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ABSTRACT

RNA secondary structures are important in many
biological processes and efficient structure predic-
tion can give vital directions for experimental
investigations. Many available programs for RNA
secondary structure prediction only use a single
sequence at a time. This may be sufficient in some
applications, but often it is possible to obtain related
RNA sequences with conserved secondary struc-
ture. These should be included in structural analyses
to give improved results. This work presents a
practical way of predicting RNA secondary structure
that is especially useful when related sequences can
be obtained. The method improves a previous
algorithm based on an explicit evolutionary model
and a probabilistic model of structures. Predictions
can be done on a web server at http://www.daimi.au.
dk/~compbio/pfold.

INTRODUCTION

RNA structures are essential in many biological processes and
are often conserved in evolution. Examples of such conserved
structures are found in tRNA (1), rRNA (2,3), tmRNA (4),
RNase P RNA (5) and SRP RNA (6). Many computational
methods have been developed for predicting RNA structures.
Early algorithms were made by Nussinov et al. (7) and Zuker
and Stiegler (8). Zuker’s energy calculations have been further
improved (9–11) and are probably the most widely used RNA
secondary structure prediction method today (with the MFOLD
program).

The work of Knudsen and Hein (12) (here denoted as the
KH-99 algorithm) combines an explicit evolutionary model of
RNA sequences with a probabilistic model for secondary
structures. It assumes an alignment and gives one common
structural prediction for all the sequences.

This work improves the KH-99 algorithm primarily by
making it faster and more robust toward alignment errors.

A thorough evaluation of performance under different
circumstances is also included. This new method called
Pfold is available through a web-based server www.daimi.au.
dk/~compbio/pfold.

METHODS

Pfold is based on the KH-99 algorithm, which was only useful
for a limited number of sequences due to its large computation
time. This work makes the algorithm practically useful for
larger numbers of sequences. The main concerns are treatment
of gaps, computational speed and robustness.

The KH-99 algorithm

The KH-99 algorithm uses a stochastic context-free grammar
(SCFG) to produce a prior probability distribution of RNA
structures. Given an alignment and a phylogenetic tree
relating the sequences, posterior probabilities of the structures
can be calculated using the inside–outside algorithm (13).
The posterior probability is based on individual probabilities
for alignment columns or pairs of columns in the case of a
base-pair.

Column probabilities are calculated using the likelihood
approach by Felsenstein (14). The evolution of column pairs is
modelled using a rate matrix for base-pairs (i.e. a 16 by 16
matrix). The most likely structure is found using the CYK
algorithm (15). The tree is estimated using a maximum
likelihood approach in the SCFG model described.

Both the evolutionary and structural parameters of the KH-
99 model are based on extensive tRNA and large subunit
rRNA databases (12).

Gaps

Treating gaps in an appropriate way is a returning problem in
biological sequence analysis. The best way to deal with gaps
would probably be to make an explicit evolutionary model for
insertions and deletions, and use that in the sequence analysis.
Unfortunately, such calculations are often complicated, as in
statistical alignment (16,17). Two simpler ideas are to treat
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gaps as a fifth nucleotide or to treat them as unknown
nucleotides.

When using an evolutionary model, a number of problems
arise from treating a gap as a fifth nucleotide. First, the
frequency of gaps will depend on how many sequences are
being analysed and on their evolutionary distance. Furthermore,
gaps cannot be viewed as evolving in the same way as a
nucleotide, thus the rates of evolution are difficult to specify.
This approach does, however, have the advantage that it
includes the potentially useful information from the insertions
and deletions. This method was successfully used in the RNA
part of the non-coding RNA gene finding algorithm by Rivas
and Eddy (18). When treating gaps as unknown nucleotides,
a gapped sequence position should have probability one for any
nucleotide. This has the advantage that the probability of a
column with gaps is equal to the probability of the same column
in an alignment without the gapped sequences, and the tree
correspondingly pruned (Fig. 1).

Pfold uses the latter approach, which is often done in
situations where different alignment columns are looked at
individually (19). In RNA structure prediction, pairs of
columns are analysed together, which can give rise to some
difficulties: when treating gaps as unknowns, gaps can form
pairs with nucleotides (the top of Fig. 2). This problem was
handled by removing columns where less than 75% of the
sequences have nucleotides (the bottom of Fig. 2).

Unknown nucleotides

In biological sequences, some nucleotides may be unknown or
only partial information may be available. These situations can
be treated by letting the unknown nucleotide have a probability
of one for each of the possible nucleotides. This means that if a

given position is known to be a pyrimidine, its probability of
being a U is set to one, and its probability of being a C is also
set to one. Using this method, any symbols of the extended
nucleotide alphabet can be treated correctly by Pfold. This is in
accordance with Felsenstein (14).

Tree estimation

In the KH-99 algorithm, the tree was estimated through a
maximum likelihood method using the SCFG model. While
this gave good results and was interesting with respect to
phylogenetic analysis, it was slow. A much faster method is to
estimate the tree first. This can be done using standard
methods.

In Pfold, pairwise distances between sequences are calcu-
lated using maximum likelihood. The rate matrix used should
correspond as closely as possible to what is used in the KH-99
algorithm. Since the tree is calculated before the structure has
been estimated, a single rate matrix has to be used for this
purpose. It was made from the KH-99 algorithm by summing
the loop rate matrix and a reduction of the base-pair rate matrix
to single positions. The rate matrices were weighted with the
probabilities that a given position is in a loop region or a stem
region, respectively. The tree is calculated from pairwise
distances using the neighbour joining algorithm (20) and
adjusting branch lengths to maximum likelihood estimates.
This gives a large increase in speed, since the inside–outside
calculations only need to be performed once, as opposed to the
multiple iterations used in the KH-99 method for estimating
the tree.

Robustness

Pfold assumes that all sequences have exactly the same
structure. This means that a single sequence with a slightly
different structure might ruin a prediction. The same situation
applies for alignment errors and sequencing errors. When a
single error might change a prediction significantly, the method
is not robust (the top of Fig. 3).

A way to make the algorithm more robust is to let any
nucleotide have a small probability of being any other
nucleotide. The interpretation of this is most obvious in terms
of sequencing errors, but the method works for alignment
errors and structure differences, too. Figure 3 shows how

Figure 1. The effect of treating gaps as unknown nucleotides. Only a single
column from the alignment is considered with the nucleotides put at the leaves
of the phylogenetic tree. The two trees have identical probabilities since leaves
with gaps can be removed.

Figure 2. A structure prediction for three hypothetical sequences. In the top
alignment, gaps are treated as unknown nucleotides. The structure, shown as
parentheses, include pairs between nucleotides and gaps. In the parenthesis
notation, corresponding parentheses indicate positions forming base-pairs. In
the bottom alignment, the columns with gaps have been left out of the predic-
tion, because <75% of the sequences have nucleotides in these positions.
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introduction of this probability changes the results. In Pfold
this probability was set to 1%.

Partially known structure

Often, something is known about the structure being predicted
and including this knowledge in the analysis can give
improved results. Different kinds of knowledge can be used:

� That two given columns form a pair together.

� That a given column is involved in a pair.

� That a given column is unpaired.

This can all be included in the calculations by letting the
structures that do not satisfy the previous knowledge have a
probability of zero. This approach does not change relative
prior distributions of allowed structures.

As a side note, no loops of length two are allowed in this
implementation, as opposed to the KH-99 algorithm. This was
implemented by disallowing pairs between positions of
distance less than four.

What structure should be chosen?

A prediction program should of course report a single
prediction as the best. The CYK algorithm for finding the
most likely parsing from the grammar is often used (15). An
alternative to this has been chosen here: Pfold reports the
nested structure with the highest expected number of correct
predictions. Appendix 1 (available as Supplementary Material)
describes how this structure can be found. Notice that this
removes some of the problems associated with using the CYK
algorithm on ambiguous grammars.

Once the best nested structure has been chosen, the
reliability of the prediction is evaluated for each position.
This is done by finding the probability that each prediction
(specific pair or unpaired) was correct, given the model and the
data. The variables from the inside–outside algorithm can
easily be used to give this information (Appendix 1 available as
Supplementary Material). Knowing which parts of the
prediction are reliable is very important when using the
prediction in further work (Fig. 4).

Finding a single best structure may not always give all the
information that would be useful. To give an overview of the
prediction, a dot plot is produced as well. It is a square plot
of pairing probabilities for all different pairs. Each prob-
ability is represented by the size of a dot in the appropriate
position. Probabilities of not pairing are shown on the sides

of the plot (Fig. 5). These calculations resemble the work by
McCaskill (21).

Making the obvious individual structure changes

Sometimes, a structure in a single sequence will have a slightly
longer stem than its homologues. This can be incorporated in
the prediction by extending a stem if immediate neighbours
can form base pairs. Another obvious change is to remove non-
standard base pairs from individual sequences. This is done
after the structure predictions given by Pfold.

INPUT AND OUTPUT

The input to the web server is an alignment of up to 40
sequences and 500 positions. The alignment should be given in
the FASTA format with gaps represented by hyphens (‘-’).
Previously known structural elements can be incorporated in
the prediction by adding a specific sequence with the relevant
information (see web site for details). When a prediction is
done, the web server returns an email to the user. This email
contains a link to a web page with the results. On the web page,
the following is available in multiple formats:

� A summary of the input.

� The calculated tree.

� The predicted structure given as a bracket notation.

� Reliabilities of individual predictions.

� A dot plot.

RESULTS

For all predictions in this section, two versions were made. The
first version was made using the alignment from the database of
the sequences being analysed. This alignment was assumed to
be ‘correct’. In the second version, sequences from databases
were aligned using the ClustalW alignment program by
Thompson et al. (22) to imitate a realistic scenario of RNA
structure prediction.

Test sets

A number of test sets were made (Table 1). The sets A, B and
C are used in evaluating the prediction accuracy as a function
of the number of sequences used in the analysis. Test set D is
used to show how prediction accuracy varies as a function of
evolutionary distance.

Prediction accuracy

An evaluation of the prediction accuracy is shown in Figure 6.
The accuracy was calculated as the percentage of positions for
which the secondary structure was correctly predicted. For a
pairing position to be counted as correct, the position of the
predicted pair had to be correct. Sequences in the test sets used
here have a maximum pairwise distance of 0.50 units in the
Jukes–Cantor model (23). This means that the sequences are
quite diverse, but still possible to align without too many errors.

As expected, prediction accuracy rises with the number of
sequences used, as more covariance information becomes

Figure 3. In the top alignment, the KH-99 result is given. The bottom align-
ment shows the structure when all nucleotides have a 1% chance of being
any other nucleotide. The result is a longer stem, which includes one non-
standard pair.
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available. This shows that when related sequences are available,
they should generally be used in the structure prediction
(exceptions to this are discussed below). An accuracy of �75%
is obtainable with six sequences and Pfold can cope with many
more sequences, so even higher accuracies are possible.

Pfold was also used on the original test set of Knudsen and
Hein (12). There were a few small differences in the results
compared to the KH-99 algorithm and the overall performance
was slightly better in this new version of the algorithm.

Evolutionary distance effect

There are two effects of evolutionary distance on prediction
accuracy: large distances imply much covariation information,
but it also means that sequences are difficult to align. Another
issue with large evolutionary distances is that secondary
structures may not be conserved between the sequences. Since
Pfold assumes a single common structure for all sequences,
this can pose a problem.

These effects are illustrated in Figure 7. When using
‘correct’ alignments, the accuracy rises with distance, as the
evolutionary information increases. The accuracy levels off at

�80%, which seems to be the maximum obtainable average
for two sequences of this type using Pfold. The graph made
from the ClustalW alignments show how accuracy increases
until an evolutionary distance of �0.60. After this, the
accuracy drops due to alignment errors. At a distance of
�0.90 the quality of alignments become so low that the
structures might as well be predicted individually.

Speed

The algorithmical improvements made in this work reduces the
computation time substantially. The largest improvement is
from estimating a single evolutionary tree and fixing it, rather
than estimating all the branch lengths under the RNA model.
For details on the computation times, see Appendix 2
(available as Supplementary Material).

DISCUSSION

Some aspects of this method remain to be explored, as
described by Knudsen and Hein (12). These include: base

Figure 4. Prediction of the Klebsiella pneumoniae RNase P RNA structure (5) with the KH-99 method based on the four sequence alignment in the work of
Knudsen and Hein (12). The left side shows which areas are correctly predicted and the right side shows the reliability of the prediction. Notice the high correlation
between the two. Positions 359–366 form a pseudoknot with positions 68–70 and 72–76. Furthermore, positions 84–87 form a pseudoknot with positions 282–285.
Since the algorithm described here does not take pseudoknots into account, this explains why these areas are incorrectly predicted while some of them seem reliable.

Table 1. Test sets from Zwieb et al. (4) and Rosenblad et al. (6)

Test set Sequences

A: 9 tmRNAs (363.8) act.act., hae.inf., kle.pne., pas.mul., sal.par., sal.typ., she.put., vib.cho., yer.pes.
B: 13 bacterial SRP RNAs (270.5) bac.alc., bac.bre., bac.cer., bac.cir., bac.mac., bac.meg., bac.pol., bac.pum., bac.sph., bac.ste., bac.thu., bre.bre., clo.per.
C: 10 eukaryotic SRP RNAs (300.9) ory.sat., tri.ae-a, tri.ae-b, zea.ma-a, zea.ma-b, zea.ma-c, zea.ma-d, zea.ma-e, zea.ma-f, zea.ma-h
D: 51 eukaryotic SRP RNAs (297.4) ara.th-a, ara.th-b, cae.el-a, cae.el-b, cae.el-c, cae.el-d, can.spe., cin.hyb., dro.mel., fug.rub., hom.sa-a, hom.sa-b,

hom.sa-c, hum.ja-a, hum.ja-b, hum.lu-a, hum.lu-b, hum.lu-c, hum.lu-d, lep.col., lyc.es-a, lyc.es-b, lyc.es-c, lyc.es-e,
lyc.es-f, lyc.es-g, lyc.es-h, lyc.es-i, lyc.es-j, lyc.es-k, lyc.es-m, lyc.es-n, lyc.es-o, ory.sat., rat.rat., sch.pom., tet.ros.,
tet.the., tri.ae-a, tri.ae-b, try.br-a, try.br-b, xen.lae., yar.li-a, yar.li-b, zea.ma-a, zea.ma-b, zea.ma-c, zea.ma-d, zea.ma-e,
zea.ma-f

Sets A, B and C were chosen so that no pairwise distance within each set is more than 0.5 units in the Jukes-Cantor model (23). Set D has unique sequences,
all of length greater than 250 from the eukaryotic SRPRNAdatabase. No two sequences are identical within any of the sets. The average sequence length of
each test set is written in parentheses.
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stacking interactions, a grammar more closely describing real
RNA structures and other models for base-pair evolution.

If base-stacking interactions and a better grammar is
incorporated in Pfold, the prediction accuracies should become
close to the MFOLD results for single sequences (9–11), since
the methods resemble each other closely in that situation.
For multiple sequences, Pfold should still be able to perform
even better.

When structures are conserved in evolution, inclusion of
information from multiple related sequences improves predic-
tions. A number of methods have been developed that combine
energy calculations with evolutionary information through a
given alignment (24–27). These methods have proven quite
reliable but lack an explicit evolutionary model.

As emphasised by this work, an important aspect of RNA
structure prediction is the alignment problem. In methods that
depend on a sequence alignment, the success of the method is

closely linked to the quality of the alignment. Some work has
been done in the field of RNA structural sequence alignment
(28). Rivas and Eddy (18) developed an RNA model that takes
the alignment of two sequences into consideration through a
pair-SCFG. They did, however, assume the alignment to be
given since computational time would be prohibitive in using
their method to align sequences. The RNAGA method by
Chen et al. (29) predicts consensus structures without trying to
align the sequences which might be a useful approach to
avoiding the alignment problem.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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Figure 5. A dot plot made from GCA-tRNA sequences from rat, chicken,
mouse and cow (1). The lower left corner represents the beginning of the align-
ment. Imagining the alignment laid out upwards from here and toward the
right, the dots inside the square represent pairing probabilities between posi-
tions. The dots outside the square represent probabilities of not pairing. The
tRNA structure is clearly visible.

Figure 6. Accuracy as a function of the number of sequences used in the prediction. Crosses are from results using ‘correct’ alignments, while boxes are from
ClustalW alignments. Each point represents average results for either all possible combinations of the relevant number of sequences or 50 random combinations,
whichever is the lowest number.

Figure 7. Accuracy as a function of pairwise distance between two sequences
being analysed. As in Figure 6, crosses are from results using ‘correct’ align-
ments, while boxes are from ClustalW alignments. The pairs were grouped
according to their Jukes–Cantor distances, in the intervals [0;0.2), [0.2;0.4),
[0.4;0.6) etc. The points represent average results for 50 random sequence
combinations from a specific range of distances. The x-value of a point is
the average of the 50 distances.
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