomal
catalase (CTA1) promoter as described in Hettema et al (1998). We
used GFPS65T for tagging, with monomeric GFP containing GFP
L221K (Snapp et al, 2003). Split-GFP constructs were based on the
plasmids designed by (Barnard et al, 2008), with the split-GFP
fragments introduced behind the GAL1 promoter into centromeric
plasmids to generate a conditional split-GFP system (Munck et al,
2009). For E. coli expression, GST–Pex3 (40–441) has been pre-
viously described (Munck et al, 2009).

PEX3 mutant screen
In order to identify pexophagy-deficient PEX3mutants, we screened
a library of PEX3 alleles previously generated in the laboratory

(Munck et al, 2009). Essentially, we screened the mutants using the
pexophagy assay, as described above, in 96-well plates with
fluorescence microscopy. Of the 1000 mutants screened, only 191
showed multiple punctate fluorescent structures and no cytosolic
labelling. This indicates that these pex3 alleles support formation of
peroxisomes. In the pexophagy assay, most of these 191 mutants
lost their peroxisomes and showed vacuolar GFP labelling, but three
mutants retained their peroxisomes and vacuolar labelling was
absent. We recovered these PEX3 plasmids from the three
mutants, sequenced them, and reintroduced them into pex3D cells
expressing GFP–PTS1. Again, these alleles restored peroxisome
formation but failed to support pexophagy. DNA sequence analysis
of the alleles revealed the following amino-acid substitutions: pex3-
58 (F35S, I170T, D196E, Q285R, D374E, T397S, S429R); pex3-153
(E58D, L166P, K210R, Q284L); pex3-177 (F64S, T74A, H354L).

In-vitro transcription/translation
In-vitro transcription/translation was performed using the TnT
quick-coupled rabbit reticulocyte transcription/translation kit
(Promega) using a PCR-generated template of ATG36 according to
the manufacturer’s instructions. GST–Pex3 (40–441) was produced in
E. coli as described previously (Munck et al, 2009). SDS–PAGE gels
were stained with Coomassie blue followed by PhosphoImaging.

Immunoblotting
For preparation of extracts by alkaline lysis, cells were centrifuged
and pellets resuspended in 0.2M NaOH and 0.2% b-mercaptoetha-
nol and left on ice for 10min. Soluble protein was precipitated by
addition of 5% TCA for a further 10min. Following centrifugation
(13 000 g, 5min, 41C), soluble protein was resuspended in 10ml 1M
Tris–HCl (pH 9.4) and boiled in 90ml 1� SDS–PAGE sample loading
buffer for 10min. Samples (0.25–1 OD600 equivalent) were resolved
by SDS–PAGE followed by immunoblotting. Blots were blocked in
2% (w/v) fat-free Marvelt milk in TBS-Tween-20 (50mM Tris–HCl
(pH 7.5), 150mM NaCl, 0.1% (v/v) Tween-20). Tagged proteins
were detected using either monoclonal anti-HA 12CA5 (mouse 1:50
diluted hybridoma culture supernatant), monoclonal anti-GFP
(mouse; 1:3000; Roche), peroxidase-anti-peroxidase (PAP) (rabbit;
1:2000; Sigma), polyclonal anti-Pex3 (rabbit; 1:3000; gift of Ralf
Erdmann and Erdmann Girzalsky) or monoclonal anti-PGK 22C5
(mouse; 1:7000; Invitrogen). Secondary antibody was HRP-linked
anti-mouse polyclonal (goat; 1:4000; Bio-Rad) or HRP-linked anti-
rabbit polyclonal (goat; 1:10 000; Promega). Detection achieved
using enhanced chemiluminescence (Biological Industries) and
chemiluminescence imaging.

Coimmunoprecipitation
To fully saturate IgG Sepharoset 6 Fast Flow beads (GE Healthcare)
with genomically expressed Atg36–PtA, 500ml oleate medium was
inoculated with 50ml of a 24-h glucose medium culture. These were
grown with agitation for 18 h at 301C. Non-starvation condition
flasks were left a further 2 h while cells for starvation conditions
were harvested (2500 g, 5min), washed, and resuspended in 50ml
SD-N medium and also left a further 2 h. All cells were harvested,
washed and pellets were weighed. Spheroplasts were prepared by
treatment with zymolase (MP Biomedicals) in sorbitol buffer
(50mM Kpi (pH 7.4), 1.2M sorbitol, 2% glucose, 0.17% yeast
nitrogen base without amino acids and ammonium sulphate,
zymolase (5mg/g cells), lysine/histidine/methionine, 0.5% ammo-
nium sulphate (to non-starvation)) for 1 h. Spheroplasts were
harvested, washed once in 50mM Kpi (pH 7.4)þ 1.2M sorbitol,
and resuspended in 10 ml lysis buffer (150mM KCl, 20mM Tris–HCl
(pH 8.0), 4mM Pefabloc SC (Roche), 1mM EDTA (pH 8.0), one
complete protease inhibitor cocktail tablet/25ml (Roche), 5mM
Sodium Vanadate, 25mM Sodium Fluoride). Whole cell lysates
were obtained by dounce homogenisation followed by 10min
incubation on ice with addition of 0.5% (v/v) Triton X-100. After
centrifugation (13 000 g, 5min, 41C), lysates were incubated with
35 ml IgG Sepharoset 6 Fast Flow beads, pre-washed in lysis buffer,
at 41C with rotation for 15min. Beads were subsequently washed
three times with lysis buffer containing 0.1% (v/v) Triton X-100.
The bound material was eluted by addition of lysis buffer and
boiling with 4� SDS–PAGE buffer at 951C for 5min or by AcTEV
protease cleavage according to the manufacturer’s instructions
(Invitrogen).
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Alkaline phosphatase assay
Alkaline phosphatase assay for non-selective autophagy was per-
formed as described previously (Noda et al, 1995). In brief, cells
were grown overnight till OD600¼ 0.5 in YPD. The culture was
harvested and half of it was transferred to SD-N medium and
incubated for 4 h. Cells were washed in water and pellets of
1–2�106 cells were frozen down in liquid nitrogen and stored at
801C until analysed.
Cells were lysed in assay buffer (250mM Tris–HCl (pH 8.5), 0.4%

(v/v) Triton X-100, 10mM MgSO4, 10 mM ZnSO4, 1mM PMSF) and
vortexed with glass beads. After centrifugation, 10ml lysate was
added to 190ml assay buffer containing 1mM p-nitrophenol phos-
phate (Sigma, N9389) and incubated at 301C. The increase in OD400

was followed at 2min intervals using a Mutiscan Ascent (Thermo
Labsystems) plate reader. The change in OD400/min/mg protein of
WT lysate under starvation conditions was set at 100%. Three
independent experiments were performed.

Image acquisition
Live cells were analysed with an Axiovert 200M microscope (Carl
Zeiss, Inc.) equipped with Exfo X-cite 120 excitation light source,
band-pass filters (Carl Zeiss, Inc. and Chroma), and a Plan-Fluar
100� /1.45 NA or A-Plan 40� /0.65 NA Ph2 objective lens (Carl
Zeiss, Inc.) and a digital camera (Orca ER; Hamamatsu). Image
acquisition was performed using Openlab and Volocity software
(Perkin-Elmer). Fluorescence images were routinely collected as
0.5mm Z-Stacks and merged into one plane after contrast enhancing
in Volocity and processed further in Photoshop (Adobe) where only
the level adjustment was used. On occasions (as indicated in the
text) images were collected as single-plane images. Bright-field
images were collected in one plane.

Yeast two-hybrid analysis
Yeast two-hybrid screening was performed by Hybrigenics, S.A., Paris,
France (http://www.hybrigenics-services.com). The coding sequence
for amino acids 40–441 of S. cerevisiae PEX3 was PCR amplified and
cloned into pB27 as a C-terminal fusion to LexA (N-LexA–Pex3-C).
The construct was checked by sequencing the entire insert and used

as a bait to screen at saturation a highly complex S. cerevisiae
fragment genomic library constructed into pP6. pB27 and pP6 derive
from the original pBTM116 (Vojtek and Hollenberg, 1995) and
pGADGH (Bartel et al, 1993) plasmids, respectively. In all, 63
million clones (11-fold the complexity of the library) were screened
using a mating approach with Y187 (MATa) and L40DGAL4 (MATa)
yeast strains as previously described (Fromont-Racine et al, 1997).
304 Hisþ colonies were selected on a medium lacking tryptophan,
leucine, histidine and supplemented with 5mM 3-aminotriazole. The
prey fragments of the positive clones were amplified by PCR and
sequenced at their 50 and 30 junctions.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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