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ABSTRACT

Motivation: The number of protein families has been estimated to

be as small as 1000. Recent study shows that the growth in

discovery of novel structures that are deposited into PDB and the

related rate of increase of SCOP categories are slowing down. This

indicates that the protein structure space will be soon covered and

thus we may be able to derive most of remaining structures by using

the known folding patterns. Present tertiary structure prediction

methods behave well when a homologous structure is predicted, but

give poorer results when no homologous templates are available.

At the same time, some proteins that share twilight-zone sequence

identity can form similar folds. Therefore, determination of structural

similarity without sequence similarity would be beneficial for

prediction of tertiary structures.

Results: The proposed PFRES method for automated protein fold

classification from low identity (535%) sequences obtains 66.4%

and 68.4% accuracy for two test sets, respectively. PFRES obtains

6.3–12.4% higher accuracy than the existing methods. The predic-

tion accuracy of PFRES is shown to be statistically significantly

better than the accuracy of competing methods. Our method adopts

a carefully designed, ensemble-based classifier, and a novel,

compact and custom-designed feature representation that includes

nearly 90% less features than the representation of the most

accurate competing method (36 versus 283). The proposed

representation combines evolutionary information by using the

PSI-BLAST profile-based composition vector and information

extracted from the secondary structure predicted with PSI-PRED.

Availability: The method is freely available from the authors upon

request.

Contact: lkurgan@ece.ualberta.ca

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Protein structures are being solved to answer key biological

questions related to protein function, regulation and interactions.

Outside of their biological context, the solved structures are

increasingly useful for structure modeling/prediction for unsolved

protein sequences that have a closely related (similar) sequence

with known structure (Tress et al., 2005; Wang et al., 2005).

Based on the Chothia’s estimate, which states that the number

of different protein families is finite and perhaps as small as 1000

(Chothia, 1992), it seems feasible to derive most of the unsolved

structures by homology modeling based only on a relatively

small portion of the protein structures that are determined

experimentally. This explains why the novel structures are

especially valuable. This fact also served as the basis of the

Protein Structure Initiative that was initiated by NIH in 1999

(Chandonia and Brenner, 2006). One of the aims of this project

is to cover the structure space of proteins. These early findings

are supported by a recent computational analysis of the Protein

Data Bank, which showed that the growth of the structural

data has slowed down and that the rate of increase of the related

SCOP categories (including number of families, superfamilies

and folds) is also slowing down (Levitt, 2007). Homology

modeling is based on the assumption that homologous

sequences share similar folding patterns (Ruan et al., 2006;

Zhang and Skolnick, 2005). At the same time, sequences with

low sequence identity can also share similar folding patterns

(Paiardini et al., 2004) and can be used to predict tertiary

structure (Bujnicki, 2006). Sequence alignment software is an

important tool to find homologous sequences among the known

structures (Altschul et al., 1997; Yu et al., 2006), but inept when

no homologous sequences are available. Research also shows

that finding similar folding patterns among the low identity

sequences is beneficial for reconstruction of the tertiary

structure (Reinhardt and Eisenberg, 2004; Tomii et al., 2005).

A comprehensive and detailed description of the structural

relationships between all solved proteins is provided in the

SCOP (Structural Class of Proteins) database (Andreeva et al.,

2004; Murzin et al., 1995). This database implements a

hierarchy of relations between known protein and protein

domain structures. The classification on the first level of the

hierarchy is commonly known as the protein structural class,

while the second level classifies proteins into folds, which are

the classification target in this article. Several machine-learning

methods have been applied to detect the structurally similar

proteins (protein folds) from sequences that share low identity.

Ding and Dubchak investigated support vector machine (SVM)

and neural network for protein fold classification (Ding and

Dubchak, 2001). Shen and Chou studied ensemble models

based on nearest neighbor (Shen and Chou, 2006). The
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� The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2843

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/21/2843/373657 by guest on 16 August 2022



is performed with an intermediate step that converts the
sequence into a feature space representation. Several other

ensemble models that applied the same feature space repre-

sentation as the one proposed by Ding and Dubchak were also
proposed (Bologna and Appel, 2002; Nanni, 2006; Okun,

2004). In these studies protein sequences were represented

by composition vector (CV), predicted secondary structure,
hydrophobicity, normalized van der Waals volume, polarity,

polarizability and pseudo-amino acid composition. The fold

classification success rate ranged between 56% and 62%. The

dimensionality of the feature space was relatively high, i.e. 125
features were proposed by Ding and Dubchak and 283 features

by Chou and Shen, when compared with size of the dataset

used in the experimental evaluation, i.e. 313 training and 385
test proteins. To this end, we propose a novel fold classification

method, called PFRES, that provides significantly better

prediction accuracy when compared with the existing methods
and that uses a small number of new and more effective

features. The main source of the achieved improvement is

attributed to the application of PSI-BLAST profile (Altschul

et al., 1997) based composition vector, which considers
evolutionary information (Jones, 1999, 2007; Kim and Park,

2004), instead of the composition and pseudo-composition

vectors that were used in the prior works. We also applied
features generated from secondary structure predicted with

PSI-PRED (Jones, 1999), which are also shown to be beneficial

in the context of the fold classification. Finally, we note that
PFRES, as well as all other relevant competing methods,

address a simplified fold classification problem, i.e. they predict

27 folds, due to low counts of proteins that belong to the

remaining folds.

2 MATERIALS AND METHODS

2.1 Datasets

The proposed method was designed on a training dataset with 313

domains proposed by Ding and Dubchak (Ding and Dubchak, 2001).

The tests were performed on two datasets: the test set 1 with 385

domains was also taken from Ding and Dubchak (2001) and was used

to perform comparison with other existing methods; the test set 2 with

908 domains was included to provide larger scale evaluation on more

recently deposited domains and to assure that the proposed method

does not overfit the first, small test set.

The follow-up study by Shen and Chou excluded two training

domains (2SCMC and 2GPS) and two domains from test set 1

(2YHX_1 and 2YHX_2) due to lack of sequence records (Shen and

Chou, 2006). We follow Shen and Chou’s study and adopt the two

datasets without these four sequences. The sequence identity for any

pair of sequences in the training set is535%. According to the dataset

authors, the sequence in test set 1 share more than 35% sequence

identity with the sequences in the training set. We found seven

duplicates between these two sets, i.e. 1APLC, 3RUB2, 2REB1,

1DSBA2, 1GLCG1, 1GLCG2 and 1SLTA from the training set

correspond to 1YRNB, 3RUBL2, 2REB_1, 1DSBA2, 1GLAG1,

1GLAG2 and1SLAA from the test set 1, respectively. We also found

another 12 pairs that share over 50% identity. This redundancy may

result in overestimated test results on dataset 1, but at the same time it

should not impact ability to compare the relative differences between

prediction accuracies achieved by various methods on this test set.

The training and test set 1 sequences belong to the following 27 folds:

(1) globin-like, (3) cytochrome c, (4) DNAbinding3-helical bundle, (7)

4-helical up-and-down bundle, (9) 4-helicalcytokines, (11) EF-hand,

(20) immunoglobulin-like, (23) cupredoxins, (26) viral coat and capsid

proteins, (30) conA-like lectin/glucanases, (31) SH3-like barrel, (32)

OB-fold, (33) beta-trefoil, (35) trypsin-like serine proteases, (39)

lipocalins, (46) (TIM)-barrel, (47) FAD (also NAD)-binding motif,

(48) flavodoxin-like, (51) NAD(P)-binding Rossmann-fold, (54) P-loop,

(57) thioredoxin-like, (59) ribonuclease H-like motif, (62) hydrolases,

(69) periplasmic binding protein-like, (72) b-grasp, (87) ferredoxin-like

and (110) small inhibitors, toxins and lectins. These 27 folds are the

most populated in SCOP; each of them contains at least seven proteins.

Based on the concept of protein structural class proposed by Levitt and

Chothia (Levitt and Chothia, 1976), folds 1–11 belong to all-�

structural class, folds 20–39 to all-� class, folds 46–69 to �/� class

and folds 72–87 to �þ � class. The fold distribution can be found in

Ding and Dubchak (2001) and these two datasets can be downloaded

from Supplementary Material in Shen and Chou (2006).

Test set 2 includes sequences that belong to the same 27 folds and

that were deposited into PDB between 2002 and 2004. The selected

timeframe is a result of two factors: the newest version of SCOP

assigned folds only for sequences deposited until January 2005, while

the training set and test set 1 were generated before 2001 and we aimed

to avoid overlap between these datasets. The sequences in test set 2 were

filtered by CD-HIT (Li and Godzik, 2006) at 40% sequence identity.

Next, the remaining sequences were aligned with the sequences in both

the training set and test set 1 using Smith–Waterman algorithm (Smith

and Waterman, 1981). Only sequences that have 535% sequence

identity with any sequence in these two sets were selected to form the

test set 2. The resulting 908 sequences are available from the authors

upon request.

2.2 Feature space representation

2.2.1 PSI-BLAST profile-based composition vector The com-

position vector (CV) is computed directly from amino acid (AA)

sequence (Chen et al., 2007; Chou, 2005). Given that the 20 AAs, which

are ordered alphabetically (A, C, . . . ,W, Y), are represented as AA1,

AA2, . . . , AA19 and AA20, and the number of occurrences of AAi in the

entire sequence is denoted as ni, the composition vector is defined as:

n1
L
,
n2
L
, . . . ,

n19
L

,
n20
L

� �

where L is the length of the sequence. This representation was used by

majority of the existing fold classification methods (Bologna and Appel,

2002; Ding and Dubchak, 2001; Nanni, 2006; Okun, 2004).

The new representation, which combines PSI-BLAST profile and the

concept of composition vector, was developed for the proposed

prediction method. The prior successful applications of PSI-BLAST

profile illustrate that the evolutionary information is more informative

than the query sequence itself (Jones, 1999, 2007; Kim and Park, 2004).

PSI-BLAST aligns a given query sequence to a database of sequences.

Using multiple sequence alignment, PSI-BLAST counts the frequency

of each AA at each position for the query sequence and generates

20-dimensional vector of AA frequencies for each position in the query

sequence. The generated PSI-BLAST profile can be used to identify

key positions of conserved AAs and positions that undergo mutations.

Our approach combines the composition vector of the entire sequence

and the PSI-BLAST profile into so called PSI-BLAST profile-based

composition vector (PCV). The PSI-BLAST profile is an L� 20 matrix,

which is denoted as [ai,j], where i¼ 1,2, . . . ,L denotes position in the

query sequence and j¼ 1,2, . . . , 20 denotes a given AA. After applying

the substitution matrix and log function, aij values range between

�9 and 11. The proposed representation is related to calculation of the

composition vector based on binary coding. The binary coding uses a

20-dimensional vector to encode each AA. In binary coding, AAi is

encoded as (0,0, . . . , 0,1,0, . . . , 0,0), where only the ith value is greater
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than 0. The binary coding matrix is denoted as [bi,j]. The binary

encoding and PSI-BLAST profile matrices have the same dimension-

ality (L� 20).

CV can be computed from the binary coding matrix in a

straightforward way. For a given protein sequence A1A2 . . .AN

CVi ¼
XL
k¼1

bki
L

ði ¼ 1,2, . . . , 20Þ

where {CVi, i¼ 1, 2, . . . , 20} is the 20-dimensional composition vector.

PCV is calculated in a similar way. The only difference is that the

binary coding matrix [bi,j] is replaced by PSI-BLAST profile [ai,j].

Therefore, PCV is defined as:

PCVi ¼
XL

k¼1

aki
L

ði ¼ 1, 2, . . . , 20Þ

Since PSI-BLAST profile values can be negative, while the

frequencies of AA pairs should not be negative, we redefine PCV as

follows:

PCVi ¼
XL

k¼1

maxðaki, 0Þ

L
ði ¼ 1, 2, . . . , 20Þ

where the negative aki values are replaced by 0 and the 20-dimensional

{PCVi, i¼ 1, 2, . . . , 20} vector corresponds to the PSI-BLAST profile-

based composition vector.

2.2.2 Secondary structure predicted with PSI-PRED Predicted

secondary structure is proven to be helpful in fold classification. The

recently proposed fold classification studies (Ding and Dubchak, 2001;

Shen and Chou, 2006) used the secondary structure predicted with

relatively older methods (Holley and Karplus, 1989; Quian and

Sejnowski, 1988). In contrast, we use a more recent PSI-PRED

method (Jones, 1999), which is shown to provide superior accuracy

when compared with other state-of-the-art competing secondary

structure prediction methods (Birzele and Kramer, 2006; Lin et al.,

2005). We used PSI-PRED25 with default parameters to predict

secondary structure from the protein sequences. The 3-state predictions

(helix, strand and coil) are used to generate the features.

Secondary structure content (SSC) is shown to improve classification

accuracy of a related problem of structural class prediction (Kurgan

and Chen, 2007). To this end, we introduce SSC that is calculated from

the secondary structure predicted with PSI-PRED. Let us denote the

AA sequence as {Ai, i¼ 1, 2, . . . ,L} and the predicted secondary

structure as {Si, i¼ 1, 2, . . . ,L}. We count the occurrences of ‘H’, ‘E’

and ‘C’ predictions and denote the corresponding counts as COUNTH,

COUNTE, COUNTC, respectively. The SSC is defined as:

Contentclass ¼
COUNTclass

L

where class¼ ‘H’, ‘E’ and ‘C’.

Number of distinct secondary structure segments (DSSS). Although

secondary structure content reflects information about the secondary

structure of the entire sequence, it does not provide information

concerning individual secondary structure segments. At the same time,

size (length) of secondary structure segments is one of the deciding

factors when it comes to the classification of the structural classes and

folds. To this end, we designed features that count the number of

occurrences of distinct helix, strand and coil structures which length

(number of the corresponding AAs) is above a certain threshold. In this

way short secondary structure segments, which possibly can be

incorrectly predicted, will be filtered out. We varied the threshold

values between 2 and 9 for the strand and coil segments and between 3

and 9 for the helix segments and run predictions using SVM classifier.

The corresponding results are shown in Figure 1. Based on the graph,

the threshold to count helical segments equals 7. The thresholds for

strand and coil segments equal 5 and 6, respectively. We note that the

accuracies resulting from using different threshold are relatively similar,

i.e. within 1%, and thus the quality of the proposed method should not

be sensitive to this parameter.

Arrangement of DSSS. In some cases, structural folds cannot be

distinguished based on the SSC and DSSS features. For instance, the

�/� and �þ� classes contain both �-helices and �-strands; the �/� class

includes mainly parallel �-strands, while �þ� class mainly includes

anti-parallel strands, which is related to the arrangement of secondary

structure segments, but not the SSC or DSSS values. Therefore, we also

designed another set of features that encode arrangement of three

neighboring secondary structure segments, which meet the minimum

threshold criteria set for DSSS features. There are 27 possible

segment arrangements, i.e. class-class-class where class¼ ‘H’, ‘E’ and

‘C’. We count the corresponding number of occurrences for each

arrangement.

Finally, we also include the length of the sequence (L) as a feature.

Table 1 summarizes features used in this article.

2.3 Feature selection

Feature selection method was used to reduce the dimensionality and

potentially improve the prediction accuracy. An entropy-based feature

selection method (Yu and Liu, 2003), which evaluates each feature by

measuring the information gain with respect to the class (protein fold),

was applied.

The entropy of a feature X is defined as:

HðXÞ ¼ �
X
i

PðxiÞ log2ðPðxiÞÞ

where {xi} is a set of values of X and P(xi) is the prior probability of xi.

The conditional entropy of X, given another feature Y (in our case the

protein fold) is defined as:

HðXjYÞ ¼ �
X
j

PðyjÞ
X
i

PðxijyjÞ log2ðPðxijyjÞÞ

where P(xi | yj) is the posterior probability of X given the value yi of Y.

62.5%

63.0%

63.5%

64.0%

64.5%

65.0%

2 3 4 5 6 7 8 9

Threshold

Accuracy on
test set 1

Helix Strand Coil

Fig. 1. Optimization of segment length thresholds to define DSSS

features.

Table 1. Summary of the feature selection results

Features set Total number features Selected features

PCV 20 20

SSC 3 3

Number of DSSS 3 2

Arrangement of DSSS 27 10

Length 1 1

Total 54 36

PFRES
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The amount by which the entropy of X decreases reflects additional

information about X provided by Y and is called information gain

IGðXjYÞ ¼ HðXÞ �HðXjYÞ

According to this measure, Y has stronger correlation with X than with

Z if IG(X|Y)4IG(Z|Y). The feature selection was performed using

10-fold cross-validation on the training set. Among the original set of

54 features, 36 with the best information gain values were selected; see

Table 1.

2.4 Proposed prediction method

The proposed prediction method was designed and tested in two steps.

First, we selected a set of best-performing classifiers among six state-

of-the-art methods that include SVM (Kerthi et al., 2001), Multiple

Logistic Regression (Le and Houwelingen, 1992), instance learning-

based Kstar (Cleary and Trigg, 1995) and IB1 (Aha and Kibler, 1991)

algorithms, Naı̈ve Bayes (John and Langley, 1995), and Random Forest

(Leo, 2001) and when using the selected 36 features to represent

sequences. Second, three different ensembles of the selected classifiers,

including voting, grading and stacking (Seewald, 2002; Seewald and

Fuernkranz, 2001), were tried and the best performing ensemble was

used to implement our fold classification method. As a result, voting-

based ensemble, which combines predictions from the three classifiers

based on an unweighted average of the corresponding classification

probability estimates, was selected. The architecture of the proposed

PFRES method is shown in Figure 2. The classification algorithms used

to develop and compare the proposed method were implemented in

Weka (Witten and Frank, 2005).

3 RESULTS AND DISCUSSION

The experiments first report results related to the design of the

proposed fold classification method. We also test and discuss

effectiveness of individual feature sets from the proposed

sequence representation. Finally, the results of our ensemble

method are compared with the results of five competing

methods.

For the test set 1, the fold classification accuracies for the six

classifiers that include SVM, Multiple Logistic Regression,

Kstar, IB1, Naı̈ve Bayes and Random Forest and when using

the selected 36 features to represent sequences are shown in

Table 2. Random Forest (with 250 trees) gives the highest

accuracy, i.e. 66.8%, among the six classifiers. The two runner-

up classifiers, SVM (with RBF kernel with �¼ 0.8 and

complexity parameter C¼ 5.0) and Kstar (with global

blend¼ 96), obtained 66.1% and 65.0% accuracy, respectively.

The same classifiers were also evaluated on the test set 2 by

applying the same group of features and the same parameters.

Random Forest again gives the highest accuracy, i.e. 63.3%,

with the same two runner-up classifiers, SVM and Kstar, which

obtained 62.4% and 62.7% accuracy, respectively. The accu-

racies on test set 2 are slightly lower than accuracies on test

set 1. The remaining three classifiers obtained accuracy that is

3–10% lower than the accuracy of the three best classifiers, and

thus were not used to implement the proposed fold classifica-

tion method.
Among the 27 folds, fold 1 and fold 39 are the easiest to

classify, i.e. all six classifiers achieved 100% accuracy for these

two folds. Folds 3, 7, 9, 26, 33, 47 and 110 are also relatively

easy to classify, i.e. the average accuracy of the six classifiers for

these folds is above 80%. The average prediction accuracy for

all-� structural class (folds 1–11) is 77.1%, for all-� class (folds

20–39) is 64.3%, for �/� class (folds 46–69) is 55.6% and for

�þ� class (folds 72–87) is 40%. The folds that belong to all-�
and all-� structural classes are easier to classify, while folds that

belong to �/� and �þ� classes are more difficult to correctly

recognize. This is expected as the proposed features, and

especially those based on the predicted secondary structure,

should be able to successfully represent proteins that contain

mainly �-helices and �-strands. At the same time, although still

well performing, the proposed features are less efficient in

capturing long range interactions that are characteristic to

formation of parallel and anti-parallel �-strands.

3.1 Effectiveness of PCV features

The PSI-BLAST profile-based composition vector (PCV),

which is proposed in this article, was directly compared

with the corresponding sequence-based composition vector

(CV) representation that was used in Bologna and Appel

(2002), Ding and Dubchak (2001), Nanni (2006) and Okun

(2004). PCV and CV were compared based on fold classifica-

tion performed with the six classifiers. The prediction results

are shown in Figure 3. The comparison shows consistent

superior quality of PCV features, i.e. the results based on

PCV features are at least 13% higher than the result from CV

features for all six classifiers. For test set 1, the average

accuracy when using PCV features is 54.8%, while for CV

features it drops to 39.1%. For the test set 2, the average

accuracy when using PCV features is 46.3%, while for CV

features it drops to 27.3%. This illustrates that sequential

evolutionary information is critical for successful classification

of protein folds, even for sequences that share low sequence

identity. The results also indicate that the test set 2 is more

challenging.

PSI-PRED PSI-BLASTSequence 

Feature
generation

module

36 features based sequence representation

SVM
classifier

Kstar
classifier

Random forest
classifier

Voting module

Predicted fold type

Fold type
predicted
by RF

Fold type predicted
by Kstar

Fold type
predicted
by SVM 

Fig. 2. Architecture of the proposed fold classification method.
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3.2 Effectiveness of features based on the predicted

secondary structure

Features generated from the predicted secondary structure that

were proposed in this article, which include SSC, number of

DSSS and the arrangement of DSSS, are also shown to

contribute to the improved fold classification. We compared

prediction accuracy of the three best classifiers when using the

PCV features with accuracy when the features computed from

the predicted secondary structure are added, see Figure 4.

For test set 1, 55.4%, 59.5% and 59.3% accuracies were

obtained for Kstar, Random Forest and SVM classifiers,

respectively, when using only PCV to represent sequences.

After adding SSC features, the accuracies increased to 57.7%,

62.4% and 60.1%. By adding the number of DSSS, the

accuracies again increased to 61.4%, 65.8% and 64.8%.

Finally, adding the features related to the arrangement of

DSSS results in accuracies of 63.4%, 65.8% and 65.5%.

Similar results were observed for the test set 2. The accuracies

of Kstar, Random Forest and SVM classifiers equal 43.6%,

50.9% and 50% when using only PCV, 49.7%, 57.3% and

57.9% after adding SSC features, 55.7%, 63% and 61.5% after

adding the number of DSSS, and finally 61%, 63% and 62.6%

after adding the features related to the arrangement of DSSS,

respectively. These consistent improvements show that each of

the proposed features sets results in improvements and

Table 2. Comparison of prediction accuracies between different classifiers for the proposed sequence representation that includes the selected

36 features

Folds Individual classifiers Ensemble classifiers

SVM Kstar Random Forest IB1 Naı̈ve Bayes Regression Grading Voting Stacking-C

1 100 100 100 100 100 100 100 100 100

3 100 100 100 88.9 100 100 100 100 100

4 45 45 70 40 65 50 55 60 60

7 100 62.5 100 87.5 100 75 100 75 100

9 100 88.9 88.9 88.9 100 100 88.9 88.9 88.9

11 77.8 66.7 66.7 66.7 66.7 66.7 66.7 66.7 66.7

20 75 84.1 77.3 65.9 52.3 65.9 86.4 81.8 79.5

23 33.3 16.7 33.3 25 33.3 41.7 25 33.3 33.3

26 84.6 100 92.3 84.6 92.3 84.6 100 92.3 92.3

30 66.7 66.7 83.3 66.7 50 66.7 66.7 66.7 83.3

31 50 62.5 37.5 37.5 50 62.5 50 62.5 37.5

32 52.6 47.4 52.6 47.4 63.2 21.1 52.6 52.6 63.2

33 100 75 50 100 100 100 75 75 75

35 25 50 50 50 25 25 50 50 50

39 100 100 100 100 100 100 100 100 100

46 64.6 66.7 66.7 62.5 39.6 47.9 68.8 68.8 66.7

47 83.3 91.7 83.3 83.3 83.3 75 83.3 91.7 91.7

48 30.8 30.8 46.2 38.5 53.8 30.8 38.5 46.2 38.5

51 59.3 70.4 59.3 70.4 48.1 29.6 63 66.7 66.7

54 50 41.7 33.3 41.7 41.7 41.7 41.7 33.3 33.3

57 37.5 50 37.5 37.5 37.5 62.5 50 50 37.5

59 66.7 58.3 66.7 66.7 58.3 58.3 58.3 66.7 66.7

62 57.1 57.1 42.9 85.7 42.9 57.1 42.9 57.1 57.1

69 50 25 50 50 50 25 50 50 50

72 25 25 25 25 25 25 25 25 25

87 55.6 40.7 51.9 33.3 51.9 33.3 48.1 51.9 51.9

110 96.3 88.9 96.3 88.9 92.6 66.7 96.3 96.3 96.3

Overall 66.1 65 66.8 62.1 60.3 55.1 67.6 68.4 68.1

0%

10%

20%

30%

40%

50%

60%

70%

SVM Kstar  Random forest IB1 Logistic
Regression

Accuracy CV(Test set1) PCV(Test set1) CV(Test set2) PCV(Test set2)

Naïve Bayes

Fig. 3. Comparison of prediction accuracies (y axis) between PSI-

BLAST profile-based composition vector and sequence-based composi-

tion vector. Two sets of feature were tested with six classifiers (x axis)

on both test sets.
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illustrates the importance of the secondary structure informa-

tion with respect to the classification of protein folds.

3.3 Comparison of ensemble models

Several prior works on protein folds classification applied

ensemble models to improve prediction accuracy (Bologna and

Appel, 2002; Nanni, 2006; Shen and Chou, 2006). The method

by Shen and Chou (Shen and Chou, 2006) ensembles nine

evidence-theoretic k-nearest neighbor classifiers that use

different input feature sets. The ensemble proposed in

Bologna and Appel (2002) applies four specialized neural

networks that use different subsets of protein sequences from

the training set. Finally, the ensemble developed by Nanni

(Nanni, 2006) uses 27 k-local hyperplane-based nearest

neighbor classifiers, each of which uses different subset of

features among these proposed in Ding and Dubchak (2001).

In contrast to the above methods that ensemble the same type of

classifiers, our method ensembles three different classifiers that

provide complementary predictions, i.e. SVM provides superior

predictions for folds 9, 11, 33, 54 and 87; Kstar for folds 20, 26,

31, 47, 51 and 57; Random Forest for folds 4, 30 and 48; see

Table 2. Three methods for combining multiple classifiers that

include voting, grading and stacking were compared on test

set 1; see Table 2. All three ensembles are shown to provide

better accuracies than the best single classifier, Random Forest.

The proposed method adopts the best performing voting-based

ensemble that achieves 68.4% accuracy on test set 1. For the test

set 2, the same voting-based ensemble achieves 66.4% accuracy.

In case of both test sets, folds 1, 3, 9, 20 and 110 were predicted

with accuracy of above 80%, while accuracy of below 50% was

recorded for folds 23, 35, 48 and 72. Results on both test sets

show that the application of the ensemble model results in 2–3%

improvement in prediction accuracy over the prediction based

on single classifier. The lower prediction accuracy on the test set

2 could be explained by the strict separation (up to 35%

sequence similarity) between this test set and the training set.

In contrast, test set 1 is shown to share some redundant and

similar sequences with the training set. When these 19 sequences

were removed from test set 1, the PFRES obtains 67% accuracy

on this set, which is only 0.6% higher than accuracy on the

test set 2.

3.4 Comparison with competing prediction methods

The proposed PFRES method was compared with five recent

methods that address same task on test set 1; see Table 3. Ding

and Dubchak’s method uses representation with 125 features

and SVM and neural networks as the classifiers (Ding and

Dubchak, 2001). Okun’s method uses features proposed in

Ding and Dubchak (2001) and k-local hyperplane nearest

neighbor classifier (Okun, 2004). Bologna and Appel’s and

Nanni’s methods again use the same features and the ensemble-

based classifiers (Bologna and Appel, 2002; Nanni, 2006).

Table 3. Comparison between PFRES and the competing fold

classification methods on test set 1. The best results for each fold are

shown in bold

Folds Fold classification methods

SVMa

(%)

HKNNb

(%)

DIMLPc

(%)

SEd

(%)

PFPe

(%)

PFRES

this

article

1 83.3 83.3 85.0 83.3 83.3 100

3 77.8 77.8 97.8 88.9 55.6 100

4 35.0 50.0 66.0 70.0 85.0 60.0

7 50.0 87.5 41.3 50.0 75.0 75.0

9 100 88.9 91.1 100 100 88.9

11 66.7 44.4 22.2 33.3 33.3 66.7

20 71.6 56.8 75.7 79.6 70.5 81.8

23 16.7 25.0 40.0 25.0 16.7 33.3

26 50.0 84.6 80.8 69.2 100 92.3

30 33.3 50.0 46.7 33.3 33.3 66.7

31 50.0 50.0 75.0 62.5 37.5 62.5

32 26.3 42.1 22.6 36.8 15.8 52.6

33 50.0 50.0 45.0 50.0 75.0 75.0

35 25.0 50.0 50.0 25.0 50.0 50.0

39 57.1 42.9 74.3 28.6 71.4 100

46 77.1 79.2 83.8 87.5 97.9 68.8

47 58.3 58.3 55.0 58.3 66.7 91.7

48 48.7 53.9 52.3 61.5 15.4 46.2

51 61.1 40.7 39.3 37.0 44.4 66.7

54 36.1 33.3 41.7 50.0 33.3 33.3

57 50.0 37.5 46.3 50.0 62.5 50.0

59 35.7 71.4 55.0 64.3 66.7 66.7

62 71.4 71.4 44.3 71.4 57.1 57.1

69 25.0 25.0 25.0 25.0 50.0 50.0

72 12.5 25.0 23.8 25.0 37.5 25.0

87 37.0 25.9 41.1 33.3 29.6 51.9

110 83.3 85.2 100 85.2 96.3 96.3

Overall 56.0 57.1 61.1 61.1 62.1 68.4

arefers to (Ding and Dubchak, 2001).
brefers to (Okun, 2004).
crefers to (Bologna and Appel, 2002).
drefers to (Nanni, 2006).
erefers to (Shen and Chou, 2006).

0%

10%

20%

30%

40%

50%

60%

70%

Kstar(Test set1) Kstar(Test
set2)

Random
Forest(Test

set1)

Random
Forest(Test

set2)

SVM(Test set1) SVM(Test set2)

Accuracy PCV Add SSC Add DSSS Add Arrangment

Fig. 4. Comparison of classification accuracy (y axis) obtained by using

features calculated from the secondary structure predicted by PSI-

PRED, i.e. PCV features only, PCV and SSC features, PCV, SSC and

number of DSSS features, and PCV, SSC, number of DSSS and

arrangement of DSSS features. Results of the three best classifiers on

both test sets (xaxis) are shown.
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Finally, method by Shen and Chou uses a new representation

that includes 283 features and the ensemble-based classifier.

They substituted composition vector from the feature set

proposed by Ding and Dubchak with 178 features that

implement pseudo-amino acid composition. When compared

with the competing methods, PFRES uses only 36 features,

which is 70% less features than the representation applied in

Ding and Dubchak (2001), Bologna and Appel (2002), Nanni

(2006) and Okun (2004), and nearly 90% less features than the

representation proposed in Shen and Chou (2006). Table 3

shows that PFRES provides 6.3–12.4% higher accuracy than

the prior methods. When compared with the best performing

competing method by Shen and Chou, prediction with PFRES

results in substantial 6.3/37.9¼ 17% error rate reduction.

PFRES provides superior accuracy for 13 out of 27 folds,

while method by Shen and Chou provides the best predictions

for nine folds.
The statistical significance of the differences between

accuracies obtained by the proposed and the competing

methods over the 27 proteins folds was investigated using

paired t-test. The corresponding t-values for the differences

between PFRES and PFP (Shen and Chou, 2006), SE (Nanni,

2006), DIMLP (Bologna and Appel, 2002), HKNN (Okun,

2004) and SVM (Ding and Dubchak, 2001) methods equal 2.44,

3.18, 2.82, 3.12 and 4.12, respectively. As the critical t-value

for the standard 0.05 significance level equals 1.71, the test

shows that the proposed method provides statistically signifi-

cantly better predictions than the predictions of the five

competing methods. We also note that critical t-values for

stronger, 0.01 and 0.005, significance levels equal 2.48 and 2.78,

respectively.

3.5 Impact of the quality of the secondary structure

predicted by PSI-PRED

Since 15 features proposed in this article were generated from

the secondary structure predicted by PSI-PRED, we further

analyze the impact of the quality of the predicted secondary

structure on the accuracy of the fold classification. For the test

set 2, the average accuracy of the predicted secondary structure

was 75.4%. We divided the test set 2 into two subsets with

sequences for which the secondary structure was predicted with

accuracy below and above the average, correspondingly. The

PFRES was evaluated on each of these subsets independently,

see Table 4. The prediction accuracy for the second subset was

67.3%, while for the first subset it was slightly lower and equal

65.2%. As expected, higher quality of predicted secondary

structure results in higher accuracy of fold classification. At the

same time, this difference is relatively small, i.e. 2%, while the

difference in accuracy of the predicted secondary structure

between these two subsets was much larger (over 13%, see

Table 4). This shows that the proposed method provides

relatively stable quality of predictions with respect to the

quality of the predicted secondary structure. We also note

that current secondary structure prediction methods achieve the

average accuracy close to 80%, e.g. EVA server reports that

PSI-PRED provides the average accuracy 77.9% for 224

proteins (tested between April 2001 and September 2005), and

Porter provides the average accuracy of 79.8% for 77 proteins

(February 2005 to March 2006) (Eyrich et al., 2001). Since

the average accuracy of the predicted secondary structure for

sequences in the test set 2 was 75.4%, we believe that the

presented test results provide a reliable estimate of the future

performance of the proposed method.

4 CONCLUSIONS

A high quality predictor for the protein fold classification

would be beneficial for in silico prediction of tertiary structure

of proteins with low sequence identity, since it would allow for

the determination of structural similarity without the sequence

similarity. To this end, we propose PFRES method that uses a

novel protein sequence representation, which consists of a small

set of 36 features, and applies a carefully designed ensemble

classifier. The proposed feature representation that is utilized

by PFRES includes PSI-BLAST profile-based composition

vector, features based on secondary structure predicted with

PSI-PRED and sequence length. The experimental evaluation

of the proposed fold classification method was performed with

a standard benchmark dataset and another large set of over 900

sequences, both with chains with identity below 35% with

respect to the training sequences. Using the benchmark set,

PFRES is shown to predict the protein folds with 68.4%

accuracy, which is over 6% higher than the accuracy of the best

existing method. The results also show that the fold classifica-

tion accuracy of the proposed method is statistically signifi-

cantly better than the accuracy of all competing methods.

Similar performance, i.e. 66.4% was achieved by the proposed

method on the second test set. At the same time, PFRES uses

70–90% less features to represent sequences when compared

with the existing methods. The proposed PSI-BLAST profile-

based composition vector, which imbeds evolutionary informa-

tion, was compared with commonly used sequence-based

composition vector. Our empirical tests with six machine-

learning classifiers have shown that the PSI-BLAST profile-

based composition vector is superior to the composition vector.

The new representation can be extended to other protein

prediction tasks that currently apply AA composition, e.g.

prediction of structural class, secondary structure content,

membrane protein type, enzyme family, etc. to improve their

accuracy.

Table 4. Average accuracy of predicted secondary structure and

accuracy of fold classification for two subsets of test set 2; subset 1

includes sequences for which secondary structure was predicted with

accuracy below 75.4%; subset 2 includes the remaining sequences

Number of

sequences

Average accuracy of

predicted secondary

structure (%)

Accuracy of fold

classification with

PFRES (%)

Subset1 379 67.6 65.2

Subset2 529 81.1 67.3

Total 908 75.4 66.4
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