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ABSTRACT 
 
We introduce the first visual dataset of fast foods with a total of 
4,545 still images, 606 stereo pairs, 303 3600 videos for structure 
from motion, and 27 privacy-preserving videos of eating events of 
volunteers. This work was motivated by research on fast food 
recognition for dietary assessment. The data was collected by 
obtaining three instances of 101 foods from 11 popular fast food 
chains, and capturing images and videos in both restaurant 
conditions and a controlled lab setting. We benchmark the dataset 
using two standard approaches, color histogram and bag of SIFT 
features in conjunction with a discriminative classifier. Our dataset 
and the benchmarks are designed to stimulate research in this area 
and will be released freely to the research community. 
 

Index Terms— Food image dataset, object recognition 
 

1. INTRODUCTION 
 
Image datasets are a prerequisite to visual object recognition 
research such as object modeling, detection, classification, and 
recognition. In fact, publicly available data collection and 
evaluation play a vital role in the development of automated object 
recognition technologies. The research community has developed 
both general- and specific-purpose datasets.  The former contains a 
variety of objects and is primarily designed to support category-
level object recognition research (e.g., the TU Darmstadt Dataset 
[1], Caltech 101 [3], Caltech 256 [13], the VOC2005 [4], and 
VOC2008 [5]). By providing standardized data on which 
researchers can train and test their algorithms, such datasets have 
made it possible to compare different approaches for object 
category recognition, and algorithm development has been spurred 
by large-scale competitions such as the PASCAL VOC 2008 
object recognition challenge. Specific purpose image datasets, on 
the other hand, typically serve to accelerate research in a particular 
area. For instance, the face recognition community has benefited 
from a series of U.S. Government funded technology development 
efforts and evaluation cycles, beginning with the Facial 
Recognition Technology (FERET) program in 1993 [6]. The 
evaluations have documented two orders of magnitude 
improvement in performance from the start of the FERET program 
through the Face Recognition Vendor Test (FRVT) in 2006. In this 
effort, our intent is to stimulate research in automated food 
recognition by providing the research community with a 
comprehensive, public dataset of common fast food items acquired 
under both controlled and natural conditions. 

Currently, there is no public dataset dedicated to automated 
visual food recognition. Automated food recognition is a key 
technology for measuring dietary and supplement intake in obesity 
study and treatment. Accurate and passive acquisition of dietary  
data from free-living individuals is essential for a better   
 

 

Figure 1: Examples from the Pittsburgh Fast-Food Image Dataset. 

understanding of the etiology of obesity and the development of 
effective weight management programs. Currently, self-reporting 
is the main method for data acquisition. Despite its wide 
application through the use of questionnaires and structured 
interviews, numerous studies have revealed that data obtained by 
self-reporting seriously underestimate food intake, and thus do not 
accurately reflect the habitual behavior of individuals in real life. 
Our previous research [2,7,8] has proposed the use of computer 
vision to improve the accuracy of food intake reporting. 

This paper presents the Pittsburgh Fast-food Image Dataset 
(PFID) (Figure 1), a collection of visual data to facilitate research 
in automated food recognition. PFID contains data of 101 fast food 
acquired in both restaurant environments and laboratory settings. It 
offers still images, video, and stereo images to support different 
algorithm developments and evaluations. We provide baseline 
evaluation results on food recognition. The dataset and evaluations 
are freely available to the public at http://pfid.intel-research.net. 
 

2. DATA COLLECTION 
 
We focus on fast food because it is standardized in terms of 
ingredients and preparation, and is seen as key to obesity research. 
2.1. Select fast food chains  
We identified eleven popular fast food chains, most of which are in 
USDA Food and Nutrient Database for Dietary Studies [14] and 
National Nutrient Databases. We selected 101 different foods from 
these chains including burgers, pizza, burgers, salads, etc. 
2.2. Collection protocol and equipment 
We collected three instances of each food item, which were 
purchased on different dates from the same restaurant or at 



different branches of the same fast food chain. This required 
visiting each fast food chain three times. Each time we brought a 
volunteer and recorded a video of the volunteer eating a meal in 
the restaurant. Knowing that real videos of obesity patients eating 
would likely be recorded using low-cost cameras, we simulated the 
situation by using a Unibrain Fire-I webcam to capture VGA 
videos. Furthermore, for each food instance, we acquired images 
and videos under different lighting conditions, with different 
background, and from different viewing angles. We used a Canon 
SD1100 digital camera and a Point Grey Bumblebee I stereo 
camera to obtain rectified and disparity stereo images. We 
recorded all camera parameters during data acquisition. 

Table 1 outlines the data acquisition protocol. While 
collecting a fast food dataset may seem straightforward, we have 
learned through practice that the devil is in the details and the 
details demand meticulous attention. 

Per food, 
Per instance 

Restaurant 
Setting Laboratory Setting 

Lighting Ambient Ambient 
Uncontrolled White background 

Background 
Tray, table Turntable covered in white 

Data 
Collection Stills Stills Stereo 

images 
360 

video 

Camera 
Setting 

Photo mode, 
no flash,  
handheld 

Photo mode 
no flash,      
1 second 
exposure,   
on tripod 

Stereo 
camera 

on 
tripod 

Video 
mode, 

no 
flash 

Numbers 

4 with 
wrappers, 
about 90 

degrees apart; 
4 without 
wrappers, 
about 90 

degrees apart 

6, exactly 
60 apart 

2 sets 
of 3 

images 
(1 if 

round 
object) 

one   
5-10 

second 
clip 

Extras 1 image of 
food name tag 

1 image of 
food name 

tag,         
1 reference 
image of 

background 

  

Sizes  2592x1944   VGA 

Table 1: Data acquisition protocol. 

2.3. Challenges and learning 
Mundane details, from getting permission for collecting data in the 
restaurant, to making sure that volunteers are not visible in images; 
from not inadvertently pushing the turntable while trying to rotate 
it, to not forgetting to charge the camera ahead of time, these 
seemingly small things cost much time, money, and inconvenience 
when overlooked. This is a task that demands painstaking attention 
to details and a systematic approach. We list more of them below: 
• Mount the camera on the tripod at a height where the object is 

centered, and fills an appropriate portion of the frame; 
• For acquiring stereo data, our verification within the context 

of a normal work desk (1.75 by 0.75m) showed that the 
distance of 0.75m between the stereo camera and the food 
gave the smallest estimation error 

• Background color and material has significant impact on the 
quality of images. After some experimentation we found non 
reflective white background gave the best quality image 

• To minimize shadows and highlights, we minimized the use 
of direct light sources and increased the camera exposure. 

• When manually rotating the turntable, our hands should not 
be visible in the scene 

2.4. PFID summary 
The PFID collection currently has three instances of 101 fast 
foods, where each instance of each food has four still images with 
wrappers and four without wrappers in restaurant environment, six 
still images in the laboratory setting (without wrappers), two sets 
of stereo images (left rectified image, right rectified image, 
disparity image) along the long and short side of the object (one 
for round objects), and one 360 degree video of the food on a 
turntable. Figure 1 shows examples of images in PFID  

 
3. BENCHMARKS 

 
We evaluate the accuracy of standard computer vision recognition 
algorithms on the PFID collection. Specifically, we examine the 
accuracy with which two popular representations, color histograms 
and SIFT, are able to capture the image content in our fast food 
images. The goal is to provide standard baselines for image 
processing and computer vision researchers who are working in 
this area rather than to propose such methods as the state of the art. 

We employ the following consistent methodology in both of 
the experiments. Twelve images (from different views of two 
instances) of each of the 101 food types are utilized as the training 
set, while the six images (from the third instance) are held out for 
testing. Each instance is held out in turn and results are averaged 
over this three-fold cross validation.  In particular, we ensure that 
no instance of a food item ever appears in both the training and test 
sets.  We train a multi-class SVM classifier [16] using the former 
data using the popular libsvm [10] package, with standard 
parameters. The following subsections present results for each of 
the two representations.  With 101 classes, the a priori recognition 
rate is below 1%. 
3.1. Baseline 1: Color Histogram + SVM Classifier 
Color histogram based representations have been popular in object 
recognition for more than a decade. In this study, we employ a 
standard RGB 3-dimensional histogram with four quantization 
levels per channel.  Each pixel in the image is mapped to its closest 
cell in the histogram to generate a 64 dimensional representation 
for each image. 
3.2. Baseline 2: Bag of SIFT Features + SVM Classifier 
Bag of features representations have recently become de facto 
standards as baseline representations in a variety of information 
retrieval tasks ranging from text classification to content-based 
image retrieval.  The basic idea is to represent each image as a 
histogram of occurrence frequencies defined over a discrete 
vocabulary of features and then to use the histogram as a high-
dimensional vector in a traditional discriminative framework. In 
the object recognition community, the SIFT descriptor [9] has 
emerged as the popular choice for this task, and several studies 
(e.g., [1]) have demonstrated the merits of building bags of 
features over a vocabulary of quantized SIFT features. 

For a given image, we employ the SIFT interest point detector 
to identify a sparse set of ``keypoints’’ or locations at which 
descriptors should be computed.  These keypoints are localized 



both in scale and in space.  For computational efficiency, we run 
the SIFT detector on images scaled to 20% of their original size 
and typically find approximately 400 keypoints per image 

At each of the keypoints identified by the interest point, we 
extract a patch and compute its 128-dimensional SIFT descriptor, 
exactly as described in [9]. These are quantized onto a 1000 word 
vocabulary using a codebook that was previously generated using 
K-means clustering.  Thus, each feature descriptor is coded by 
hard assignment to the nearest codebook center, yielding a 1000-
dimensional histogram of codeword counts for each image.  We 
normalize the histogram to obtain a ``bag of features’’ 
representation for each image, that is then classified using an SVM 
as described above. 

 
Figure 3 summarizes the experimental results for the two 

baselines, averaged over the three-fold cross validation.  As can be 
seen from the overall results, automatic food identification is a 
challenging task, even when restricted to the apparently simple 
class of standardized fast foods. The baseline experiments confirm 
our belief that standard ``out-of-the-box’’ approaches to object 
recognition do not solve the problem and that there is an 
opportunity for specialized methods to greatly improve accuracy. 
The approach based on color histogram information alone 
performs poorly because a food item’s aggregated color 
distribution is not sufficiently discriminative.  It does well only on 
foods with a highly-distinctive color distribution, such as the Pizza 
Hut dessert pizza, but is otherwise a poor choice.  SIFT performs 
better on the task and generally dominates the color histogram 
baseline, as expected.  It achieves a particularly high accuracy on 
items such as chocolate chip muffins, due to their distinctive shape 
and consistent internal appearance.  On the other hand, we note 
that there are many objects where the approach fails. 

To better understand the failure modes of the baselines, we 
generated confusion matrices for the two baseline methods (not 
shown).  We note that there are many food items that are 
frequently confused with others.  In some cases this is to be 
expected (e.g., sandwiches that differ only in terms of the filling).  
In other cases, the cause for the misclassifications is less clear.  
Therefore, we categorized the 101 food items into seven 
semantically-meaningful categories that correspond to major types 
of fast food: (1) sandwiches, including subs and wraps; (2) meat 
preparations, such as fried chicken; (3) salads, typically consisting 
of greens topped with some meat; (4) bagels; (5) donuts and other 
sweet snacks; (6) pizza; and (7) miscellaneous category that 
included a diversity of items such as soup and Mexican-inspired 
fast food.  Figure 2 shows category-level confusion matrices for 

both baseline algorithms.  Note that these 7x7 matrices were not 
generated by retraining the classification but are merely an 
alternative visualization of the 101-class results. Due to space 
limitations, we limit ourselves to a few salient observations.  First, 
we note that for the color histogram method, many food categories 
(such as bagels) are misclassified as sandwiches.  This is probably 
because the predominant color in a sandwich is that of the bread 
and this can often match the bread color of the bagel. That effect is 
not observed in the SIFT baseline, probably because sandwiches 
and bagels differ in terms of shape.  However, it is interesting to 
see that even a category that seems visually distinctive, such as 
bagels, is recognized with such low accuracy.  Some categories, 
such as salads, are recognized with high accuracy.  However, note 
that the SIFT algorithm outperforms the color histogram method 
even in the case of salads, where one would expect color to have 
significant advantages.  From these experiments, we conclude that 
the bag of SIFT features approach dominates the color histogram 
method in almost every case and should therefore serve as the 
preferred baseline for future research. 

 
4. CONCLUSION 

We present the first image/video dataset on 101 fast foods. Our 
intent is to provide a freely available dataset to enable computer 
vision research on food recognition/classification. We test two 
standard benchmarks on this dataset, and invite researchers to 
devise suitable benchmarks and share with the research 
community. For more details and the complete dataset see [15]. A 
long term goal is to link PFID to the Food and Nutrient Database 
for Dietary Studies (FNDDS) database. This will help stimulate 
other researchers to work on food recognition problems. 
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