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INTRODUCTION

Advances in proteomics technologies have made pos-

sible the collection of large datasets characterizing pro-

tein–protein interactions (PPIs) and gene expression on

a whole organism scale, and with over 660 complete ge-

nome sequences published and 3000 more currently in

progress,1,2 biological sequence data are being pro-

duced at a far greater rate than they are experimentally

characterized. Thorough, systems-level interpretation of

this growing body of proteomics datasets and new

genomes relies on the availability of functional annota-

tion of the included proteins. There has been a rush by

the computational biology community to produce auto-

mated methods for protein function prediction that

reflect the paradigm shift from analysis of single

sequences to the kinds of large scale analysis and exper-

imentation that are forming the backbone of the ge-

nome era of biology.3–7

Traditionally, the default method for characterizing a

new sequence is essentially to transfer function of exist-

ing sequences, which are retrieved by a homology

search method, for example, BLAST, with a significant

score which exceeds a predefined threshold value (e.g.

an E-value of 0.01). When universally applied to the

large datasets described here, drawbacks in this type of

sequence-based function annotation tend to arise from

two sources. First, sequence similarity detection algo-

rithms such as BLAST8 and FASTA/P9,10 provide func-

tion annotation typically only to half of genes in a ge-

nome since homologous sequences are not found at

accepted significance thresholds.11–14 Second, auto-
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ABSTRACT

Protein function prediction is a central problem in bioinfor-

matics, increasing in importance recently due to the rapid

accumulation of biological data awaiting interpretation.

Sequence data represents the bulk of this new stock and is the

obvious target for consideration as input, as newly sequenced

organisms often lack any other type of biological characteriza-

tion. We have previously introduced PFP (Protein Function

Prediction) as our sequence-based predictor of Gene Ontology

(GO) functional terms. PFP interprets the results of a PSI-

BLAST search by extracting and scoring individual functional

attributes, searching a wide range of E-value sequence

matches, and utilizing conventional data mining techniques to

fill in missing information. We have shown it to be effective in

predicting both specific and low-resolution functional attrib-

utes when sufficient data is unavailable. Here we describe (1)

significant improvements to the PFP infrastructure, including

the addition of prediction significance and confidence scores,

(2) a thorough benchmark of performance and comparisons to

other related prediction methods, and (3) applications of PFP

predictions to genome-scale data. We applied PFP predictions

to uncharacterized protein sequences from 15 organisms.

Among these sequences, 60–90% could be annotated with a

GO molecular function term at high confidence (≥80%). We

also applied our predictions to the protein–protein interaction

network of the Malaria plasmodium (Plasmodium falciparum).

High confidence GO biological process predictions (≥90%)

from PFP increased the number of fully enriched interactions

in this dataset from 23% of interactions to 94%. Our bench-

mark comparison shows significant performance improvement

of PFP relative to GOtcha, InterProScan, and PSI-BLAST pre-

dictions. This is consistent with the performance of PFP as the

overall best predictor in both the AFP-SIG ’05 and CASP7

function (FN) assessments. PFP is available as a web service at

http://dragon.bio.purdue.edu/pfp/.

Proteins 2009; 74:566–582.
VVC 2008 Wiley-Liss, Inc.

Key words: protein function prediction; protein-protein inter-

action network; gene ontology; confidence scores; systems biol-

ogy; low resolution function.

566 PROTEINS VVC 2008 WILEY-LISS, INC.



mated methods of annotation transfer between similar

sequences can contribute to error propagation in current

databases.15,16 To approach the new problem of func-

tional characterization of this growing body of uncharac-

terized sequence data, these limitations of traditional

methods of protein function prediction must be read-

dressed.

Hennig et al.17,18 first applied Gene Ontology (GO)

annotations19 to the results of a BLAST search with their

GOblet method, which simply maps sequence matches

onto a representation of the GO Directed Acyclic Graph

(DAG). Although similarity scores are not combined,

users can visualize how multiple sequence matches are

associated to common GO terms. Zehetner extended this

mapping in the OntoBlast method by weighting the list

of retrieved GO terms.20 Here the weight of any particu-

lar term is determined by multiplying the BLAST E-val-

ues from each sequence hit associated with the term.

Khan et al.21 in the GOFigure method and Martin

et al.22 in the GOtcha method use a similar weighting or

ranking scheme, but propagate all scores from GO terms

to parent terms in the hierarchy of the GO DAG. The

final score given to any predicted term is normalized to

the total score of the ontology root, to which every pre-

dicted term contributes. Essentially, these tools attempt

to simulate the human approach to interpreting the

results of a BLAST search with an automated scoring

scheme. The significant common feature between all of

these methods is the use of consensus among similar

sequences retrieved by BLAST, an appropriate response

to the growing body of evidence suggesting that the tra-

ditional one-to-one approach of function annotation

with BLAST, which transfers function from a single

sequence hit, is error-prone when applied on a large

scale11,23,24 and across diverse protein families.25–27

The earlier methods, however, have two significant draw-

backs in their application to large scale protein function

annotation. First, they limit their use of BLAST to previ-

ously defined significance thresholds, only scoring GO

terms associated to low E-value sequence matches. The

failure of BLAST to adequately identify homologous pro-

teins for up to half of the genes in a genome at signifi-

cant E-values is not accounted for. Second, none of these

methods output reliability scores to describe real confi-

dence in predicted GO annotations.

We have designed our function prediction method,

PFP, with large scale annotation projects and the limita-

tions of previous methods in mind.28 Similarly to other

methods, PFP combines GO terms associated to PSI-

BLAST29 sequence hits using an E-value based scoring

scheme, propagating scores to parental terms on the GO

DAG according to the number of known sequences anno-

tated with parent and child terms. To mine the maximal

amount of functional data from this type of approach,

we have included three additional novel components.

First, PFP utilizes functional information from PSI-

BLAST sequence hits up to an E-value of higher than

100, well beyond accepted thresholds for direct sequence

homology. Second, PFP uses data mining to find closely

related GO terms to those that can be predicted directly

from sequence matches. These features allow PFP to pre-

dict function for those sequences lacking annotated

homologs in the database, extracting and inferring func-

tional information not available in the traditionally uti-

lized range of sequence similarity. Third, we have devel-

oped a method for assigning confidence scores to GO

term predictions based on accuracy evaluations over a set

of benchmark sequences. This is a key element for the

application of predictions to uncharacterized proteins.

Our previous report gave anecdotal evidence of the abil-

ity of PFP to accurately predict functional annotations to

new proteins on a benchmark dataset of 2000 sequences

and in the AFP-SIG ’0530 prediction server assessment.

Additional evidence of the success of this method can be

taken from the CASP7 (Critical Assessment of Techniques

for Protein Structure Prediction) function prediction

assessment, where our group was named the best predic-

tor on both previously known and new GO term annota-

tions, outperforming even consensus predictions made by

the organizers.31

This manuscript provides evidence of the superior pre-

dictive power of PFP through a comparison of coverage

and accuracy against a more traditional use of PSI-

BLAST, the GOtcha method, and InterPro32 motif scan-

ning on a benchmark set of 120,260 protein sequences

(see Fig. 1). We also describe extensive testing of variable

input parameters, including source and strength of func-

tional annotations for the BLASTed database, weighting

schemes for assigning confidence scores to predictions,

and function association scores used for the data mining

component. The results show solid evidence that the use

of higher E-value sequence hits and functional associa-

tions recovered by data mining are an appropriate inter-

pretation and extension of PSI-BLAST search results. We

also analyze the relevance of sequence based approaches

to predictions of different functional subcategories.

Lastly, we describe the development of our weighting

scheme for assigning confidence scores to GO functional

term predictions and apply blind PFP predictions to

uncharacterized sequences in several genomes and the

Plasmodium falciparum (Malaria) PPI network.

METHODS

PFP base

The PFP algorithm uses PSI-BLAST (version 2.2.6) to

predict probable GO function annotations in three cate-

gories—molecular function, biological process, and cellu-

lar component—with statistical significance scores (P-

value) and expected accuracy within a specified range of

edges on the GO directed acyclic graph (DAG). For each

Automated Prediction of GO Terms by PFP
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sequence hit retrieved by a PSI-BLAST search, associated

GO terms are scored according to the alignment expecta-

tion value (E-value) provided by PSI-BLAST. The scores

for terms associated to several sequence hits are com-

bined by summation. This scoring system ranks GO

terms according to both (1) their frequency of associa-

tion to similar sequences and (2) the degree of similarity

those sequences share with the query. A GO term, fa, is

scored as follows:

sðfaÞ ¼
XN
i¼1

XN funcðiÞ

j¼1

ð� logðEvalueðiÞÞ þ bÞdfj ;f a
� �

ð1Þ

where s(fa) is the final score assigned to the GO term, fa,

N is the number of the similar sequences retrieved by

PSI-BLAST, Nfunc(i) is the number of GO terms

assigned to sequence j, Evalue(i) is the E-value given to the

sequence i, and fj is a GO term assigned to the sequence

i. dfj;fa returns 1 when fj equals to fa, and 0 otherwise. To

maintain the integrity of the PSI-BLAST search, we use

the default E-value threshold for inclusion in multiple

iterations (2h 0.005) and set the maximum number of

iterations to three (2j 3). By shifting the scoring space

by a constant (b), individual annotations from weakly

similar (E-value > 1) can be considered and scored. Here

we use b 5 log(125) to allow the use of sequence

matches to an E-value of 125.

Term ancestor scoring

Each node in the GO DAG follows the true path rule;

that is, any gene associated with a GO term must also be

associated with the ancestors of that term leading back to

the ontology root. Following this rule, we score ancestors

of any predicted term according to the number of genes

associated to the predicted term relative to the ancestor

term.

sðfpÞ ¼
XNc

i¼1

sðfci Þ
cðfc iÞ
cðfpÞ

� �� �
ð2Þ

where s(fp) is the score of the parent term fp, Nc is the

number of child GO term which belong to the parent

term fp, s(fci ) is the score of a child term ci, and c(fci )

and c(fp) is the number of known genes, which are anno-

tated with function term fci and fp. For our benchmark

evaluation here, we have tested PFP both using ancestral

scoring and not using ancestral scoring.

FAM threshold

PFP also uses a novel data mining tool to predict addi-

tional GO terms, which are highly associated to those

terms associated to sequence hits from PSI-BLAST. This

tool, the Function Association Matrix, describes the

probability that two GO terms are associated to the same

sequence based on the frequency at which they co-occur

in UniProt sequences. This allows the FAM to associate

function annotations from different GO categories, for

example, the biological process ‘‘positive regulation of

transcription, DNA-dependent’’ is strongly associated

with the molecular function ‘‘DNA binding activity’’

(P(0045893|0003677) 5 0.455) and the cellular compo-

nent ‘‘nucleus’’ (P(0045893|0005634) 5 0.296). Associa-

tions can describe parallel functions that may be defined

in multiple categories or complementary functions that

are defined in one or more categories.

Including associations precalculated by the FAM, the

score given to a function fa is modified as follows:

sðfaÞ ¼
XN
i¼1

XN funcðiÞ

j¼1

ð� logðEvalueðiÞÞ þ bÞP fa fj
��� �� �

; ð3Þ

P fa fj
��� �

¼
c fa; fj
� �

þ e

c fj
� �

þ l � e0
ð4Þ

where P(fajfj) is the conditional probability that fa is asso-

ciated with fj, c(fa, fj) is number of times fa and fj are

assigned simultaneously to each sequence in UniProt,

and c(fj) is the total number of times fj appeared in Uni-

Prot, l is the size of one dimension of the FAM (i.e. the

total number of unique GO terms), and e is the pseudo-

count. A pseudo-count is added to each association

under the assumption that the annotated proteins used

to generate our matrices represent only a subset of all

proteins. Note that FAM is asymmetric, i.e. P(fajfj)
=P(fjjfa).

Figure 1
Annotated and unannotated proteins from benchmark organisms.

Annotated proteins are associated with at least one GO term in any

category by GOA (EBI).

T. Hawkins et al.
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For our benchmark evaluation here, we have tested

several thresholds of significance for using FAM associa-

tion rules predictively. This includes disregarding any

function association information [i.e. Eq. (1)] and

thresholds of P(fajfj) � 0.10, 0.25, 0.50, 0.75, and 0.90.

Table I shows the percentage of term associations at each

confidence level.

Database annotation

This method of transient annotation fully depends on

the availability of GO term associations to sequences

retrieved by PSI-BLAST. For our benchmark evaluation

here, we have used three sets of annotations for the

BLAST database. Both GOA annotation sets were

retrieved from the Gene Ontology Annotation (GOA)

project33 at the European Bioinformatics Institute (EBI).

GOA Non-IEA

Each association of a GO term to a sequence provided

by GOA is accompanied by an evidence code describing

the source of the annotation. The GOA Non-IEA annota-

tion set includes GO terms associated to UniProt sequen-

ces with all GO evidence codes except Inferred from Elec-

tronic Annotation (IEA), which is considered to be the

weakest source of evidence.

GOA All

The GOA All annotation set includes all GO terms in

the GOA Non-IEA set plus GO terms associated to Uni-

Prot sequences with IEA evidence codes.

PFPDB

The PFPDB annotation set includes all GO terms in

the GOA All set plus GO terms translated from all other

database annotations associated to UniProt sequences.

Other database annotations include HAMAP,34 Inter-

Pro,35 Pfam, PRINTS, ProDom,36 PROSITE, SMART,37

and TIGRFam38 annotations as well as SwissProt Key

Words (Table II). These annotations are translated to cor-

responding GO terms using mappings downloaded from

GO.

Benchmark dataset

The benchmark evaluation was performed on anno-

tated proteins from 11 genome sequences. The proteome

sets and corresponding gene associations were down-

loaded from EBI (UniProt GOA Proteome Sets, 1-2007).

Species included were Bacillus anthracis Ames (Tax ID:

136), Drosophila melanogaster (Tax ID: 17), Escherichia

coli K12 (Tax ID: 18), Brachydanio rerio (Tax ID: 20721),

Pseudomonas aeruginosa (Tax ID: 36), Homo sapiens (Tax

ID: 25), Methanococcus jannaschii (Tax ID: 28), Arabidop-

sis thaliana (Tax ID: 3), Saccharomyces cerevisiae (Tax ID:

40), Plasmodium falciparum (Tax ID: 493), and Caeno-

rhabditis elegans (Tax ID: 9) for a total of 108,591 anno-

tated target sequences.

To test the appropriateness of using weakly similar

sequences from PSI-BLAST, we ran PFP ignoring

sequence hits under several E-value cutoffs [E � 0 (all-

inclusive), 1e24, 1e23, 1e22, 0.1, 1, 10, and 100]. We

also varied the use of ancestral scoring, function associa-

tion with the FAM matrix, and annotations sets for

the BLAST database as described earlier to optimize pa-

rameters.

To assess the performance of PFP on the benchmark

set, we measured sequence coverage (number of sequen-

ces for which a correct prediction is made in the top five

ranked by expected accuracy within two edges for each

category divided by the total number of sequences

queried), annotation specificity, SP (number of correct

annotations (true positives, TP) divided by the total

number of annotations [true and false positives, TP 1

FP), Eq. (5)], and annotation sensitivity, SN [number of

correct annotations divided by the total number of target

annotations (true positives and false negatives, TP 1

FN), Eq. (6)].

Table I
Percentage and Number of Binary GO Term Associations at Confidence

Thresholds Used in Benchmark Evaluation

FAM
threshold

Percentage of
associations (%)

Number of
associations

10 5.86 29,496
25 2.77 13,940
50 1.26 6,319
75 0.40 1,990
90 0.09 441
Intercategorya 58.77 295,710

aOnly includes associations of two GO terms from different categories.

Table II
Increase in Annotation Coverage of UniProt Sequences and Term

Coverage of the GO with Translated Annotations in PFPDB

Sequence coverage (%)a GO coverage (%)b

SwissProt-GO 13.40 35.70
1 HAMAP 46.50 37.10
1 InterPro 82.30 39.50
1 SW-Keywords 85.00 36.30
1 Pfam 76.00 37.90
1 PRINTS 36.40 36.40
1 ProDom 33.10 36.30
1 PROSITE 54.70 36.30
1 SMART 25.70 35.80
1 TIGRFam 44.70 38.00
(1 all) Total 92.90 41.10

aSequence coverage is the percentage of sequences in UniProt annotated with at

least one GO term after addition of translated terms from the format in column 1.
bGO coverage is the percentage of terms in the GO vocabulary represented in

UniProt after addition of translated terms from the format in column 1.
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SP ¼ TP

TPþ FP
ð5Þ

SN ¼ TP

TPþ FN
ð6Þ

Z-scores and P-values

We applied two measures of statistical significance to

the raw scores output for each prediction in the bench-

mark set. Both measures, Z-score and P-value, describe

the significance of a raw score relative to the distribution

of all raw scores for a single term across the benchmark

dataset. The Z-score indicates the number of standard

deviations above or below the mean raw score, whereas

the P-value is a discrete probability value for any raw

score in the distribution.

Confidence scoring

Expected accuracy is calculated for each P-value distri-

bution as an empirical measure against the performance

of PFP on the benchmark dataset. For each term, actual

accuracy is measured as the percentage of correct predic-

tions within 0, 2, or 4 edges of a target term on the GO

DAG for P-values in bins of 0.005 (200 bins between

1.000 and 0.000). So, for each term we have three stand-

ard curves relating a P-value significance score of a blind

prediction to its expected accuracy in three levels of reso-

lution by edge distance.

Top PSI-BLAST

For comparison purposes, we also collected a list of

GO terms associated to the top N PSI-BLAST hits for

each of the sequences in the benchmark set at each E-

value cutoff, where N is the number of sequences with

an E-value above the cutoff it takes to find five unique

associated GO terms in each of the three category ontol-

ogies.

Gotcha

We ran GOtcha22 with default parameters for each of

the sequences in the benchmark set. To run GOtcha for

higher E-values, we manually removed significant

sequences under each cutoff from local BLAST results

before re-running. For evaluation purposes, predicted

GO terms were ranked by the P-score (confidence score)

provided in the text results.

InterProScan

InterProScan performs searches of all of the function

family and motif databases encompassed by the InterPro

database (ProDom, PRINTS, PIR,39 Pfam, SMART, and

TIGR). We ran InterProScan32 with default parameters

and all databases. When possible, GO terms were

extracted from text-formatted results. Otherwise, we used

translation tables from Gene Ontology [www.geneontology.

org] to find the closest possible GO term to the identi-

fied family/domain/motif. InterProScan predictions are

compared with PFP, GOtcha, and top PSI-BLAST predic-

tions made with an E-value cutoff of 0.

Biological context prediction terms

To assess the performance of PFP on a variety of bio-

logical contexts, we created a reduced subset of GO con-

taining 47 terms describing significant subsets of the

three ontologies. To do this, we translated the MIPS Fun-

Cat40 vocabulary (already a smaller set of terms) into

GO, then eliminated terms with product counts below

3000. This appropriately limits the size of the term set

we use for biological context performance assessment

while still leaving significantly unique terms. For each of

the terms in this reduced set, we evaluate each prediction

of the term and all of its children with an expected accu-

racy of �0.9. A prediction is counted as correct if the

common parent it shares with a target is within the sub-

set of terms (the parent term of the subset or deeper).

Semantic similarity

We used a modified (to include CC similarities which

were not included in the original implementation)

semantic similarity measure from Schlicker et al.41 to

compare predicted sets of GO terms from all of the

included methods (PFP, GOtcha, InterProScan, top PSI-

BLAST) to the set of known (target) annotations for

each sequence in the benchmark set. The similarity of

two individual GO terms c1 and c2 is

simðc1; c2Þ ¼ max
c2sðc1;c2Þ

2 log pðcÞ
log pðc1Þ þ log pðc2Þ

� ð1� pðcÞÞ
� �

;

ð7Þ

where p(c) is the annotation frequency of term c relative

to the frequency of the ontology root, and S(c1,c2) is the

set of common ancestor terms between terms c1 and c2.

The similarity of two sets of terms, GOj
A and GOj

B, of re-

spective sizes N and M is calculated by constructing an

all-by-all similarity matrix sij.

sij ¼ sim GOA
i ;GO

B
j

� �
;

8i 2 f1; . . . ;Ng; 8j 2 f1; . . . ;Mg
ð8Þ

Because PFP, Gotcha, and top PSI-BLAST provide sev-

eral fold more GO terms for the prediction set than are

used for the target GO term set, we used the top N terms

from each prediction method, where N is the number of

T. Hawkins et al.
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terms in the target set (creating a symmetric similarity

matrix). We then use normalized averages of row and

column vectors from the similarity matrix to correspond

to specificity and sensitivity terms. Row vectors compare

the similarity of set A (predictions) to set B (targets) and

represent specificity, while column vectors compare the

similarity of set B (targets) to set A (predictions) and

represent sensitivity.

Specificity ¼ 1

N

XN
i¼1

max
1�i�M

sij ð9Þ

Sensitivity ¼ 1

M

XM
j¼1

max
1�j�N

sij ð10Þ

To calculate an overall similarity score for the two

term sets, we combined the specificity and sensitivity

terms for each GO category:

GOscore ¼ maxfSpecificity; Sensitivityg; ð11Þ

where GOscore is any of the three category scores

(MFscore, BPscore, CCscore). We differentiate from the

Schlicker method only to include cellular component

similarity into the overall score, which is calculated as

funsim ¼ 1

3

MFscore

maxðMFscoreÞ

� �2

þ BPscore

maxðBPscoreÞ

� �2
"

þ CCscore

maxðCCscoreÞ

� �2
#
: ð12Þ

For our evaluation, max(GOscore) 5 1 (maximum

possible GOscore) and the range of the funSim score is

[0,1].

Blind predictions/whole proteome application

We applied PFP predictions to unannotated protein

sequences from 14 organisms. Again, the proteome sets

and corresponding gene associations were downloaded

from EBI. We categorized the results into six groups by

the expected accuracy of the top molecular function term

predicted and show the relative increase in genome cov-

erage compared with previously annotated proteins.

PPI network enrichment (P. falciparum)

We obtained a protein–protein interaction dataset for

P. falciparum42 containing over 2500 unique interactions.

To evaluate enrichment of the interaction network, we

compared the number of fully (both interaction partners

annotated) and partially (one of the interaction partners

annotated) annotated interactions before and after appli-

cation of PFP with unannotated proteins in the dataset.

We considered only GO biological process predictions

with expected accuracy of �0.9 for node enrichment.

RESULTS

Database coverage

A unique characteristic of PFP is the mining of func-

tional information from divergent sequence hits retrieved

by PSI-BLAST, that is, those with E-values well above

commonly accepted thresholds for significance. This fea-

ture is a key extension to other consensus approaches

which we expect to increase the number of sequences for

which some function can be predicted. To assess the im-

portance of utilizing the information found in high E-

value sequences, we evaluated sequence coverage while

ignoring significant sequence hits with E-values below

eight cutoff values. Using optimal parameters (see

below), when the complete PSI-BLAST results were used

(E-value cutoff of 0.0, disregarding self-hits), PFP recov-

ered biological process terms correctly for 73% of the

benchmark sequences (see Fig. 2) versus the 68% recov-

ered by the Top PSI-BLAST method, which simply trans-

fers the first five GO terms from the best sequence hits

above each E-value cutoff (molecular function and cellu-

lar component term predictions show the same trend).

As expected, this coverage drops as the most significant

Figure 2
Performance of PFP relative to PSI-BLAST. Sequence coverage (Y-axis)

is the percentage of benchmark sequences for which a correct GO

biological process term was ranked in the top five results. A term is

considered correct here if it shares a common ancestor at a GO depth

�1 (GO category root depth 5 0) and is within two edges of a known
annotation. The E-value cutoff (X-axis) represents the minimum

similarity for sequences from PSI-BLAST considered in the evaluation.

PFP predictions (solid line) are ranked by P-value significance. PSI-

BLAST annotations (dashed line) are the first five unique GO terms

above each E-value cutoff.
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hits are ignored for both methods. Interestingly, however,

even when only higher E-value sequences were used, we

could still predict correct terms for one in five query

sequences while Top PSI-BLAST only predicts correct

terms for one in 20 queries. When only sequence hits of

E-value �1 were used for making predictions, the cover-

age of benchmark sequences by PFP more than doubles

that of Top PSI-BLAST annotation alone. Sequence hits

of E-value �1 are rarely considered to be homologous

and are thus ignored by most BLAST-based automated

function prediction methods.

Specificity of predicted GO terms

PFP has a distinct advantage in being able to predict

more general GO terms when a specific biochemical ac-

tivity or biological process cannot be predicted from sim-

ilar sequences. This is apparent when we analyze the av-

erage degree of correctness [depth of common parent

shared by prediction and target GO annotation, Fig.

3(a)] and depth [Fig. 3(b)] of correct predictions (within

two edges) made by PFP at all E-value cutoffs. When all

sequence hits are utilized, more than 40% of predictions

have a common parent with the target annotation at a

depth of three or greater, and only about one-third of all

correct predictions are made with a common parent

depth in the GO of one [Fig. 3(a)]. This contrasts with

correct predictions made when all hits below an E-value

of 100.0 are ignored, where about one-third are made

with a common parent depth of three or greater, and

more than 40% are made with a common parent depth

of one. We consider those predictions of GO terms at

shallow depths to be ‘‘low-resolution predictions’’. Inter-

estingly, the same trend is seen when looking at the

Figure 3
Distribution of (a) degree of correctness and (b) depth of correct predictions made by PFP. Degree of correctness is the depth of the common

parent in the GO DAG shared between a predicted term and the correct answer (GO category root depth 5 0).
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depth of the predictions themselves. At an E-value cutoff

of zero, more than 20% of predicted terms have a depth

in the GO DAG of five or greater (very specific), dropping

down to 12% at an E-value cutoff of 100 [Fig. 3(b)].

These data indicate two very important points. First, that

there is still a significant amount of functional similarity

between PSI-BLAST hits when taken collectively at higher

E-values and a query sequence. The significance of this is

that somewhat extensive functional information does

exist among these sequence hits that previously has not

been utilized for predictive purposes. E-values of 10 and

100 are well beyond what would normally be considered

to infer any reliable or consistent functional relationship

between a single sequence hit and the query. Second, that

the depth of the correct predictions is somewhat greater

than the depth of the common parent they share with

target annotations indicates that PFP has a tendency to

overpredict (by 1-2 levels in the GO DAG) the functional

information contained in the PSI-BLAST results at all E-

values.

Parameter variation

PFP employs several variable parameters in its scoring

scheme, including the source of annotations for the PSI-

BLAST database, confidence factor for scoring GO term

associations, ancestor term scoring, and the statistical

method to determine significance and confidence scores

for predictions. To optimize the accuracy of predictions,

we tested variations of these parameters in all combina-

tions. Figure 4 shows a comparison of the coverage of

our benchmark set when these parameters were adjusted.

We tested three database annotation sets. IEA annota-

tions are assigned to sequences in the database by auto-

mated electronic methods without direct experimental

evidence [Fig. 4(a)]. GOA Non-IEA is our dataset that

excludes these IEA annotations but includes all annota-

tions from GOA supported by other evidence codes.

PFPDB incorporates GOA and translations to GO from

other functional annotations in UniProt/TrEMBL. Trans-

lating functional annotations from other namespaces,

such as SwissProt Keywords or Pfam family classifica-

Figure 4
Effects of parameter variation on sequence coverage. (a) Effect of

different annotation sets for the BLAST database. (b) Effect of varying

association threshold for annotations retrieved by FAM. (c) Effect of

scoring GO term ancestors. (d) Effect of ranking by significance scores.

Sequence coverage (Y-axis) is the percentage of benchmark sequences
for which a correct GO biological process term was ranked in the top

three results (a) or for which a correct GO molecular function term

was ranked in the top five results (b-d). A term is considered correct

here if it shares a common ancestor at a GO depth �1 and is within

one edge of a known annotation (a) or is an exact prediction of a

known annotation (b–d). The E-value cutoff (X-axis) represents the

minimum similarity for sequences from PSI-BLAST considered in the

evaluation.
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tions, to GO adds usable function annotations to 92.9%

of all sequences in UniProt, more than six times the

coverage of annotations that originally exist in the

database as GO terms (Table II). Figure 4(a) shows

clearly that the use of a more comprehensive set of

annotations for the PSI-BLAST database results in bet-

ter prediction coverage of sequence space. Using PFPDB

annotations with UniProt, PFP predicts correct biologi-

cal process terms for 47% of the benchmark sequences

as opposed to only 20% using only GOA Non-IEA

annotations.

PFP also mines annotated protein sequence databases

to find significant associations between GO terms and

uses these rules to predict additional terms related to

those associated with PSI-BLAST hits [Fig. 4(b)]. We var-

ied the threshold for confidence factor of the association

rules used to make these additional predictions. The con-

fidence factor of an association describes the likelihood

of the two GO terms having an association truly based

on functional relatedness rather than just a happen-

stantial one. Figure 4(b) shows that as the confidence

factor for the association rules represented in our FAM

matrix increases, coverage of our benchmark database

increases as well, with a threshold of 90% increasing

correct molecular function annotations to 60% of the

benchmark set. This is a dramatic increase in predic-

tion accuracy compared with the 38% coverage when

we omit the data mining component altogether. Using

a confidence factor of 90% keeps only the strongest

� 0.1% of GO term associations (Table I). It is also

notable that using only associations across categories

contribute to improvement of the accuracy of predict-

ing molecular function [intercategory associations in

Fig. 4(b)].

The hierarchical structure of the GO allows us to vary

how PFP scores GO terms. We tested the value of scoring

a GO term’s ancestors leading back up to the category

root according to the fraction of sequences annotated

with that term over the total number of sequences anno-

tated with the ancestral term. Figure 4(c) shows that this

scoring method significantly increases sequence coverage

over our benchmark set. Scoring ancestor terms allows

consensus of vaguely descript function among sequence

hits from PSI-BLAST that may not share specific molecu-

lar functions.

Lastly, we tested several methods of assigning signifi-

cance scores to predictions made by PFP. An essential as-

pect of PFP for use in blind prediction is the ranking

and confidence of predicted GO terms. The distributions

of raw scores for each GO term are widely varied (can be

seen to a degree in the ranges shown in Fig. 5), so the

ranking of predicted terms by raw score is an inadequate

representation of the significance of the predictions. Fig-

ure 4(d) shows a comparison of sequence coverage using

predictions ranked in the top three by two different

methods of assigning significance scores. The Z score

indicates statistical significance of the raw score for each

prediction relative to the score distribution for that term

across the whole benchmark set. P-value is a probability

of the raw score for a predicted term relative to the same

distribution. The difference in coverage is up to fivefold

between the two methods, showing the impact that sig-

nificance score assignment has on prediction accuracy. P-

value is clearly a more appropriate for determining pre-

diction significance, likely because Z-score works best for

distributions closely fitting to the normal distribution

whereas P-value can be more generally applied to the dis-

tributions of scores we see in this evaluation (see Fig. 5).

On the basis of these results, for the performance com-

parison of PFP to Top PSI-BLAST, GOtcha, and Inter-

ProScan, we used the best performing set of parameters

here: PFPDB for annotations to UniProt, a confidence

factor threshold of 90% (P � 0.90) for GO term associa-

tions, our unique ancestor scoring function, and P-value

significance scores for final prediction confidence assess-

ment and ranking.

Figure 5
Distributions of raw scores for two Gene Ontology terms. Number of

bins is determined by 31log(N)log2(N), where N is the number of data

points.
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Statistical significance and
confidence scoring

We assigned statistical significance scores to each of

the predicted GO terms output by PFP and related those

scores to an estimated confidence for blind predictions.

For each term we determined the distribution of raw

scores, which was used to assign a term-specific P-value

to each prediction (see Fig. 5). This value represents the

significance of a particular score relative to its distribu-

tion; however, for any given term the relationship

between statistical significance and accuracy is unique

[Fig. 6(a–c)]. We therefore constructed standard curves

relating P-value significance and specificity for each GO

term. For the proteins in our benchmark set, some GO

terms are generally predicted with higher accuracy [Fig.

6(c)] and would thus be easier to predict in blind appli-

cation while others are generally predicted with lower ac-

curacy [Fig. 6(a)] and would be harder to predict in

blind application. GO molecular function terms are pre-

dicted with better accuracy than cellular component and

biological process terms, however the significance scores

correlate well with accuracy for all three categories [Fig.

6(d–f)]. These averaged category curves are not used in

the actual assignment of confidence scores to predictions,

but are useful in showing the general trend that our P-

value significance score translates effectively into real pre-

diction confidence.

Performance comparison against
PSI-BLAST, GOtcha, InterProScan

Of existing sequence-based function annotation meth-

ods, GOtcha is the most similar, using consensus to

interpret BLAST homology search results. We compared

the performance of PFP, GOtcha, function assignment by

InterProScan, and top PSI-BLAST using a CASP7 style

evaluation, substituting a semantic similarity measure for

the depth-based measure used in CASP. Performance

between the methods was evaluated based on head-to-

head prediction on each of the benchmark sequences. We

ranked PFP predictions by our estimated accuracy mea-

sure and GOtcha predictions by the P-score (confidence

score). Figure 7 shows the percentage of benchmark

sequences for which PFP predictions had the highest

semantic similarity scores to the target annotations. PFP

significantly outperforms both GOtcha and Top PSI-

BLAST at an E-value cutoff of 0, winning over 60% of

the cases, and this difference is exaggerated as the E-value

cutoff increases for both molecular function and biologi-

cal process terms. At distant E-values, PFP provides bet-

ter predictions than other methods 80% of the time.

This type of evaluation, as opposed to sequence coverage

(see Fig. 2), more clearly shows the all-around superior

ability of PFP to predict relevant functional attributes,

especially when only high E-value sequence hits are used.

Figure 8 shows the average FunSim score (total semantic

similarity) for all predictions. This score effectively

describes the degree of significance of predictions with

reference to depth and information content of predicted

terms in the GO graph. The top ranked predictions by

PFP have an average FunSim score of 0.79 for an E-value

cutoff of 0 and maintain an advantage over GOtcha and

top PSI-BLAST predictions at all E-values. Additionally,

Table III shows four examples of proteins for which PFP

was able to make correct predictions with an E-value cut-

off of 10.0. The relatively poor performance of InterPro-

Scan (for its single data point; E-value adjustment is only

applicable for the BLAST-based methods) is notable as

an indicator of the low coverage of using only strongly

conserved functional motifs to predict protein function.

It should be expected that sequence similarity is more

likely to be able to predict certain categories of biological

functions than others. We assessed the performance of

PFP for 47 biological contexts, each represented by a

subset of terms from the GO (Fig. 9, see methods section

for a description of how these terms were selected).

Clearly the accuracy varies between contexts, with predic-

tions of nucleotide binding, transport, and response to

stimulus achieving prediction specificity of 90–100%, and

predictions of lipid metabolism only achieving only 23%.

These more poorly predicted categories represent either

areas of biology that are less well understood or those

that include a very diverse population of proteins that

participate in other biological processes as well. Both of

these factors limit the importance of sequence in identi-

fying the role of a protein in a particular biological con-

text.

Functional enrichment of whole proteomes

With established significance scores and a method for

relating P-value to an estimated accuracy, we were able

to assign predictions to unannotated proteins in fifteen

genomes and assess the ability of PFP to enrich the func-

tional knowledge of these proteomes at any given confi-

dence level. For each proteome, we counted the number

of unknown proteins for which we could make a molecu-

lar function prediction with an estimated accuracy of

greater than 80%. In each of the fifteen organisms we an-

alyzed, more than two-thirds of the previously unknown

proteins could be assigned a GO molecular function

term at the highest confidence level, and nearly 100% of

these proteins could be assigned a term with an esti-

mated accuracy of 40% or higher (see Fig. 10). The sig-

nificance of this increased coverage is that after applica-

tion of PFP, nearly all of the protein content of an orga-

nism can be predicted to have some functionality; a

computationally derived functional hypothesis is made

for each sequence, even those for which only low-resolu-

tion predictions can be made.
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Functional enrichment of protein–protein
interaction networks

We applied PFP to unknown proteins in the protein

interaction network for P. falciparum (malaria plasmo-

dium). Interactions here can be divided into three cate-

gories: (1) fully enriched, that is, those where both pro-

teins have some known or electronically assigned func-

tion, (2) partially enriched, that is, those where only one

Figure 6
Accuracy as a function of P-value significance score. Accuracy (Y-axis) is the percentage of annotations sharing a common ancestor at GO depth

�1 and within zero, two, four, or six edges of the known annotation for three sample GO terms (panels a through c) and for all annotations in the

GO (d) biological process, (e) molecular function, and (f) cellular component categories. It is shown as a function of the P-value significance score

(Y-axis). These are used to create standard curves relating P-value to expected accuracy in blind predictions.

T. Hawkins et al.

576 PROTEINS



of the two proteins has some known function, and (3)

those where neither of the proteins has some known

function. For the P. falciparum network, we could

increase the number of fully enriched interactions by

more than fourfold, to over 93% of the total interactions,

using GO biological process predictions with an esti-

mated accuracy of over 90% (Table IV). This is an indi-

cation of the potential utility of application of PFP pre-

diction to this type of proteomics dataset.

DISCUSSION

PFP was designed to provide a tool for diverse applica-

tions of protein function prediction on scales ranging

from single sequences to complete genomes independent

of the availability of experimental data (other than pri-

mary sequence) for the target set. Thus, applications

range from functional annotation of new genome

sequences to interpretation of large microarray or PPI

datasets. Using PSI-BLAST and thorough database func-

tional annotations, PFP predicts GO terms for a query

sequence and provides several confidence measures for

each prediction. The statistical P-value measure relays the

relative significance of a prediction score, while the

related expected accuracy measure relays the confidence

in the prediction accuracy. Prediction confidence scores

are key features which should be included in any applica-

tion of electronic functional annotation to limit propaga-

tion of annotation error through sequence data-

bases.43,44 This presentation of expected accuracy scores

is the first application of confidence scores for function

predictions that directly relates to an actual reliability

score for each predicted GO term, a significant departure

from the direct use of BLAST E-value for this purpose.

In this manuscript we show the use of Top PSI-BLAST

as a baseline for function prediction performance. The

comparison is natural, as sequence alignment has been

utilized since its inception to infer evolutionary related-

ness and subsequently functional similarity. Database

searching using FASTA, BLAST, and PSI-BLAST was

invented before the new ‘‘omics’’ era in biology, and is

often insufficient for obtaining large coverage in function

annotation, which is essential for biological interpretation

of omics data. PFP greatly improves on this by providing

low-resolution function with a statistical significance

score when detailed function is not available. The conser-

vation of low resolution function among high E-value

sequence hits may also be an indication that the evolu-

tion of some protein families somewhat follow the struc-

ture of the GO vocabulary, that is evolutionary distance

may correlate with edge distance in the GO and addi-

Figure 7
Percentage of wins (Y-axis) for head-to-head comparison of PFP,

GOtcha, and top PSI-BLAST. Comparisons are made on the basis of the

semantic similarity specificity term [Eq. (9)] for GO biological process

(a) and molecular function (b) categories. The E-value cutoff (X-axis)

represents the minimum similarity for sequences from PSI-BLAST

considered in the evaluation.

Figure 8
Average funSim scores (Y-axis) for PFP, GOtcha, top PSI-BLAST, and

InterProScan over all E-value cutoffs. The E-value cutoff (X-axis)

represents the minimum similarity for sequences from PSI-BLAST

considered in the evaluation.
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tionally that low-resolution function may be conserved

beyond obviously similar homologous sequences.

We additionally compared the performance of PFP to

GOtcha and InterProScan.32 GOtcha was used because

of the similarity of its base algorithm to PFPs. Both use a

consensus approach to rank terms assigned to sequences

retrieved by a BLAST search. Figures 7 and 8 summarize

the results of applying a semantic similarity measure

(slightly modified FunSim41) as an indicator of predic-

tion correctness. PFP clearly shows increased perform-

ance by these measures. This is consistent with previous

third party assessments of the predictive ability of PFP. It

has been recently noted as the top overall predictor in

the CASP7 function category, even outperforming con-

sensus methods used by the evaluators.31 It should be

noted that the performance of GOtcha seems abnormally

low. This is a result of GOtcha’s ranking scheme, which

weights GO terms closest to the root node higher (with

more confidence). Thus the highest confidence terms

have lower real significance in terms of the information

provided to users. Table III provides an excellent example

of how PFP’s weighting predictions by confidence score

can retrieve and highlight broad but significant GO terms

from even high E-value (low significance) sequence hits.

Table III
Examples of Correction Predictions by PFP Using only BLAST Sequence Hits Above an E-Value of 10

Protein ID GOA Annotations
E-Value of Most
Distant Homologa PFP Predictions Rankb

ARGR_BACAN Cytoplasm (GO:0005737) 0.95 DNA binding (GO:0003677) 1
Arginine repressor DNA binding (GO:0003677) Transcription factor activity (GO:0003700) 2

Transcription factor activity (GO:0003700)
Transcription (GO:0006350)
Regulation of transcription, DNA-dependent

(GO:0006355)
Arginine metabolic process (GO:0006525)
Arginine biosynthetic process (GO:0006526)
Amino acid biosynthetic process

(GO:0008652)
MTNK_BACAN Kinase activity (GO:0016301) 0.00008 Transferase activity (GO:0016740) 1
Methylthioribose kinase Transferase activity (GO:0016740) Kinase activity (GO:0016301) 3

S-methyl-5-thioribose kinase activity
(GO:0046522)

Amino acid biosynthetic process
(GO:0008652)

Methionine biosynthetic process
(GO:0009086)

Q81RY3_BACAN Copper ion binding (GO:0005507) 100 (next
highest is 52.3)

Copper ion binding (GO:0005507) 1

Multicopper oxidase family
protein

Oxidoreductase activity (GO:0016491) Oxidoreductase activity (GO:0016491) 10

ATP6_DROME Mitochondrion (GO:0005739) 0.14 Proton-transporting ATPase complex,
coupling factor F(o) (GO:0045263)

1

ATP synthase 6 Membrane (GO:0016020) Proton-transporting two-sector ATPase
complex (GO:0016469)

2

Integral to membrane (GO:0016021) Integral to membrane (GO:0016021) 3
Proton-transporting two-sector ATPase

complex (GO:0016469)
Mitochondrion (GO:0005739) 4

Proton-transporting ATPase complex,
coupling factor F(o) (GO:0045263)

Hydrolase activity, acting on acid
anhydrides, catalyzing transmembrane
movement of substances (GO:0016820)

2

Hydrogen-exporting ATPase activity,
phosphorylative mechanism (GO:0008553)

Hydrogen ion transmembrane transporter
activity (GO:0015078)

4

Hydrogen ion transmembrane transporter
activity (GO:0015078)

Proton transport (GO:0015992) 2

Hydrolase activity, acting on acid
anhydrides, catalyzing transmembrane
movement of substances (GO:0016820)

Transport (GO:0006810)
Ion transport (GO:0006811)
Proton transport (GO:0015992)

aMost distant homolog is the least similar sequence in PSI-BLAST results recognizable as directly homologous to the query (sharing the same protein name). Sequences

with E-values below (more significant than) 10.0 were ignored in making predictions.
bRanks are given according to the P-value.
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The important functional features are found without

relying on close homologs.

Here we have shown two such applications of PFP to

large scale datasets. First, we applied PFP predictions to

proteins from several genomes. The resulting increase in

coverage (see Fig. 10) can be quite dramatic. Although

this is a basic application, it is one that has implications

for several more complex interpretive algorithms in bio-

informatics. For example, consider the related problems

of missing gene and metabolic pathway prediction. A

common problem in biology is the existence of ‘‘missing’’

genes or pathway elements, that is, reactions or steps in

metabolic pathways, which are assumed to exist but are

not associated to a particular gene product. In some

instances, only one or a few elements are missing from a

pathway. However, in the case that a large portion of one

pathway is ‘‘missing’’, the possibility exists that the path-

way does not occur in the assumed form. Current

approaches use the functional makeup of the particular

organism’s genome to infer the existence of one pathway

alternative over another, but rely on BLAST or other

sequence similarity methods for the step of functional

characterization of the genome.45–50 This leaves open

the real possibility that there is a significant portion of

the enzyme content of the organism that is not consid-

ered. PFP gives two advantages here, namely that predic-

tion coverage for a target genome will be better with PFP

than BLAST and that low-resolution, broad prediction of

Figure 9
Prediction accuracy by GO category. Accuracy (X-axis, percentage of correctly predicted annotations) is shown for 47 biological contexts,
represented by a term and all of its descendants in the GO DAG. Predictions are considered to be correct here if they share the root term of the

subgraph with a known annotation (e.g. any term evaluated for the context represented by GO:0009805 response to external stimulus is considered

correct if it shares that term with a known annotation).
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function can still be useful for pathway inference when

detailed information about a suspected enzyme cannot

be predicted by orthology.

Second, we applied PFP predictions to proteins in the

PPI network for P. falciparum. We showed that nearly all

of the interactions could be fully enriched with function

annotation by PFP. Methods in bioinformatics which uti-

lize PPI networks as a primary information source rely

on availability of functional information for proteins

therein. These methods are used to find clusters of inter-

acting proteins that may be involved in a common bio-

logical process51–54 or to functionally characterize an

unknown protein based on the function(s) of its interac-

tion partners.55,56 Both of these instances will benefit

from the ability of PFP to maximize prior functional

knowledge and provide reliability scores for each node in

the interaction graph.

A future direction is to combine different sources of

function information to PFP, as different sources have

strength in different biological categories.57 In summary,

PFP is a sequence-based method for protein function

prediction, providing a set of GO terms with both P-

value significance and expected accuracy confidence

scores. It is ideally suited for large scale applications,

especially omics data analysis, as it provides better cover-

age in function annotation by providing low-resolution

function. PFP is implemented in a web server at http://

dragon.bio.purdue.edu/pfp/.
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