
INFORMATICA, 2021, Vol. 32, No. 2, 425–440 425
© 2021 Vilnius University
DOI: https://doi.org/10.15388/21-INFOR443

PFA-GAN: Pose Face Augmentation Based
on Generative Adversarial Network

Bassel ZENO1,∗, Ilya KALINOVSKIY2, Yuri MATVEEV1,2

1 ITMO University, Kronverkskiy Prospekt 49, St. Petersburg 197101, Russia
2 STC-innovations Ltd., Gelsingforsskaya Street 3, Building 11D, St. Petersburg 194044, Russia
e-mail: basilzeno@gmail.com

Received: June 2020; accepted: January 2021

Abstract. In this work, we propose a novel framework based on Generative Adversarial Networks
for pose face augmentation (PFA-GAN). It enables a controlled pose synthesis of a new face image
from a source face given a driving one while preserving the identity of the source face. We introduce
a method for training the framework in a fully self-supervised mode using a large-scale dataset
of unconstrained face images. Besides, some augmentation strategies are presented to expand the
training set. The face verification experimental results demonstrate the effectiveness of the presented
augmentation strategies as all augmented datasets outperform the baseline.
Key words: generative adversarial networks, face verification, visual data augmentation.

1. Introduction

A person’s face plays a key role in the identification of individual members of our highly
social species due to delicate differences that make every human face unique. These vari-
ations of a face pattern inform us also about characteristics such as age, gender, and
race. Over the last decade, many remarkable works based on Deep Neural Networks have
demonstrated unprecedented performance on several computer vision tasks, such as facial
landmark detection, face identification, face verification, face alignment, emotion classifi-
cation, etc. In addition, they showed that achieving a good generalization in unconstrained
conditions strongly relies on training them on large and complex datasets. Well-annotated
large-scale dataset can be both expensive and time-consuming to acquire. Hiring people to
manually collect images and annotate them is not efficient at all since this manual process
is widely recognized as error-prone. Furthermore, the existing face image datasets suffer
from the problem of insufficient data amount for each person and the unbalanced pose
data distribution between the classes. In addition, there is a lack of variations comparing
to the real samples in the world. To cope with insufficient facial training data, visual data
augmentation provides an effective alternative. It is a technique that enables practitioners
to significantly increase the diversity of data available for training models, by transform-
ing collected real face samples. The traditional visual data augmentation methods alter the
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entire face image by transferring image pixel values to new positions or by shifting pixel
colours to new values. For instance, zooming in and out, rotating or reflecting the original
image, translating, applying distortion and cropping. These generic methods have some
limitations. (1) They do not scale well the number of variations of facial appearances, such
as make-up, lighting, and skin color. (2) Creating high-level content such as rotating head
while preserving the identity is a challenging problem (Zeno et al., 2019b) and it is still
under study. The large discrepancy of head poses in the real world is a big challenge in
face detection, identification (Farahani and Mohseni, 2019), and verification (Ribarić et
al., 2008), due to lighting variations and self-occlusion. Therefore, many methods were
proposed to generate face images with new poses. Pose synthesis methods can be classified
into a 2D geometry-based approach, a 3D geometry-based approach, and a learning-based
approach. The 2D and 3D based methods appeared earlier than learning-based approaches,
have obvious advantage in that they need a small amount of training data. The 2D-based
methods rely on building a PCA model for a face shape to control only yaw rotations (Feng
et al., 2017), while the 3D based methods synthesize face images with new variations of
poses using a 3D morphable face model (Crispell et al., 2017; Blanz and Vetter, 1999;
Zhu et al., 2016; Guo et al., 2017). In recent years, many learning-based methods have
been proposed for face rotation, where most of them rely on a generative adversarial net-
work (Tran et al., 2017; Tian et al., 2018; Cao et al., 2018a; Antoniou et al., 2018; Yin
et al., 2017; Huang et al., 2017; Zeno et al., 2019a). For example, the methods DRGAN
(Tran et al., 2017), CRGAN (Tian et al., 2018) and LB-GAN (Cao et al., 2018a) were
proposed to rotate a face image around the yaw axis only. While DRGAN synthesizes a
new pose even for extreme profiles (±90◦), CRGAN learns “complete” representations
to rotate unseen faces, and LB-GAN frontalizes a face image before generating the target
pose. The frontalization is a particular case of pose transformation often used to increase
the accuracy of face recognition systems by rotating faces to the front view, such as in
FF-GAN (Yin et al., 2017) and TP-GAN (Huang et al., 2017) works. Recently, Zeno et
al. (2019a) proposed IP-GAN framework to generate a face image of any specific identity
with an arbitrary target pose by explicitly disentangling identity and pose representation
from a face image.

However, we argue that there are several drawbacks to the listed methods. The reposing
method proposed in Crispell et al. (2017) produces many distortions in face structure and
does not fix the background. And the 3D based approach (Blanz and Vetter, 1999) fails
with large poses and it requires some additional steps to generate the hidden regions (e.g.
the teeth). The augmentation methods in Zhu et al. (2016), Guo et al. (2017) reduce the
realism of the generated images. On the other side, the GAN learning-based methods (Tran
et al., 2017; Tian et al., 2018; Cao et al., 2018a; Antoniou et al., 2018; Yin et al., 2017;
Huang et al., 2017) obtain impressive results, but they need additional information such as
conditioning labels (e.g. indicating a head pose, 3DMM parameters). More specifically,
Yin et al. (2017), Huang et al. (2017) need frontal face annotations, while (Tran et al.,
2017; Tian et al., 2018; Cao et al., 2018a; Antoniou et al., 2018) need profile labels,
while the IP-GAN (Zeno et al., 2019a) framework does not require any pose annotations.
But despite this, it failed to learn disentangled representation of pose and identity on an
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unconstrained dataset of face images. Besides, the learning scheme of IP-GAN is very
complex, which makes it difficult for it to converge.

To address the issues above, in this work we focus on pose face transformation for vi-
sual data augmentation using the Generative Adversarial Networks. We propose a novel
GAN framework that enables a controlled synthesis of new face images from a single
source face image given a driving face image while preserving the subject identity. The
framework is trained in self-supervised settings using pairs of source and driving face im-
ages. To demonstrate the performance of our model, some face verification experiments
are conducted using our proposed pose augmentation strategies. The framework architec-
ture is described in Section 3, and the self-supervised training method in Section 4.

To conclude, our contributions are:

• We present the Pose Face Augmentation GAN (PFA-GAN) that can transform a pose
of a source face image using another face image while preserving the identity of the
source image, as well as the pose and the expression of the driving face image. The
proposed framework consists of an identity encoder network, a pose encoder network,
a generator, and a discriminator.

• We introduce a novel method for training the network in fully self-supervised settings
using a large-scale dataset of unconstrained face images.

• We introduce some augmentation strategies that demonstrate how a baseline training
set can be augmented to increase the pose variations.

• We conduct some comparative experiments on face verification. Our results clearly
show that the augmented datasets based on our method outperform the baseline meth-
ods.

2. Related Work

2.1. 2D/3D Model-Based

Feng et al. (2017) proposed a 2D-based method to generate profile virtual faces with out-
of-plane pose variations. They built a PCA-based shape model to control only the yaw
rotations since the pose varies with the same rotation direction of the original shape, i.e.
left or right. Meanwhile, many approaches employed 3D face models for face pose trans-
lation (Crispell et al., 2017; Blanz and Vetter, 1999; Zhu et al., 2016; Guo et al., 2017).
Crispell et al. (2017) use a 3D face shape estimation method, followed by a rendering
pipeline for arbitrarily reposing of faces and altering the light conditions. Although the
results of the face re-lighting method are good, reposing of the face produces many dis-
tortions in its structure. In addition, the background is not fixed since it is rotated along
with the direction of the face rotation. Blanz and Vetter (1999) proposed a method to es-
timate a 3D morphable face model by transforming the shape and the texture of a face
image into a vector space representation. Then, faces with new poses and expressions can
be modelled by modifying the estimated parameters to match the target 3D face model.
This method is good at generating faces with small poses, but it failed with large poses due
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to the serious loss of the facial texture. Furthermore, some additional steps are required
at synthesizing facial expressions such as smiling to generate the hidden regions (e.g. the
teeth). Zhu et al. (2016) introduced the 3D Dense Face Alignment (3DDFA) algorithm
to solve face alignment in large poses. 3DDFA has also been used to profile faces, which
means synthesizing the face appearances in profile view from medium pose samples by
predicting the depth of face image. However, this augmentation method reduces the real-
ism of the generated images. Guo et al. (2017) proposed a face inverse rendering method
(3DFaceNet) to recover geometry and lighting from a single image. With that, they can
generate new face images with different attributes. Nevertheless, their inverse rendering
procedure has limitations, and it may lead to inaccurate fitting for face images (e.g. esti-
mating the coarse face geometry and pose parameters from a face image).

2.2. GANs-Based

Recently, generative adversarial network model learning (Tran et al., 2017; Tian et al.,
2018; Cao et al., 2018a; Antoniou et al., 2018; Yin et al., 2017; Huang et al., 2017; Zeno et
al., 2019a) demonstrated an outstanding ability to synthesize face images with new poses.
Tran et al. (2017) introduced Disentangled Representation Learning-Generative Adver-
sarial Network (DR-GAN), where the model takes a face image of any pose as input and
outputs a synthetic face, frontal or rotated with the target pose, even for extreme profiles
(±90◦). The discriminator in DR-GAN is trained also to predict the identity and the pose
of the generated face. Tian et al. (2018) proposed the Complete Representation GAN-
based method (CR-GAN) following a single-pathway design, and a two-pathway learning
scheme to learn the “complete” representations. Cao et al. (2018a) have introduced Load
Balanced Generative Adversarial Networks (LB-GAN) to rotate the yaw angle of an input
face image to the target angle from a specified set of learned poses. The LB-GAN consists
of two modules: a normalizer, which first frontalizes the face images, and an editor, which
rotates the frontal face after that. Antoniou et al. (2018) introduced Data Augmentation
Generative Adversarial Network (DAGAN) based on conditional GAN (cGAN). DAGAN
captures the cross-class transformations since it takes any data item and generates other
points of the equivalent class. A particular case of a pose transformation is the face frontal-
ization. It is often used to increase the accuracy of face recognition systems by rotating
faces to the frontal view, which is more convenient for a recognition model. Many methods
have been introduced to frontalize profile faces, such as GAN-based methods (Yin et al.,
2017; Huang et al., 2017). The FF-GAN method (Yin et al., 2017) relies on any 3D knowl-
edge for geometry shape estimation, while the TP-GAN method (Huang et al., 2017) infers
it through data-driven learning. TP-GAN is a Two-Pathway Generative Adversarial Net-
work for synthesizing photorealistic frontal views from profile images by simultaneously
perceiving global structures and local details. FF-GAN is a Face Frontalization Genera-
tive Adversarial Network framework, which incorporates elements from both deep 3DMM
and face recognition CNNs to achieve high-quality and identity-preserving frontalization
with less training data. Both TP-GAN and FF-GAN methods obtained impressive results
on face frontalization, but they need explicit front-view annotations.
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2.3. IP-GAN

Zeno et al. (2019a) proposed a framework for Learning Identity and Pose Disentanglement
in Generative Adversarial Networks (IP-GAN). To generate a face image of any specific
identity with an arbitrary target pose, IP-GAN incorporates the pose information in the
synthesis process. Different from the recent work (Yin et al., 2017) that uses a 3D mor-
phable face simulator to generate pose information and the works (Tran et al., 2017; Tian et
al., 2018; Huang et al., 2017) that encode pose annotation in a one-hot vector, IP-GAN can
learn such information by explicitly disentangling identity and pose representation from a
face image in fully self-supervised settings. The overall architecture of the IP-GAN frame-
work is depicted in Zeno et al. (2019a), and consists of five parts: 1) the identity encoder
network EI to extract the identity latent code; 2) the head pose encoder network EP to
extract the pose latent code; 3) the generative network G to produce the final output image
using the combined identity latent code and the extracted pose latent code; 4) the identity
classification network C to preserve the identity by measuring the posterior probability
of the subject identities; 5) the discriminative network D to distinguish between real and
generated images. To train these networks Zeno et al. (2019a) proposed a learning method
in order to learn complete representations in fully self-supervised settings. The learning
method consists of two learning pathways, generation, and transformation. While the gen-
eration pathway focuses on mapping the entire latent spaces of encoders to high-quality
images, the transformation pathway focuses on the synthesis of new face images with the
target poses. This framework has many drawbacks and when it was trained on an uncon-
strained dataset of face images, it failed to learn disentangled representation of pose and
identity. Besides, the learning scheme is very complex that makes it difficult for the GAN
to converge.

3. The Proposed Framework

Inspired by the IP-GAN model, we present in this section a novel framework (PFA-GAN)
for pose face augmentation based on a generative adversarial network.

3.1. PFA-GAN

To simplify the proposed architecture in Zeno et al. (2019a), and according to the specific
goal of the PFA-GAN in generating face images with new poses, we remove the Classifi-
cation Network C, as there is no need to add a new task of face recognition to PFA-GAN,
and preserving the subject identity in the generated face image is guaranteed by the use
of the content loss function. To reduce the complexity of the learning method, we pro-
pose removing the generation pathway and focusing on the work of the transformation
pathway, which consists of two sub-paths: reconstruction and transformation. The task of
the head pose encoder network EP is to learn a pose representation as it has to isolate
the pose information from the other information in a face image such as age, gender, skin
color, and identity. Isolating pose information in unconstrained images is a challenging
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Fig. 1. The proposed framework architecture, pose encoder network, identity encoder network, generator, dis-
criminator. Learning scheme from left to right: the reconstruction sub-path, the transformation sub-path.

task. To facilitate it, we reduce the amount of input information for the network EP by
replacing a face image with an image of its landmarks.

3.2. Model Description

Let xS ∈ X be a source face image of a certain subject identity, and xD ∈ X be a driver
face image to extract the target pose features. Our goal is to generate a new face image x́S

of the subject of xS with the extracted face pose of xD . To achieve this goal, we assume
that each image x ∈ X is generated from an identity embedding vector a ∈ A and a pose
embedding vector p ∈ P. In other words, xS , xD are synthesized by the pair (aS, pS) and
the pair (aD , pD), respectively. As a result, the new face image x́S is generated by the pair
(aS, pD).

3.3. Framework Architecture

The proposed framework consists of the following four components, see Fig. 1:

• The pose encoder network EP (lD; �P ) receives a three-channel image of driving land-
marks lD ∈ L and maps it into a pose embedding vector pD . Here �P denotes the net-
work parameters that are learned in a way that allows the vector pD to only represent
the pose information of the driving image. We denote with pS , pD the pose embedding
vectors for the landmark images lS , lD , respectively.

• The identity encoder network EA(xS; �A) takes a source face image xS to extract an
N -dimensional vector aS that contains the source-specific information, such as a per-
son’s identity and skin tone information. Here �A denotes the network parameters that
are learned in our two sub-paths learning method.



PFA-GAN: Pose Face Augmentation Based on Generative Adversarial Network 431

• The generator G(aS, pD; �G) takes the pose embedding vector pD and the identity
embedding vector aS which is extracted from the source face image and outputs a syn-
thesized target face image x́S . During the two sub-paths learning method, the network
parameters �G are trained directly.

• The discriminator D(xD, x́S; �Dis) takes the driving face image and the generated one
x́S , then predicts whether the image is real or not. Here �Dis denotes the network pa-
rameters of the discriminator.

4. The Proposed Learning Algorithm

In this section, we present our method for learning a pose face augmentation model (PFA-
GAN). To achieve this goal the learning scheme is divided into two sub-paths, reconstruc-
tion and transformation, see Fig. 1. While the reconstruction sub-path aims to learn to
generate a face image with the target pose, the learning goal of the transformation sub-
path is to synthesize the target face image while preserving the identity of the subject.
At each iteration, only one of these two sub-paths is randomly selected with a probability
of 0.5.

4.1. Reconstruction Sub-Path

The reconstruction pathway trains the generator G, the pose encoder network EP and the
discriminator D. Here the identity encoder network EA is not involved in the learning
process since the network EP learns the pose representations of the driving face images
and the generator G tries to synthesize a face image using the driving pose embedding
vector, while the identity embedding vector contains random values. Hence, given a ran-
dom noise vector from noise uniform distribution az ∈ Z and the pose embedding vector
of the driving landmark image pD = EP (lD), we concatenate them in the latent space
z = [az, pD] and feed them to the generator which aims to generate a realistic face image
xz = G(az, pD) under the driving pose latent vector pD . Similar to the original GAN
work (Huang et al., 2007), the generative network G and the discriminative network D

compete with each other in a two-player min-max game. While the discriminator D tries to
distinguish real images from the output of G, the generator G tries to fool the network D.
Specifically, D is trained to differentiate the fake image xz from the real one xD . This D

minimizes:

LD−advrecon = El∼Pl ,a
z∼Paz

[
D

(
G

(
az, EP (lD)

))] − Ex∼Px

[
D(xD)

]
, (1)

wherePl ,Px are the real data distribution andPaz is the noise uniform distribution. G tries
to fool D; it maximizes the following adversarial loss function:

LG−advrecon = El∼Pl ,a
z∼Paz

[
D

(
G

(
az, EP (lD)

))]
. (2)
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The pose encoder network helps the generator G to generate a high-quality image with
pose of xD , and to achieve that we reconstruct both the source and the driving face im-
ages and make use of a content-consistency loss function Lcnt , which measures differ-
ences in high-level content between the ground truth images xS, xD and the reconstruc-
tions G(EA(xS), EP (lS)),G(EA(xD),EP (lD)) using the perceptual similarity measure
(Johnson et al., 2016). Our content loss function uses the pre-trained VGG19 (Simonyan
and Zisserman, 2015) and VGGFace (Parkhi et al., 2015) networks since we extract the
feature maps �k(x) from several layers in these networks. Later, the loss is calculated as
a weighted sum of �1-norm losses between the features of these networks:

LcntSrecon =
layers∑

k=1

∥∥�k
(
G

(
EA(xS), EP (lS)

)) − �k(xS)
∥∥

1, (3)

LcntDrecon =
layers∑

k=1

∥∥�k
(
G

(
EA(xD),EP (lD)

)) − �k(xD)
∥∥

1. (4)

We have added a regularization term that keeps the weights small, making the model
simpler and avoiding overfitting:

Lregularrecon = 1

n

n∑

i=1

∥∥�i
P

∥∥
2, (5)

where �P denotes the parameters of the pose encoder network.

4.2. Transformation Sub-Path

The transformation sub-path trains the networks EA, G, and D, but keeps the pose encoder
network EP fixed. The output of the EA network should ensure preserving the identity
of the source face image. We introduce a cross reconstruction task to make EP and EA

disentangle the pose from the identity information. More specifically, we sample a real
image pair (xi

S, xi
D) that shares the same identity but different appearance, poses, and

facial expressions. The goal is to transform xi
S to a new face image x́i

S where its pose
matches the pose of the driving face image xi

D . To achieve this, EA receives xi
S as an

input and outputs a pose-invariant face representation ai
S , while EP takes liD landmarks

image of xi
D as an input and outputs a pose representation vector pi

D . We concatenate the
embedding vectors and feed the combined vector, zi = (ai

S, pi
D) = [(EA(xi

S), EP (liD)]
into the network G. The generator G should produce x́i

S , the transformation of xi
S . D is

trained to distinguish the fake image x́i
S from the real one xi

D . Thus, D minimizes:

LD−advtrans = El∼Pl ,x∼Px

[
D

(
G

(
EA(xS), EP (lD)

))] − Ex∼Px

[
D(xD)

]
. (6)

The generator tries to fool D network, it maximizes:

LG−advtrans = El∼Pl ,x∼Px

[
D

(
G

(
EA(xS), EP (lD)

))]
. (7)
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To preserve the subject identity in the generated face image, we follow multiple feature-
level warping methods instead of image-level warping. So similar to the reconstruction
sub-path, the content-consistency loss is used in the transformation sub-path, since several
feature maps �k(x) are extracted from the pre-trained VGG19 and VGGFace networks:

Lcnttrans =
layers∑

k=1

∥∥�k
(
G

(
EA(xS), EP (lD)

)) − �k(xD)
∥∥

1, (8)

LcntStrans =
layers∑

k=1

∥∥�k
(
G

(
EA(xS), EP (lS)

)) − �k(xS)
∥∥

1. (9)

To avoid overfitting problem, we add the following regularization loss function to keep
the weights small in the identity encoder network:

Lregulartrans = 1

n

n∑

i=1

∥∥�i
A

∥∥
2. (10)

where �A denotes the parameters of the identity encoder network.

4.3. The Overall Loss Function

The final loss function is a weighted sum of all losses defined in Eqs. (1)–(10):

Lossrecon = λadv(LD−advrecon + LG−advrecon) + λcnt(LcntSrecon + LcntDrecon)

+ λregLregularrecon , (11)
Losstrans = λadv(LD−advtrans + LG−advtrans) + λcnt(Lcnttrans + LcntStrans)

+ λregLregulartrans , (12)

where λadv, λcnt , and λreg are weights that control the importance of loss terms. The overall
loss will be:

Lossoverall = rLossrecon + (1 − r)Losstrans (13)

since r ∈ {0, 1} is a random binary value that is updated before each learning iteration.

5. Experiments

5.1. Dataset

The PFA-GAN is trained on a subset of the MS-Celeb-1M (Guo et al., 2016) dataset,
which contains about 5M images of 80K celebrities with unbalanced viewpoint distribu-
tions and with a very large appearance variation (e.g. due to gender, race, age, or even
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makeups). We use 36K face images belonging to 528 different identities, while no pose
or identity annotations are employed in the training process. For each face image, we first
detect the facial region using the multi-task cascaded CNN detector (MTCNN) (Zhang et
al., 2016) and then align and resize the detected face to 128 × 128 pixels.

5.2. Implementation Details

We use the same implementations of the generator G and the discriminator D in IP-GAN
that were introduced by Tian et al. (2018). For the pose encoder network EP and the
identity encoder network EA, we use ResNet50 (He et al., 2016) network architecture,
where the skip connections in the network allow to learn the desired representation (e.g.
the identity or the pose) since the performance of the upper layers will be at least as good
as the lower layers. The following parameters were used: λcnt = 1, λadv = 0.005, and
λreg = 0.001. The values of the random noise az are in the range [−1,+1]. To implement
the model, a set of Pytorch deep learning tools was used. The batch size was set in 16 and
one Nvidia graphic card (GTX 1080 Ti) was used. The Adam optimizer (Kingma and Ba,
2015) was used and configured with the learning rate of 0.0005, and the momentum of
[0, 0.9].

5.3. Interpolation of Pose Latent Space

In this section, we demonstrate that a pose of the generated face images can be gradually
changed with the latent vector. We call this phenomenon face pose morphing. We have
tested our model on the selected subset from the MS-Celeb-1M (Guo et al., 2016) dataset.
We first choose a pair of images xS and xD , and then extract the pose latent vectors pS

and pD using the pose encoder network EP . Then, we obtain a series of pose embedding
vectors p̃i by linear interpolation, i.e.:

p̃i = αipS + (1 − αi)pD, (14)

where αi ∈ [0, 1], i = 1, . . . , k; k is the number of interpolated images. Finally, we
concatenate each interpolated pose vector p̃i with the extracted identity embedding vector
aS and feed the combined vector into the generator G to synthesize an interpolated face
image x̃i = G(aS, p̃i). Figure 2 presents the results of the face pose morphing using
k = 10, since every row shows how a face pose is gradually morphing into the next one.
The last column denotes the landmark image of the driving face.

5.4. Visual Data Augmentation Strategies

The traditional visual data augmentation methods alter the entire face image by transfer-
ring image pixel values to new positions or by shifting pixel colours to new values. These
generic methods ignore high-level content such as moving the head or adding a smile, so
in this section, we show the effectiveness of using our model as an alternative face spe-
cific augmentation method. The ability of the PFA-GAN model to perform a controlled
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Fig. 2. Interpolation of the pose latent space.

synthesis of a face image allows enlarging the volume of data for training or testing by
generating new face images with new poses. So, using our proposed model, for each im-
age in the dataset, an unlimited number of images can be generated for the same identity
subject with a great variety of face poses. Assuming the original dataset is R, pose face
augmentation can be represented by the following transformation:

f : R −→ T , (15)

where T is the augmented dataset of R. Then the dataset is expanded as a combination of
the original dataset and the augmented one:

Ŕ = R ∪ T . (16)

We introduce three visual data augmentation strategies, each one extends the original
training dataset with a new augmented dataset whose images have a degree of difference
in the pose face from the original ones.

• First augmentation strategy (Aug-S1). For each image in our dataset, we choose a ran-
dom driving face image, and by following the interpolation technique described in Sec-
tion 5.3, we choose the interpolated pose vector p̃3 which has a slight difference from
the original one as a driving pose. Then we feed p̃3 along with aS to synthesize an aug-
mented face image x̃S = G(aS, p̃3) in the augmented dataset T1. Therefore, the dataset
of this augmentation strategy will be:

Ŕ1 = R ∪ T1. (17)

• Second augmentation strategy (Aug-S2). Similar to the first augmentation strategy, we
select the interpolated pose vector p̃6, which differs more than the p̃3 to synthesize
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Fig. 3. Face image examples from the original and augmented datasets. From left to right: the original dataset R,
the augmented datasets T1, T2, T3 in the second, third and fourth columns, respectively.

an augmented face image x̃S = G(aS, p̃6). Consequently, the dataset of the second
augmentation strategy will be:

Ŕ2 = R ∪ T2. (18)

• Third augmentation strategy (Aug-S3). The generated images may have a large degree
of variation from the original with regard to head pose and facial expressions. That’s
why for each source face image in our dataset, we randomly select a driving image
to extract the pose embedding vector pr and feed the combined vector [aS, pr ] to the
generator. The dataset of this augmentation strategy will be:

Ŕ3 = R ∪ T3. (19)

Figure 3 shows examples of face images from the augmented datasets. We can note the
pose variation between them.

5.5. Face Verification Task

In this subsection, we evaluate whether the augmented datasets will improve the perfor-
mance of the face verification task or not. In general, face verification needs the following
steps: training a convolution neural network classifier on a dataset, then using it as a fea-
ture extraction network to extract the embedding vectors for a pair of face images from
testing datasets. Next, the extracted two vectors are sent to the distance function to cal-
culate the similarity between them, and according to the threshold, the function judges
whether it is the face of the same person or not. Two classifiers are used, C1 and C2, the
backbones Restnet50, Restnet101 are chosen for the C1, C2, respectively. Both classifiers
use ArcFace (Deng et al., 2019) and Focal loss function. We use different datasets for face
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Table 1
Characteristics of the training and testing datasets.

Dataset Number of people Total images

R 529 36000
Ŕ1 529 72000
Ŕ2 529 72000
Ŕ3 529 72000

LFW 5749 13233
CFP-FP 500 2000
CFP-FF 500 5000
AgeDB 570 16488
CALFW 4025 12174
CPLFW 3884 11652
VGGFace2-FP 500 11000

Table 2
Verification accuracy after training the classifier C1.

Classifier Training
dataset

LFW CFP-FP CFP-FF AgeDB CAL-FW CPLFW-FP VGG-Face2

C1 R 89.77 78.39 88.73 69.23 72.32 70.15 80.74
C1 Ŕ1 91.00 80.04 89.57 70.17 72.25 70.72 81.08
C1 Ŕ2 90.88 80.34 89.81 70.65 71.80 70.78 81.36
C1 Ŕ3 91.53 81.23 89.70 71.20 72.43 70.28 81.16

Table 3
Verification accuracy after training the classifier C2.

Classifier Training
dataset

LFW CFP-FP CFP-FF AgeDB CAL-FW CPLFW-FP VGG-Face2

C2 R 89.38 77.97 88.39 68.30 70.50 69.90 80.06
C2 Ŕ1 90.90 80.13 89.67 70.38 72.03 70.90 80.44
C2 Ŕ2 91.23 81.17 89.73 69.23 72.18 71.42 81.56
C2 Ŕ3 91.68 81.70 89.77 70.93 72.67 71.58 81.64

verification, such as LFW (Huang et al., 2007), CFP-FP (Sengupta et al., 2016), AgeDB
(Moschoglou et al., 2017), CFP-FF (Sengupta et al., 2016) and VGGFace2-FP (Cao et al.,
2018b). Apart from the most widely used LFW dataset, we also report the performance
of our augmentation model on the recent large-pose and large-age datasets (e.g. CPLFW.
Zheng and Deng, 2018 and CALFW, Zheng et al., 2017). Table 1 shows the statistics of
both training and testing datasets in a verification scenario.

We feed the augmented datasets to the classifiers (C1, C2) for training, then we use
the learned model to extract embedding vectors for each image in the testing datasets.
Therefore, the verification accuracies are calculated as shown in Table 2 and Table 3, and
it is clear, that the verification accuracy is higher than it on the dataset without augmen-
tation. For instance, the verification accuracy on AgeDB increased from using the CNN
model (RestNet50) that trained on the augmented dataset (Aug-D3). As a comparison be-
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tween the proposed augmentation strategies, the difference between augmented datasets
(T1, T2, T3) is that the pose face in each of them is transformed from the original dataset
baseline with a different degree of change, from small, as in the case of the T1, to random-
ness, as in the case of the T3. Consequently, by comparing the tables’ results, it can be
noted that a small change in pose transformation improves the results of face verification,
but when the change is random as in the augmentation strategy (Aug-D3), the results of
verification using the more deeper feature extractor Resnet101 are the best. Since on the
publicly available dataset CFP-FP, the increase in verification accuracy has been achieved
up to 4.5%.

6. Conclusion

In this paper, we proposed a self-supervised framework PFA-GAN based on Generative
Adversarial Networks to control the pose of a given face image using another face image,
where the identity of the source image is preserved in the generated one. This framework
makes no assumptions about the pose of the source images since the proposed training
method allows us to train the overall networks in fully self-supervised settings using a
large-scale unconstrained face images dataset. Finally, we use the trained model as a tool
for visual data augmentation. Our PFA-GAN framework demonstrates the ability to syn-
thesize photorealistic and identity-preserving faces with arbitrary poses, which improve
face recognition tasks. The face verification experimental results demonstrate the effec-
tiveness of the proposed framework for pose face augmentation as all augmented datasets
outperform the baseline. Furthermore, to the best of our knowledge, we are the first to
train such a model using a large-scale unconstrained dataset of face images. One exciting
avenue for future work is to improve the network architecture by utilizing operations such
as adaptive instance normalization (AdaIN) and to train our framework on other datasets
larger than ours.
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