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PFST-LSTM: A SpatioTemporal LSTM Model With

Pseudoflow Prediction for Precipitation Nowcasting
Chuyao Luo, Xutao Li , and Yunming Ye

Abstract—Precipitation nowcasting is an important task, which
can serve numerous applications such as urban alert and trans-
portation. Previous studies leverage convolutional recurrent neural
networks (RNNs) to address the problem. However, they all suffer
from two inherent drawbacks of the convolutional RNN, namely,
the lack of a memory cell to preserve the fine-grained spatial
appearances and the position misalignment issue when combining
current observations with previous hidden states. In this article,
we aim to overcome the defects. Specifically, we propose a novel
pseudo flow spatiotemporal LSTM unit (PFST-LSTM), where a
spatial memory cell and a position alignment module are developed
and embedded in the structure of LSTM. Upon the PFST-LSTM
units, we develop a new sequence-to-sequence architecture for
precipitation nowcasting, which can effectively combine the spatial
appearances and motion information. Extensive empirical evalua-
tions are conducted on synthetic MovingMNIST++ and CIKM An-
alytiCup 2017 datasets. Our experimental results demonstrate the
superiority of the proposed PFST-LSTM over the state-of-the-art
competitors. To reproduce the results, we release the source code
at: https://github.com/luochuyao/PFST-LSTM.

Index Terms—Deep learning, image sequence prediction,
precipitation nowcasting.

I. INTRODUCTION

P
RECIPITATION nowcasting aims to predict the kilometer-

wise rainfall intensity within next 6 h [1]. It is an important

and useful tool for weather forecasting [2], which can not only

help to prevent natural disasters caused by heavy rains but

also serve agriculture activity arrangements, transportation route

decisions, and people’s daily trip planning. However, due to

the inherent complexities of atmosphere and nonlinear cloud

dynamics, the problem is very challenging [3].

Traditionally, numerical weather prediction (NWP) meth-

ods [4] make use of a set of fluid dynamics and the thermo-

dynamics equations. The forecast solutions are derived with

numerical simulations from the given initial and boundary con-

ditions. However, NWP methods can only work at the moderate

scale and cannot make kilometer-wise predictions accurately.

Moreover, their computational costs are too high to be deployed
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in nowcasting applications [5], which need real-time updates

frequently. Another line of studies considers the problem as a

radar echo map extrapolation task [6], [7]. Optical flow [8]–

[10], and correlation analysis [11] are two classical methods,

which estimate the motion fields of precipitation particles for

extrapolation. However, the two methods make an estimation

based merely on current observations, ignoring a large volume

of historical records.

Recently, researchers have resorted to deep recurrent neural

networks (RNN) [12] to exploit huge records for radar echo

map extrapolation. For example, Shi et al. proposed two typ-

ical methods under the sequence-to-sequence framework [13],

[14], which are ConvLSTM [15] and ConvGRU [1]. These two

methods combine the strength of the convolution kernels in

image generation with the sequence prediction ability of RNN.

Shi et al. further improved the ConvGRU model and thus pro-

posed TrajGRU by developing adaptive kernel neighborhoods

for extrapolations [1]. Though the three models can offer better

performance than the conventional optical flow and correlation

analysis methods, the resulting explorations have blurry effects.

To address the drawback, Tran et al. revised the structure of

TrajGRU and integrated the mean square error (MSE), mean

absolute error, and structural similarity index (SSIM) [16] as

the loss function in [17]. Besides, Wang et al. introduced a spa-

tiotemporal memory cell and put forward a novel convolutional

LSTM unit to build a predictive RNN (PredRNN) network for

extrapolations [18].

The deep RNN models, albeit delivering state-of-the-art per-

formance, fail to accurately model the overall appearances and

trajectories of precipitation particles. This is because1 the mod-

els either lack a memory cell for preserving fine-grained spatial

appearances or inaccurately combine the previous hidden states

with current input in RNN, or both. The limitations come from

the inherent structures in the convolutional RNN units, such

as ConvLSTM and ConvGRU. On the one hand, though the

convolutional kernels are incorporated into LSTM and GRU to

extract spatial features, the units only maintain a memory cell for

capturing the temporal dynamics, where the spatial appearances

are not memorized. Besides, in ConvLSTM and ConvGRU, the

current input and hidden states of the previous time step are

combined without a position alignment. As the precipitation

particles are constantly moving, such position mismatches may

cause noises to trajectories prediction.

1The full account of our findings will be discussed in Section II.
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In this article, we aim to overcome the defects of the convolu-

tional RNN units and develop a novel RNN block [12], namely,

the pseudoflow spatial-temporal LSTM (PFST-LSTM). In the

block, a spatial memory cell is introduced, which can preserve

the spatial details level by level. Moreover, a pseudoflow module

is proposed, which aligns the current input and previous hidden

states with an estimated flow field. By doing so, the developed

RNN block can better model the appearances and trajectories of

the precipitation particles. Upon the block, we build up a new

sequence-to-sequence architecture to address the extrapolation

problem, where the appearance details in the spatial memory

cells are transferred along both spatial and temporal dimensions

in a zigzag way, and motion information is delivered only along

the time dimension. Extensive experimental results have been

conducted to demonstrate the effectiveness of the proposed

PFST-LSTM model.

For clarity, we summarize the main contributions of this article

as follows:

1) We propose a novel convolutional RNN block, which

overcomes the defects of ConvLSTM and ConvGRU by

introducing a spatial memory cell and a pseudoflow align-

ment module.

2) Upon the block, we construct a sequence-to-sequence

method PFST-LSTM for radar echo map extrapolation. In

the method, spatial appearances and motion information

are effectively combined, where the former is delivered

in a zigzag direction, while the latter one is conveyed

horizontally.

3) Extensive empirical evaluations on the MovingMNIST++

and CIKM AnalytiCup 2017 datasets are conducted. Our

experimental results show that the proposed PFST-LSTM

yields significantly better performance than the state-of-

the-art methods.

II. RELATED WORK

As the key of the precipitation nowcasting, the radar echo

extrapolation can be described as follows. Given a sequence of

past radar observationsX1:t (X1:t ∈Rt×K1×K2×K3 ), the extrap-

olation model aims to forecast the future maps Xt+1:T (Xt+1:T

∈R(T−t)×K1×K2×K3 ). Here, K1, K2, and K3 denote the width,

height, and channel of radar maps, respectively. In general, the

channel number K3 is one. The t and (T − t) are the lengths of

the input and output of the radar image sequences, respectively.

Then, we review the related models that can be applied in this

setting for extrapolation.

A. ConvLSTM

ConvLSTM was proposed in [15]. As the radar echo map

extrapolation aims to predict a sequence of images, which

have spatial structures, the ConvLSTM units replace the full

connections in LSTM with convolutions. Specifically, in the

ConvLSTM units the input modulation gate gt, input gate it,
forget gate ft, memory cell Ct, output gate ot, and hidden state

Ht are updated as follows:

gt = tanh(Wxg ∗Xt +Whg ∗Ht−1 + bg)

Fig. 1. Sequence-to-sequence extrapolation architecture based on ConvL-
STM.

it = σ(Wxi ∗Xt +Whi ∗Ht−1 + bi)

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ gt

ot = σ(Wxo ∗Xt +Who ∗Ht−1 + bo)

Ht = ot ◦ tanh(Ct) (1)

where σ represents sigmoid activation function, ∗ is the con-

volution operation, and ◦ is the Hadamard product. The W
denotes the convolution kernel matrix to be learned and we use

subscripts to differentiate various convolution matrices. Upon

the stacks of such units, a sequence-to-sequence architecture is

built for radar echo map extrapolation, shown as in Fig. 1. We

can see from the figure that the information in memory cell Ct is

delivered horizontally along the time dimension, capturing the

temporal dynamics. In the vertical dimension, however, only

hidden states are transferred. Hence, the ConvLSTM cannot

memorize the fine-grained spatial appearances. Moreover, we

can see from (1) that when calculating gt, it, ft and ot, the

current inputXt and hidden stateHt−1 are directly summed after

a convolution operation. As the precipitation particles constantly

have displacements, there is inevitably a position mismatch

between Xt and Ht−1. Such a simple combination may lead

to noises.

B. ConvGRU

ConvGRU was developed in [1], [19]. As a simplified version

of LSTM, GRU [20] contains fewer parameters and is often

easier to train. Hence, Shi et al. further develop ConvGRU units,

which change the full connections in GRU into convolutions for

precipitation nowcasting [1]. The update gate Zt, reset gate Rt

and hidden stateHt in ConvGRU units are computed as follows:

Zt = σ(Wxz ∗Xt +Whz ∗Ht−1 + bz)

Rt = σ(Wxr ∗Xt +Whr ∗Ht−1 + bi)

H ′
t = f(Wxh ∗Xt +Rt ◦ (Whh ∗Ht−1) + bh)

Ht = (1− Zt) ◦H
′
t + Zt ◦Ht−1.

(2)

Based on the ConvGRU units, a similar sequence-to-sequence

architecture is stacked for extrapolations. According to up-

date equations and the architecture, it is easy to see that the

ConvGRU units also lack the ability to carefully model the
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spatial appearances and to tackle the position misalignment

issue.

C. Trajgru

TrajGRU was first established in [1]. Because the con-

volutional filters in ConvLSTM and ConvGRU are location-

invariant, not suitable to model the trajectories patterns, Tra-

jGRU learns and adopts dynamic recurrent connections for

convolution GRU. Specifically, its main formulas are given as

follows:

Ut, Vt = γ(Xt, Ht−1)

Zt = σ

(

Wxz ∗Xt +
L
∑

l=1

W l
hz ∗ warp(Ht−1, Ut,l, Vt,l)

)

Rt = σ

(

Wxr ∗Xt +
L
∑

l=1

W l
hr ∗ warp(Ht−1, Ut,l, Vt,l)

)

H ′
t = f

(

Wxh ∗Xt +Rt

◦

(

L
∑

l=1

W l
hh ∗ warp(Ht−1, Ut,l, V t, l)

))

Ht = (1− Zt) ◦H
′
t + Zt ◦Ht−1 (3)

where L is the total number of allowed links, Ut and Vt are the

flow fields, which store the dynamic connection generated by a

two-layer network γ, and the warp function selects the dynamic

connections via the bilinear sampling kernels [21], [22]. We can

see that TrajGRU does not have a special design for preserving

spatial appearance details. Though it tries to address the position

mismatch problem, its warp operator takes only Xt and Ht−1

as input, which may not be sufficient.

D. PredRNN

PredRNN was developed in [18]. To better model the spatial

correlation and temporal dynamics, a spatiotemporal LSTM unit

(ST-LSTM) is designed in PredRNN. ST-LSTM incorporates

a spatial memory cell. In addition to the conventional LSTM

operations on temporal dimension, the main formulae related to

the spatial memory cell are defined as follows:

gt = tanh(Wxg ∗XtI{l=1} +Whg ∗H
l−1
t + bg)

it = σ(Wxi ∗XtI{l=1} +Whi ∗H
l−1
t +Wmi ◦M

l−1
t + bi)

ft = σ(Wxf ∗XtI{l=1}+Whf ∗H l−1
t +Wmf ◦M l−1+bf )

M l
t = ft ◦M

l−1
t + it ◦ gt

ot = σ(Wxo ∗XtI{l=1} +Who ∗H
l−1
t +Wmo ◦M

l
t + bo)

H l
t = ot ◦ tanh(M l

t) (4)

where H l
t and M l

t are the hidden state and spatial memory state

of the lth level at time t, respectively, and I denotes the indicate

function. Different from LSTM, the input modulation gate, input

gate, forget gate, and output gate is updated by the hidden state

of the previous layer at the current time rather than that at the

previous time step. In other words, the unit aims to memorize the

spatial information layer by layer. Hence, it can better model the

spatial appearances. Then, to enhance the modeling capability

for short-term sequence dynamics, Wang et al. further improved

LSTM and proposed Causal LSTM [23] unit, which integrates a

temporal memory into the spatial memory. In addition, a gradient

highway unit was also developed to tackle the gradient issue for

long-term prediction. Upon the two special designs, an enhanced

version (named PredRNN++) was built and more promising

results were delivered.

In [24], an E3D-LSTM model was put forward by replacing

2-D into 3-D convolution with attention mechanism. Instead

of stacking the spatiotemporal LSTM units into a sequence-

to-sequence predictor, all these models adopt a conventional

sequence prediction scheme and forecasts only one image at

each time. To generate a sequence prediction, the forecast result

is recursively treated as input. Despite the introduction of an

extra memory cell to capture the spatial appearance details, since

the temporal dimension is still updated as conventional LSTM,

the position misalignment problem remains.

E. Other Related Models

Our work is also related to video prediction studies. For exam-

ple, Finn et al. [25] proposed an action-conditional prediction

method, which models the pixel motion explicitly with a motion

distribution. Bert et al. [26] introduced to dynamically adapt

the weights of convolutions upon the given input for video

prediction, instead of keeping them fixed as conventional convo-

lution operation. Wang et al. proposed the memory in memory

(MIM) neural network [27] to model the nonstationary and

approximately stationary spatiotemporal features for prediction.

In addition, in [28] a convolution network was proposed by

nicely leveraging the context features to enhance the video pre-

diction performance. Reda et al. developed a spatially displaced

convolution in [29]. Adversarial learning networks [30], [31]

and partial differential equation networks [32], [33] were also

put forward for video prediction.

In this article, we aim to overcome the deficiency of the

existing methods by developing a novel LSTM unit, which can

not only preserve the fine-grained spatial appearances but also

address the position mismatch problem. The performance of

our model also can be shown by comparing the above models in

Section IV.

III. PROPOSED MODEL

A. Pseudoflow Spatiotemproal LSTM Units

As noted in related work, due to the lack of a spatial memory

cell, the previous convolutional RNN models cannot produce

promising appearances for radar echo map extrapolation. The

remedy to this issue is simple and easy. We follow [18] and

embed a spatial memory cell into the structure of LSTM.

Our solution of the position misalignment is more sophisti-

cated. To better understand how the problem appears, we give
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Fig. 2. Illustration of the mismatch problem and our solution. The left column shows the cause of mismatch problems. The right column presents our notion of
the solution. The blue block and orange block denote the feature map of input and hidden state, respectively. In input feature maps, we leverage a black square to
denote the same moving object at different timestamps. In the hidden state, the red square indicates the actual position that we perform convolution. We can see
there is a mismatch between red and black square in existing RNN while the issue will be addressed by a hidden flow (shows as green blocks) in our solution. (a)
An illustration example of the position misalignment problem in existing convolutional RNNs. (b) The notion of our solution.

in Fig. 2(a) an illustrative example. In the example, a square

moves from the upper left corner at time step t− 1 to the bottom

right one at time step t, which is a rapid movement. If we apply

ConvLSTM or ConvGRU to the case, the hidden state Ht−1

will reside the square features in the upper left part. As a result,

Ht−1 and Xt can be hardly aligned, even after convolutional

operations. Thus, the direct summation of previous hidden state

and current observation may result in noises. We note that the

rapid movement in two adjacent time steps is not a hypothesis for

radar echo map extrapolation. There are two reasons: 1) the echo

map interval is often around several minutes, e.g., six minutes

in our experiments, because radars need to scan in many angles

to form an image; 2) the precipitation particles move fast and

vary simultaneously, thanks to the complexity of atmosphere.

Inspired by the optical flow methods, we approach the prob-

lem by adding a pseudoflow generation operator, which can

estimate the displacement for each position. Calibrating the

hidden state at the previous time step with the estimated dis-

placements, the positions are expected to be aligned with current

observations. For clarity, the notion of our approach is depicted

in Fig. 2(b).

We utilize a combination of multiple one-layer convolutional

signals and a bilinear sampling warp function to realize the

notion. The convolutional signal combination accounts for dis-

placement estimation and the warp function makes the calibra-

tion. In particular, we model the displacement D as

Dt = Xt−1 ∗Wx′d +Xt ∗Wxd +Ht−1 ∗Whd

+Mt ∗Wmd + bd (5)

Here, Dt is a K1-by-K2-by-2 tensor, K1 and K2 denote the

height and width of input X , and the third dimension denotes

the displacements along with vertical and horizontal directions.

We can see thatDt depends on the inputs of previous and current

time steps Xt and Xt−1, hidden state of previous time step Ht−1

and spatial memory at current timeMt. TheDt models some mo-

tion field which has some key differences from the conventional

optical flow. One key difference is that conventional optical flow

methods learn the motion filed by setting up an objective function

with the assumption that the brightness of pixels is invariant.

Instead, in our approach, the motion field Dt is generated by

some convolutions and fusions on various feature maps (e.g.,

Xt, Xt−1, Ht−1, and Mt). The motion field mimics the optical

flow but does not have the assumption on pixel brightness.

Thus, we mention it as the pseudoflow. After the displace-

ment estimation, we adopt the bilinear sampling kernels [21],

[22] as our warp function to calibrate the positions in Ht−1

and Ct−1

H ′
i,j,c =

K1
∑

k1=1

K2
∑

k2=1

Hk1,k2,c

max(0, 1− |i+Di,j,0 − k1|)max(0, 1− |j +Di,j,1 − k2|)

C ′
i,j,c =

K1
∑

k1=1

K2
∑

k2=1

Ck1,k2,c

max(0, 1− |i+Di,j,0 − k1|)max(0, 1− |j +Di,j,1 − k2|).
(6)
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Fig. 3. Comparison of three different LSTM units. (a) Conventional LSTM. (b) ST-LSTM. (c) PFST-LSTM.

Here, i and j are the indices of positions and c is the index for

channels. H ′ and C ′ denote the calibrated results of H and C
with our pseudoflow. For brevity, we omit the subscript t for

timestaps. The warp operator utilizes a weighted summation

of hidden or memory state at the previous time step to calculate

aligned state, where the weights are determined according to the

vertical and horizontal distances after the position calibration.

We note that as the spatial memory state Mt models the appear-

ances at the current time step, which does not need an alignment

operation.

Embedding the spatial memory cell and the position align-

ment module into LSTM, we obtain our pseudo flow spa-

tiotemporal LSTM unit (PFST-LSTM). As for a comparison

with ConvLSTM and ST-LSTM, we depict their structures as

ours in Fig. 3. We observe that compared to LSTM, ST-LSTM

introduces an extra spatial memory cell, shown as the orange

parts in Fig. 3(b). Our PFST-LSTM is more advanced, and not

only embeds the spatial memory cell (orange parts), but also

develops a position alignment module (blue parts). The two

special designs are able to remedy the drawbacks of existing

convolutional RNNs. Specifically, the computation of the unit is

formulated as follows:

gt = tanh(Wxg ∗X
l
t +Whg ∗H

′l
t−1 + bg)

it = σ(Wxi ∗X
l
t +Whi ∗H

′l
t−1 + bi)

ft = σ(Wxf ∗X l
t +Whf ∗H ′l

t−1 + bf )

Cl
t = ft ◦ C

′l
t−1 + it ◦ gt

g′t = tanh(W ′
xg ∗X

l
t +Wmg ∗M

l−1
t + b′g)

i′t = σ(W ′
xi ∗X

l
t +Wmi ∗M

l−1
t + b′i)

f ′
t = σ(W ′

xf ∗ Cl
t +Wmf ∗M l−1

t + b′f )

M l
t = f ′

t ◦M
l−1
t + i′t ◦ g

′
t

ot = σ(Wxo ∗X
l
t +Who ∗H

′l
t−1 +Wco ◦ C

l
t

+Wmo ∗M
l
t + bo)

H l
t = ot ◦ tanh(W1×1 ∗ [C

l
t,M

l
t ]). (7)

As the spatial memory state Mt and hidden state Ht will also

be delivered along the spatial dimension, we utilize a superscript

l to denote the lth layer in the spatial dimension. We can see that

the input module gate gt, input gate it, forget gate ft and memory

state Cl
t related to the temporal cell are updated with calibrated

hidden and memory states H ′l−1
t and M ′l−1

t . The corresponding

gates and states on the spatial cell are renewed layer by layer,

whose input and memory information are X l
t and M l−1

t . Next,

we discuss how to utilize the PFST-LSTM units for echo map

extrapolation.
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Fig. 4. Three-layer sequence-to-sequence encode-decode architecture based on PFST-LSTM units.

Notably, the design of the PFST-LSTM unit is not a direct

combination of the TrajGRU and ST-LSTM. Compared with

TrajGRU, the main difference is that the flow is generated with

the contextual input xt−1 and xt in our model, which produces

the pseudo optical flow D. Besides, the spatial representation in

spatial memory and hidden state also enriches the form of D.

The ablation experiment in Section IV-B.4 will also demonstrate

the superiority of our method.

B. PFST-LSTM Architecture

We stack the PFST-LSTM units into a sequence-to-sequence

predictor, shown as in Fig. 4. The predictor comprises two parts.

One is the encoder to extract spatial appearances features and

temporal dynamics from a sequence of echo maps observed,

and the other is the encoder, which leverages extraction results

for predicting the further echo map sequence. Both the encoder

and decoder have a three-layer PFST-LSTM structure, where

downsample and upsample convolutional kernels are inserted in

between two PFST-LSTM layers. As the PFST-LSTM unit main-

tains both temporal and spatial memory cells, we can see that

their states Cl
t and M l

t are, respectively, delivered horizontally

and vertically along with H l
t . By doing so, the motion patterns

can be modeled time by time and the spatial appearances be

preserved layer by layer. Furthermore, we expect the preserved

spatial appearances also to be effectively combined with the

temporal motion features. To this end, a special three-layer

deconvolution subnetwork is developed for the encoder, shown

as a green trapezoid in Fig. 4. The subnetwork enlarges the

most abstract memory state M l=3
t−1 at the previous time step into

appropriate size and combines it with H l=1
t−1 and Cl=1

t−1 as input

at the current step, shown as an orange arrow in the encoder.

Symmetrically, a convolution subnetwork is also developed for

the decoder. The scheme makes the spatial appearances are

conveyed in a zigzag manner, which effectively integrates them

with motion patterns.

IV. EXPERIMENTS

A. Experiment on MovingMNIST++

1) Dataset and Parameter Setting: Following [1], we gener-

ate synthetic image sequences by randomly selecting three digits

and gradually applying the movement, rotation, and illumination

on them to make motion patterns. The synthetic data set contains
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Fig. 5. Prediction results of all methods on an example from MovingMNIST++. The first five images in the first row are the input, and the remainders denote the
ground-truth output.

TABLE I
PARAMETER SETTINGS TO GENERATE THE MOVINGMNIST++

TABLE II
RESULTS ON THE THREE TEST SETS (UNIT: MSE ×10

−2)

8000 training samples and 2000 validation samples. As for the

test set, we generate 4000 samples with different parameter

settings, shown as in Table I. The prediction is performed with a

sequence of five images as input and a corresponding sequence

of ten images as output. In this experiment, we normalize all

images into [−1.0, 1.0] and leverage a batch size of 16. All

models adopt the early stopping strategy and are trained with

a learning rate of 0.0004. The max epoch is set to 800.

2) Results and Analysis: Following [17], MSE is adopted

as the evaluation metric. Table II shows the results of all the

methods. We note that method PredRNN and ST-LSTM are

the variants of PFST-LSTM and PFPredRNN without position

alignment module, respectively. The difference of the models

include PredRNN and PFPredRNN is that ST-LSTM and PFST-

LSTM adopt the developed sequence-to-sequence architecture

while PredRNN and PFPredRNN leverage the conventional

sequence prediction scheme (as introduced in Section II). We

observe from the table that the proposed PFST-LSTM consis-

tently outperforms the state-of-the-art baselines on three differ-

ent test sets. PFST-LSTM shows an obvious improvement in

ST-LSTM, which is attributed to its position alignment mod-

ule. The same conclusion also can be obtained by comparing

PredRNN and PFPredRNN. Moreover, we find that ST-LSTM

and PFST-LSTM deliver better results than PredRNN and

PFST-PredRNN, respectively, which implies the effectiveness

of the developed sequence-to-sequence architecture. Among

all the baseline methods, TrajGRU performs the best, because

it considers the position mismatch problem. The fact further

verifies our motivation to position calibration. For a visual

comparison, we show in Fig. 5, the prediction sequences on

an example of all methods. We observe that predictions by

ConvLSTM, ConvGRU, and PredRNN are the worst, which tend

to become blurry rapidly. This is because they all neglect the

position mismatch problem. However, PFST-LSTM, TrajGRU,



850 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE III
COMPARISON RESULTS ON THE CIKM ANALYTICUP 2017 COMPETITION DATASET IN TERMS OF HSS, CSI, AND MSE

and PFPredRNN, which both carefully address the problem,

yield very promising results. In terms of position accuracy and

spatial appearances, PFPredRNN and PFST-LSTM are better

than TrajGRU, owing to its extra spatial memory cell. With the

ablation of the position alignment module, the performance of

PredRNN and ST-LSTM degenerates, which again validates the

effectiveness of the position calibration scheme in PFST-LSTM.

In terms of the architecture of models, PFST-LSTM is better than

PFPredRNN due to the downsample operation between different

layers, which makes the shallow layer also obtain a larger field

of view.

B. Experiment on Radar Data

1) Dataset: The radar echo map dataset is from the CIKM

AnalytiCup 2017 competition, which covers 101 × 101 km area

in Shenzhen. Each radar echo map contains 101 × 101 pixels,

and each pixel denotes a square of 1 × 1 km. The dataset was

originally divided into a training set with 10 000 sequences and

two test sets with 2000 sequences. We randomly select 2000

sequences from the training set as a validation set and select

1023 sequences, which contain the high echo area (at least one

pixel with the reflectivity > 40dBZ) from the two test sets as

a test set. Each sequence covers 90 min with an interval of 6

min. Hence, it contains 15 echo maps. Our objective is utilizing

the first five echo maps as input and predicting the next ten

ones.

2) Parameter Setting and Evaluation Metrics: The detailed

parameters of the proposed PFST-LSTM are shown in Fig. 4.

Moreover, we set the number of channels for all the spatial

memory state to be 16. The parameter settings of all the baseline

methods follow [17] and [18]. All the methods are trained with

a learning rate of 0.0004 and the early stopping strategy, and

Adam optimizer is adopted. We normalize all the echo maps

into [−1.0, 1.0] for learning, and batch size is set to four among

all models.

Following [15], we evaluate the results according to the Heidk

Skill Score (HSS) [34] and Critical Success Index (CSI) [1]. To

this end, we apply the following transformation to convert the

pixel value p in ground-truth and the predicted echo maps into

the reflectivity dBZ

dBZ = p× 95/255− 10. (8)

Then, we change the ground echo maps into binary matrices

according to a threshold τ . If the reflectivity is larger than the

Fig. 6. Performance changes against different nowcast lead time in terms of
MSE. (Best view in color).

threshold, it is set to 1, otherwise, it is set to 0. By comparing

the binary matrices of ground truth and prediction, we obtain

TP , FP , TN, and FN , which denote the numbers of the true

positive, false positive, true negative, false negative elements.

The HSS and CSI are computed as follows:

HSS =
2 ∗ (FN ∗ TN − FN ∗ FP)

(TP + FN) ∗ (FP + FN) + (TP + FP) ∗ (FP + TN)
(9)

CSI =
TP

TP + FP + FN
(10)

Specifically, we select 5, 20, and 40 dBZ as the threshold,

respectively. The HSS and CSI are integrated metrics that take

both probabilities of detection and false alarm rate into account

and can directly reflect the goodness of a model. The larger the

HSS and CSI are, the better the performance is. Besides, we also

utilize MSE to evaluate the performance.

3) Results and Analysis: Table III shows the results. We can

see that PFST-LSTM outperforms all methods under different

dBZ thresholds especially in the highest thresholds. In terms of

HSS, the prediction of our method is only 0.07% and 0.96%

higher than the second one as the threshold is 5 and 20 re-

spectively. However, when the threshold is 40, it is improved

to 16.36%. A similar phenomenon also can be seen for CSI. It

implies that our model can more accurately predict the region of

high rainfall. For the MIM model, although its performance is
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Fig. 7. Performance changes against different nowcast lead time in terms of HSS and CSI scores. (Best view in color). (a) HSS τ = 5. (b) CSI τ = 5. (c) HSS τ

= 20. (d) CSI τ = 20. (e) HSS τ = 40. (f) CSI τ = 40.

better than other baselines, it is inferior to the proposed PFST-

LSTM model. Among all the methods, ConvLSTM, ConvGRU,

CDNA, and DFN perform the worst, as these approaches neither

address the mismatch problem nor carefully model the spatial

appearance.

To present the performance at different nowcasting lead time,

we plot the frame-wise scores of the MSE in Fig. 6. We can see

that as the lead time increases all the models’ predictions become

worse. However, our model PFST-LSTM in general delivers the

best performance. As for E3DLSTM, it yields the best prediction

in the first 6 min. Nevertheless, its performance is getting worse

gradually and becomes the worst among all the models at the

10th prediction. Moreover, we also depict in Fig. 7, the HSS

and CSI curves w.r.t. different lead time under thresholds 5,
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TABLE IV
COMPARISON RESULTS OF ABLATION STUDY ON THE CIKM ANALYTICUP 2017 COMPETITION DATASET IN TERMS OF HSS, CSI, AND MSE

Fig. 8. Color code of the rada echo color map.

20, 40 dBZ, respectively. We can see that E3DLSTM and MIM

deliver the best performance at the beginning but their perfor-

mance becomes worse as the lead time increases. The proposed

PFST-LSTM delivers promising performance at the beginning

and produces the best overall performance in all the models.

Similar to MovingMNIST++, we visualize the prediction

results in Fig. 9, where the mapping between reflectivity value

and color is shown in Fig. 8. In Fig. 9, the first line denotes the

ground truth and the other lines denote the prediction results

by different models. We observe from the last few ground truth

images that the shape of the region with high rainfall intensity

is horizontal and continuous. However, the prediction results of

all the models except for PFST-LSTM upward tilt or some of

them are discontinuous. For instance, we mark the high echo

value regions with black lines in the last ground-truth image,

which forms a template. Accordingly, we put the template into

the last column of predictions and find that the PFST-LSTM

matches with it best, which is because of its special designs on

position calibrations and spatial appearances preserver. Besides,

only PredRNN and MIM model can generate the red part at the

last prediction. However, their appearances and position for high

echo value regions have a huge gap compared with ground truth.

Moreover, we also observe that the CDNA and E3DLSTM tend

to underestimate the high echo value regions (deep yellow or

red parts in ground-truth), which are critical for precipitation

nowcasting. It also explains why the metrics HSS and CSI are

much smaller than other models while the threshold is 40.

4) Ablation Study: To investigate the effectiveness of our

proposed mechanisms, we conduct the ablation studies and

summarize the results in Table IV. Before analyzing the results,

we first explain the name of the ablation models. In the table,

Conv-LSTM denotes the architecture (in Section III-B) built

with the ConvLSTM unit. Traj-LSTM is the TrajGRU variant

by replacing GRU with LSTM. Again, ST-Traj-LSTM indicates

the TrajLSTM model with an embedded spatial memory in each

building unit. ST-LSTM and PF-LSTM represent the degenera-

tion models of our PFST-LSTM by removing the spatial mem-

ory and pseudoflow subcomponent, respectively. We observe

that PFST-LSTM outperforms all the models under different

dBZ thresholds. Among all the models, the PF-LSTM achieves

competitive MSE with PFST-LSTM but worse HSS and CSI,

especially in the higher dBZ threshold. Besides, the ST-LSTM

also yields much worse results than PFST-LSTM. The result

validates the effectiveness of spatial memory and pseudo optical

flow subcomponents. As for Traj-LSTM, which also leverages

the spatial transformer to address the spatial nonalignment issue,

its performance is also inferior to our PFST-LSTM because

it does not have the special designs to preserve the spatial

details. The model ST-Traj-LSTM, which consists of the spatial

transformer and spatial memory mechanism, delivers even worse

performance than Traj-LSTM. The reason may be that the spatial

transformer and the spatial memory cannot be simultaneously

well-trained. Conv-LSTM, which has neither preserves the spa-

tial details nor tackles the misalignment issue, performs the

worst.

Similarly, we also depict the performance of the different

models w.r.t. the nowcasting lead time in Figs. 10 and 12. It can

be seen that the proposed PFST-LSTM always performs the best.

As for PF-LSTM, which excludes the spatial memory subcom-

ponent, delivers competitive performance at 5 dBZ threshold but

much worse prediction at 40 dBZ threshold than PFST-LSTM.

Similar observations can be made for ST-LSTM. Again, we find

that Traj-LSTM, ST-Traj-LSTM, and Conv-LSTM yield worse

performance than our PFST-LSTM at different nowcasting lead

times.

In Fig. 13, we also show an example to visually compare

the models. We find that Conv-LSTM underestimates the area

and strength of high echo value parts (red parts ground-truth

image). Traj-LSTM better predicts the high echo values but

the positions are not accurate. ST-TrajLSTM delivers better

position prediction but the high echo values are underestimated.

ST-LSTM produces a better high echo value region area (yellow

parts), but the specific values are still underestimated (supposed

to be red, instead of yellow). PF-LSTM shows the promising

prediction, but the area of yellow part is overestimated and

the dark yellow part is smaller than the ground truth. Overall,

PFST-LSTM produces the best results, in terms of position and

value accuracies. However, we find that it also cannot accurately

predict the red part in the 10th prediction, namely the high value
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Fig. 9. Prediction results of all methods on an example from the CIKM AnalytiCup 2017 competition. The first five images in the first row are the input, and the
remainders denote the ground-truth output (Best view in color).

Fig. 10. Performance changes against different nowcast lead time in ablation
study in terms of MSE. (Best view in color).

part is still underestimated, which could be an interesting issue

to study in the future.

5) Visualization and Understanding of Pseudoflow: One of

the main contributions of our model is the introduction of

Fig. 11. Generation process of synthetic flow D
s.

pseudoflow to address the position misalignment issue. To in-

vestigate and understand the effectiveness of the component, we

show and compare in Fig. 14, the pseudoflow and optical flow

computed by our methods and predicted image sequence. The

second line denotes the ground-truth optical flow computed from

the predicted images [10]. As there are three layers utilized the
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Fig. 12. Performance changes against different nowcast lead time in ablation study in terms of HSS and CSI scores. (Best view in color). (a) HSS τ = 5. (b) CSI
τ = 5. (c) HSS τ = 20. (d) CSI τ = 20. (e) HSS τ = 40. (f) CSI τ = 40.

pseudo flows, we depict them, respectively, in the third, fourth,

and fifth lines of the figure, which are denoted as {Dl}3l=1,

respectively. In the last line, we utilize the {Dl}3l=1 to synthesize

a total flow Ds. Specifically, the Ds is computed as Fig. 11.

Given input Xt at the current time, we utilize the flow Dl
t to

calculate the next image X ′l
t+1 from a different layer. Then, the

three images from the layers are added together to obtain the final

output X ′
t+1. Finally, we compute Ds based on Xt and X ′

t+1.

From the figure, we make three interesting observations. (1) The

{Dl}3l=1 in the layers are not equal to the ground-truth optical

flow, but mimic it. Hence, we name {Dl}3l=1 as pseudoflow.

(2) In {Dl}3l=1, the high reflectivity region is more clear in

pseudoflow than that in the optical flow, especially for D2 and

D3, which indicates that the movement of the high reflectivity

region is carefully modeled. (3) We can see that the synthesized

total flow Ds is quite similar to the ground truth optical flow,
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Fig. 13. Ablation results of on an example from the CIKM AnalytiCup 2017 competition. The first five images in the first row are the input, and the remainders
denote the ground-truth output (Best view in color).

Fig. 14. Visualization of optical flow and pseudo flow from different times on an example from the CIKM AnalytiCup 2017 competition. The first line is the input
and the output of our model. The second line denotes the optical flow of the first line. The third line to the fifth line is pseudo flows of different layers, respectively.
The last line presents the synthetic flow D

s. (Best view in color).

which validates that pseudo flow indeed models the motion

fields.

Finally, to demonstrate that the pseudoflow {Dl}3l=1 exactly

calibrates the position of the hidden state at different kinds of

the control gate, we compare the L1 norm and L2 norm between

the input Xt ∗W and hidden state Ht−1 ∗W with and without

the pseudoflow. Table V shows the result. We can see that the

value of L1 and L2 with pseudoflow calibration is smaller than

that without the calibration in general. The results imply that the

pseudoflow can align the hidden state toward the input, indicat-

ing its effectiveness in tackling the position mismatch issue.

V. CONCLUSION

In this article, we propose a novel convolutional LSTM unit

for precipitation nowcasting, namely PFST-LSTM, which ad-

dresses the position mismatch issue and the lack of a spatial

appearance preserver. A new sequence-to-sequence prediction
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TABLE V
COMPARISON OF THE DIFFERENCE BETWEEN THE HIDDEN STATE AND INPUT AFTER CONVOLUTION WITH AND WITHOUT THE PSEUDOFLOW IN

TERMS OF L1 NORM AND L2 NORM

architecture is also developed. Extensive experimental results

have been reported, which demonstrate the superiority of the

proposed model over the state-of-the-art approaches. Experi-

mental results have validated its effectiveness. In the future, we

would like to address the underestimation issue of high echo

value regions.
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