
����������
�������

Citation: Jin, X.-B.; Gong, W.-T.;

Kong, J.-L.; Bai, Y.-T.; Su, T.-L. PFVAE:

A Planar Flow-Based Variational

Auto-Encoder Prediction Model for

Time Series Data. Mathematics 2022,

10, 610. https://doi.org/10.3390/

math10040610

Academic Editors: Xunlin Zhu

and Lijun Pei

Received: 7 January 2022

Accepted: 14 February 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

PFVAE: A Planar Flow-Based Variational Auto-Encoder
Prediction Model for Time Series Data
Xue-Bo Jin 1,2 , Wen-Tao Gong 1,2 , Jian-Lei Kong 1,2,* , Yu-Ting Bai 1,2 and Ting-Li Su 1,2

1 Artificial Intelligence College, Beijing Technology and Business University, Beijing 100048, China;
jinxuebo@btbu.edu.cn (X.-B.J.); gongwentao@st.btbu.edu.cn (W.-T.G.); baiyuting@btbu.edu.cn (Y.-T.B.);
sutingli@btbu.edu.cn (T.-L.S.)

2 China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business
University, Beijing 100048, China

* Correspondence: kongjianlei@btbu.edu.cn

Abstract: Prediction based on time series has a wide range of applications. Due to the complex
nonlinear and random distribution of time series data, the performance of learning prediction models
can be reduced by the modeling bias or overfitting. This paper proposes a novel planar flow-based
variational auto-encoder prediction model (PFVAE), which uses the long- and short-term memory
network (LSTM) as the auto-encoder and designs the variational auto-encoder (VAE) as a time series
data predictor to overcome the noise effects. In addition, the internal structure of VAE is transformed
using planar flow, which enables it to learn and fit the nonlinearity of time series data and improve
the dynamic adaptability of the network. The prediction experiments verify that the proposed model
is superior to other models regarding prediction accuracy and proves it is effective for predicting
time series data.

Keywords: time series data prediction; long- and short-term memory network; variational auto-
encoder; normalizing flows

1. Introduction

Time series data refer to a sequence of sampling arranged in chronological order [1].
With the development of sensors, information communication, and computer storage
technology, the time series data collected have become more abundant. Time series data
prediction has become one of the key research directions in artificial intelligence, widely
found in traffic flow [2], air pollution [3–5], anomaly detection [6–8], etc. The parameters
of time series models can be used for identification methods [9–13], such as hierarchical
algorithms [14–18].

At present, the prediction methods of time series data can be roughly divided into
three categories: statistical methods, machine-learning methods, and deep learning al-
gorithms [19,20]. Statistical methods include generalized linear prediction model [21],
seasonal gray prediction model [22], Markov prediction method [23], Gaussian process
model [24], etc. These models have clear mathematical forms and are easy to understand,
while they require the data’s prior knowledge. Moreover, it is difficult to describe the
complex nonlinearity.

In contrast, machine-learning methods with parameter self-learning and nonlinear
adaptation are more suitable for time series data. The most widely used machine-learning
methods include artificial neural network (ANN) [25], support vector regression (SVR) [26],
integrated moving average autoregressive model (ARIMA) [27], etc. These models are
easy to implement, but they cannot fit complex nonlinear relationships due to insufficient
parameters [28,29].

The deep learning method has been popular in artificial intelligence in recent years.
It can learn effective feature representations from extensive input data and has robust

Mathematics 2022, 10, 610. https://doi.org/10.3390/math10040610 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10040610
https://doi.org/10.3390/math10040610
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2230-0077
https://orcid.org/0000-0002-5804-9865
https://orcid.org/0000-0002-0074-3467
https://orcid.org/0000-0001-8047-1010
https://doi.org/10.3390/math10040610
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10040610?type=check_update&version=2


Mathematics 2022, 10, 610 2 of 17

learning and predictive capabilities [30–32]. Recurrent neural network (RNN) [33] in deep
learning and its variant forms of long short-term memory network (LSTM) [34] and gated
recurrent unit (GRU) [35] has been widely used in the field of time series data prediction. In
addition, many advanced network structures have been studied, such as bidirectional long
short-term memory network (BiLSTM) [36], bidirectional gated recurrent unit (BiGRU) [37],
convolutional neural network-long short-term memory network (CNN-LSTM) [38], convo-
lutional long short-term memory network (ConvLSTM) [39], and Bayesian long short-term
memory network (BayesLSTM) [40,41]. BiLSTM and BiGRU can improve the model’s learn-
ing power by considering the complete past and future contextual information; ConvLSTM
improves the LSTM network’s ability by introducing convolution calculations. BayesLSTM
improves LSTM based on variational reasoning theory, replacing fixed-value weights and
deviations with optimizable and sampled distributions, which enhances the anti-noise
ability and robustness of the model.

Although the abovementioned RNN-based methods have been widely used in time
series data prediction, its modeling is still an opening problem due to the complex nonlinear
relationship and random distribution of time series data. The remaining paper is as follows.
Section 2 summarizes the related works and Section 3 introduces the model proposed,
named PFVAE, in detail. Section 4 describes the experimental results to support the model’s
effectiveness; finally, Section 5 summarizes and suggests future work.

2. Related Works

The machine-learning model is one of the popular prediction methods in time series
data, such that Fi-John Chang et al. [42] used the self-organizing mapping method to
extract spatiotemporal features of series data; Gholamreza Goudarzi et al. [43] used an
artificial neural network, and Wenbo Liu et al. [44] used support vector regression with
different kernel functions to predict the daily average concentration of PM2.5 in Beijing;
Shihab Ahmad Shahriar et al. [45] evaluated autoregressive integrated moving average
(ARIMA)-artificial neural network (ANN), ARIMA-support vector machine (SVM), and
principal component regression (PCR) along with decision tree (DT) and CatBoost deep
learning model for the prediction. In practice, machine-learning methods are unsuitable for
big time series data prediction with complex nonlinearities because they will fail to give
enough performance.

Compared with the classical machine-learning model, deep learning networks have
powerful modeling capabilities, can extract potential information, and are widely used in
time series data prediction. Xue-Bo Jin et al. [46] proposed a deep hybrid model with a serial
two-layer decomposition structure to predict the future power load. Agga, Ali, et al. [47]
proposed two models, CNN-LSTM and ConvLSTM, to predict the power generation
of photovoltaic power plants in four different time ranges from 1 day to 7 days; Luo,
Xianglong, et al. [48] proposed a structural deformation prediction model based on the time
convolutional network (TCN), which uses one-dimensional expansion causal convolution
to reduce model parameters and obtain long-term memory of time series. Although deep
learning methods have strong learning capabilities, the prediction performance is not high
enough since a large amount of data causes the learning efficiency of neural networks to
be low.

Auto-encoder is a data compression algorithm that can compress and decompress
data to reduce noise and complex information interference. Therefore, it has attracted more
attention in time series prediction. Yi-Wei Lu et al. [49] proposed a model based on an auto-
encoder gated recurrent unit (AE-GRU), where an auto-encoder (AE) extracts important
features from raw data and a gated recurrent unit (GRU) selects information to predict the
remaining service life. Xinghan Xu et al. [50] proposed a LSTM auto-encoder multi-task
predictor to predict air quality in multiple locations. Ki-Su Kim et al. [51] proposed a deep
learning model combining a denoising auto-encoder and convolutional LSTM to predict
global ocean weather. Thanongsak Xayasouk et al. [52] used LSTM and deep auto-encoder
(DAE) to predict the concentration of fine particles.
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With the increase of research on auto-encoders, many special auto-encoders have
appeared. Variational auto-encoder (VAE) can describe an observation in latent space with
a probability distribution, which has been widely used in image and classification and has
been gradually applied in time series prediction. Xiaosong Zhu et al. [53] proposed a long-
term deformation prediction model for arch dams based on VAE and time attention-based
long short-term memory (TALSTM) network. To improve the accuracy of equipment health
prediction, Yanfang Yang et al. [54] proposed a neural network prediction model combining
VAE and time convolutional network (TCN), which uses VAE to reduce the dimensionality,
extracts the hidden information in the original data, reconstructs high-quality sample data,
and then uses TCN to mine the internal connection in the long sequence of information.

In the above research, VAE only uses Gaussian approximation, which makes it chal-
lenging to simulate the complex time series data. On the other hand, normalizing flow is a
tool for calculating complicated distribution. Aditya Arie Nugraha et al. [55] combined the
normalizing flows with the VAE method to establish a latent variable model called GF-VAE
for speech spectrogram modeling and enhancement; Philippe Esling et al. [56] proposed
an audio synthesizer control formula by variational auto-encoder (VAE) and normalized
stream. Henter, Gustav Eje et al. [57] proposed a model for probability, generation, and
controllable motion data based on normalizing flows with MoGlow. The model is used to
generate motion data sequences from normalizing flows so that it cannot only describe the
distribution with high complexity but can use accurate maximum likelihood for effective
training; Ho, YH et al. [58] built an end-to-end learning image compression system based
on a novel flow model Augmented Normalizing Flows (ANF) and stacked with multiple
Variational Auto-encoders (VAEs) is built.

The research above illustrates the high modeling ability of normalizing flows for non-
linear relationships. This paper uses VAE as the time series data predictor with normalizing
flows to model the complex posterior distribution of time series data, which guarantees the
robustness of the network to noise and improves its ability to model complex nonlinear
relationships. The main contributions of this research are as follows:

(1) VAE with LSTM is designed as a time series data predictor to learn the long- and
short-term dependencies of time series data. Compared with the prediction net-
works [34–40,48,53], the proposed VAE model can effectively learn the relation and
extract representative information of time series and improve the computational
efficiency of the model. Moreover, it has sufficient robustness to noise and pre-
vents overfitting.

(2) Based on the Planar flow, this paper reforms the internal structure of VAE, improves
the modeling ability of complex posterior approximation, enables it to learn and pro-
cess time series data with more complex characteristics, and improves the nonlinearity
and dynamic adaptability of the network.

3. Method
3.1. Variational Auto-Encoder (VAE)

When neural networks are used in time series prediction and image processing, they
often need to receive a large amount of input information, usually containing useless or
less valuable data, making it difficult for neural networks to learn. Therefore, we must
compress a large amount of input data, extract representative information from the data,
reduce the amount of input information, and put the reduced information into the neural
network for learning so that the neural network will be easier to learn.

An auto-encoder is a data compression algorithm in which the data compression and
decompression functions are data-related, lossy, and automatically learned from samples. In
most cases where auto-encoders are mentioned, compression and decompression functions
are implemented through neural networks. In this research, we used LSTM as the encoder
and decoder to realize the compression and reconstruction process of the input data. The
proposed prediction auto-encoder is shown in Figure 1.
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Figure 1. Prediction structure diagram of auto-encoder by LSTM.

In Figure 1, X = [X1, X2, · · · , Xt] represents the original input data, h = [h1, h2, · · · , ht]
and g = [g1, g2, · · · , gt] represents the hidden state passed in the encoder and decoder,
respectively, H is the encoding vector output by the encoder, which means the essence of
the original input data, and Y = [Y1, Y2, · · · , Yt] represents the reconstructed data through
the decoder. The model’s error is the difference between the reference input and the
reconstructed data, defined as the reconstruction error. The auto-encoder uses the mean
square error (MSE) as the loss function to calculate the reconstruction error. The loss
function is defined as follows:

Lossrecon =
1
n

n

∑
i=1

(ŷi − yi)
2 (1)

where n is the total number of samples in the dataset, yi is the i-th reference value in the
test set, and ŷi is the reconstructed value obtained by the model. Then we develop the
auto-encoder in Figure 1 to VAE by variational inference [59], shown in Figure 2.

In Figure 2, µ = [µ1, µ2, · · · ut] and σ = [σ1, σ2, · · · σt] are the mean and variance
obtained by the encoder after encoding the input data; ε = [ε1, ε2, · · · εt] is the pa-
rameter required for reparameterization, ε ∼ N(0, I); z = [z1, z2, · · · zt] is the latent
variable sampled.

It can be seen from Figure 2 that the loss function of VAE described as (2) includes: (1)
the reconstruction error between the reference input data and reconstructed data; (2) the
Kullback–Leibler divergence error (KL error) caused by the encoder sampling.

LossVAE = Lossrecon + LossKL

= 1
n

n
∑

i=1
(ŷi − yi)

2 + 1
2

D
∑

i=1
(1 + log((σ(i)

j )
2
) + (u(i)

j )
2
+ (σ

(i)
j )

2
) +Eqθ(z|x)[log P(x(i)|z(i,l))] (2)

where z(i,l) = µ(i) + σ(i) � ε(l) and ε(l) ∼ N(0, I), � stands for the element-wise product.
The optimization mechanism of the loss function of VAE can be understood as an

adversarial learning process for Lossrecon and LossKL:
When the reconstructed data of VAE differs from the reference data, the mean and

variance will be adjusted to fit the sampled data, thus Lossrecon is changed to improve the
quality of the reconstructed data.
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3.2. VAE Based on Normalizing Flows
3.2.1. Planar Flow: One of the Normalizing Flows

To optimize LossKL in Formula (2), we must find a distribution Pθ(x|z) = P(x|z)
that is the same with posterior distribution as the input data. Still, the general Gaussian
distribution cannot fit a sufficiently complex posterior distribution. Therefore, we embed
normalizing flows into the VAE model.

The normalizing flows describe the transformation of probability density through
a reversible mapping sequence. The initial density “flow” passes through the reversible
mapping sequence, repeatedly applying the variable transformation rules [60].

By optimizing this series of distributions, a simple Gaussian distribution can be
changed into a complex actual posterior distribution.

Specifically, given a reversible mapping: f : Rd → Rd , use it to transform the latent
variable z ∼ q(z) into a new variable z′ ∼ f (z), therefore the distribution of the new
variable is:

q(z′) = q(z)
∣∣∣∣det

∂ f−1

∂z′

∣∣∣∣ = q(z)
∣∣∣∣det

∂ f
∂z

∣∣∣∣−1
(3)

Formula (3) is the Jacobian matrix of invertible functions by the chain rule (inverse
function theorem). It is possible to construct the complex density by synthesizing several
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simple mappings and applying Formula (3) in turn. For the random variable z0 with the
distribution of q0, the transformation chain fK is sequentially used, and after K times, the
density qK(z) obtained is:

zK = fK × · · · × f2 × f1(z0) (4)

and,

ln qK(zK) = ln q0(z0)−
K

∑
k=1

ln
∣∣∣∣det

∂ fk
∂zk−1

∣∣∣∣ (5)

In this way, it is not necessary to explicitly calculate qK, but only the initial distribution
q0 and the mapped Jacobian matrix. Normalizing flows need to find an invertible mapping
function that the Jacobian matrix can be operated on efficiently. Here we used one of the
normalizing flows called the Planar flow.

Planar flow is defined as a function of the following form:

f (z) = vh(wTz + b) (6)

where v ∈ RD and w ∈ RD are vectors (called scale and weight here), b ∈ R is a scalar
(deviation) to be set by learning, h is the activation function.

For Planar flow, the determinant of the Jacobian can be calculated in O(D) time by
relying on the matrix determinant lemma:

ψ(z) = h′(wTz + b)w (7)∣∣∣∣det
δ f
δz

∣∣∣∣ = ∣∣∣det(I + vψ(z)T)
∣∣∣ = ∣∣∣1 + vTψ(z)

∣∣∣ (8)

Figure 3 shows the changes in the data distribution for the Planar flow. From Figure 3
we can see that by the action of the Planar flow, the single-peaked Gaussian distribution is
transformed into the complex multi-peaked distribution.
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3.2.2. VAE Based on Planar Flow

We used the Planar flow of length K to parameterize the approximate posterior dis-
tribution of the encoder in the VAE. The proposed PFVAE prediction model structure is
shown in Figure 4. w = [w1, w2, · · ·wt],v = [v1, v2, · · · vt] and b = [b1, b2, · · · bt] are the
weights, scales, and deviations of Planar flow; zk = [zk1, zk2, · · · zkt] is a latent variable
with a complex distribution obtained by the Planar flow posterior.
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In the case of applying Planar flow qθ(z|x) ' qK(zK) , Equation (9) can be written as
the expectation q0(z) of the initial distribution:
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ELBO(x) ' Eqθ(z|x)[log qθ(z|x)− log p(x, z)]
= Eq0(z0)[ln qK(zK)− log p(x, zK)]

= Eq0(z0)[ln q0(z0)]−Eq0(z0)[log p(x, zK)]−Eq0(z0)

[
k
∑

i=1
log
∣∣∣det ∂ fi

∂zi−1

∣∣∣] (9)

Normalizing flows and free energy circles can be used in any variational optimization
scheme. For variational inference, we used a deep neural network to build an inference
model from the observation x to the initial density q0 = N(µ, σ) and the parameter λ of the
flow to create a mapping. The complete optimization goal is written as:

ELBO(x) ' Eq0[log pθ(x|zK)] +Eq0[ln q0(z0)− log p(zK)]−Eq0

[
k

∑
i=1

log
∣∣∣∣det

∂ fi
∂zi−1

∣∣∣∣
]

(10)

The Planar flow is used as the posterior to fit the complicated posterior distribution.
It enables the VAE prediction model to learn and process time series data with complex
characteristics and improves the network’s degree of nonlinearity and dynamic adaptability.
The loss function of PFVAE is shown in Formula (11):

Loss = Lossrecon + LossKL

= 1
n

n
∑

i=1
(ŷi − yi)

2 +Eq0[log pθ(x|zK)] +Eq0[ln q0(z0)− log p(zK)]−Eq0

[
k
∑

i=1
log
∣∣∣det ∂ fi

∂zi−1

∣∣∣] (11)

With the Planar flow method, the output of the encoder is sampled from a more
complex distribution than the Gaussian distribution. This makes the reconstructed output
of the decoder more robust to noise, improves the reconstruction of data with a high degree
of nonlinearity, and improves the dynamic adaptability of the prediction model.

The specific iterative calculation process of our proposed PFVAE prediction model is
shown below:

(1) The input data X = [X1, X2, · · · , Xt] is encoded by the encoder to obtain µ and σ.
(2) Using the reparameterization technique and sampling the latent variable Z, we get

z = µ + σ� ε, ε ∼ N(0, I).
(3) Planar flow is applied to obtain latent variables with a complex distribution zk.
(4) The latent variables are entered into the decoder to obtain reconstructed data

Y = [Y1, Y2, · · · , Yt].
(5) Calculate loss function Loss = Lossrecon + LossKL and optimize the model.

4. Experimental Results and Discussions
4.1. Experiment Setup and Evaluation Indicators

The experiments were performed on a desktop computer equipped with an AMD
R7-5800 processor, 4.0 GHz, and 16 GB of RAM by PyTorch to build a VAE-LSTM network
model based on the Planar flow. This consists of a LSTM network for the encoder and
decoder with hidden neural units set to 24 and used the Adam algorithm to perform
supervised learning. Its learning rate was set to 0.01, and 100 epochs were trained. The
prediction steps were 24.

We used 80% of the data as the model’s training set and the remaining 20% as the test
set. The Z-score method shown in (12) was used for standardizing the input data.

x′ =
x− xmean

xσ
(12)

where x represents the input data, xmean represents the mean value of the observation data,
xσ represents the variance of the observation data.

In the experiment, we compared the prediction performance with the other seven
models, LSTM [34], GRU [35], BiLSTM [36], BiGRU [37], TCN [48], CNN-LSTM [38],
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ConvLSTM [39], BayesLSTM [40], and VAE [53], under the same parameters and the
same dataset.

In order to evaluate the predictive performance of different models, six evaluation
indicators were used, including root mean square error (RMSE), mean absolute error
(MAE), symmetric mean fundamental percentage error (SMAPE), mean square error (MSE),
Pearson correlation coefficient (R), and goodness-of-fit (R2). The calculation formulas of
these six evaluation indicators are shown in Formulas (13)–(18):

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (13)

MAE =
1
n

n

∑
i=1

∣∣∣(ŷi − yi)
2
∣∣∣ (14)

SMAPE =
100%

n

n

∑
i=1

∣∣∣(ŷi − yi)
2
∣∣∣

(|ŷi|+|yi|) 2/2
(15)

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (16)

R =

n
∑

i=1
(yi − yi)(ŷi − ŷi)√

n
∑

i=1
(yi − yi)

2 n
∑

i=1
(ŷi − ŷi)

2
(17)

R2= 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(ŷi − ŷi)

2
(18)

where n is the total number of samples in the dataset, yi is the actual in the test set, yi is the
average value of the actual value, ŷi is the i-th prediction, and ŷi is the average value of
the prediction.

4.2. PM2.5 Prediction

This study used the PM2.5 concentration data in Beijing, China to carry out verification
experiments. With the continuous development of the global economy, people are paying
more and more attention to the ecological environment. Air pollution is one of the most
urgent environmental pollution problems. The PM2.5 is a particulate matter with a diameter
of less than 2.5 µm, an essential indicator for measuring and controlling the degree of air
pollution. As air quality is affected by various factors such as meteorological factors
and human factors, the changes of PM 2.5 time series data are highly nonlinear and are
disturbed by noise, which is a challenging problem in forecasting.

The sampling time in the experiment was from 1 January 2017 to 31 December 2019,
with a sampling frequency of 1 h. In Figure 5, we show part of the prediction results of
each model.

To validate the effectiveness of the proposed method, we repeated each model in-
dependently with the same dataset 20 times and recorded its RMSE values to ensure the
objectivity of the results. The statistical results are shown in Figure 6.
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As shown in Figure 6, our proposed model (PFVAE) has the minor error range, the
most uniform and concentrated distribution, and the smallest average error of the model,
which maintains high accuracy and stability compared to other models.

It can be seen from Table 1 that our proposed model has the lowest RMSE, MAE,
SMAPE, and MSE and the highest R and R2. RMSE, MAE, SMAPE, MSE, R and R2 were
24.45, 17.07, 51.29, 598.13, 0.65 and 0.42, respectively. Compared with the other seven
models, the RMSE of our PFVAE model improved by 26.9%, 6.0%, 15.5%, 9.2% 15.0%, 7.2%,
8.6%, 18.5%, and 5.3%, respectively; MAE improved by 30.5%, 3.1%, 20.1%, 4.1%, 16.8%,
5.7%, 7.5%, 26.2%, and 3.6%, respectively. As for SMAPE, the prediction performance of the
PFVAE model proposed improved by 23.5%, 3.3%, 17.3%, 7.9%, 14.4%, 7.9%, 16.4%, 26.1%,
and 3.3%, respectively; and MSE, 46.5%, 11.5%, 28.5%, 17.5%, 27.8%, 13.9%, 16.5%, 33.6%,
and 10.4%, respectively. Moreover, the maximum R-value and R2-value of the proposed
PFVAE model represent the best fit between the predicted and observed values. The above
experimental data show that our proposed model is better than other models in terms of
prediction accuracy and result fit, which proves the applicability of this model in the field
of time series prediction.
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Table 1. Accuracy evaluation of prediction results of each model on the PM2.5 dataset.

Model RMSE MAE SMAPE MSE R R2

LSTM [34] 33.45 24.59 67.06 1119.05 0.44 −0.08
BiLSTM [36] 26.00 17.62 53.04 676.05 0.61 0.30

GRU [35] 28.93 21.37 62.09 836.67 0.56 −0.19
BiGRU [37] 26.92 17.80 55.70 724.74 0.59 0.32

CNN-LSTM [38] 28.78 20.52 59.94 828.56 0.52 0.20
ConvLSTM [39] 26.36 18.11 55.74 694.78 0.60 0.33

TCN [48] 26.77 18.46 61.41 716.66 0.61 0.31
BayesLSTM [40] 30.03 23.16 69.47 901.75 0.47 0.13

VAE [53] 25.84 17.72 53.08 667.91 0.61 0.36
The proposed method 24.45 17.07 51.29 598.13 0.65 0.42

4.3. Temperature Prediction

This study used the temperature data from Haidian District, Beijing, China, to conduct
verification experiments. As we know, changes in atmospheric temperature are closely
related to human production and life. The atmospheric temperature significantly impacts
human travel, social development, and the ecological environment. Therefore, accurate
prediction of atmospheric temperature has essential application prospects in people’s
daily life.

Figure 7 shows part of the prediction results. The sampling time was from 1 January 2017
to 31 December 2019, with a sampling frequency of 1 h. The statistical results are shown in
Figure 8.
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Figure 8 shows that the proposed model (PFVAE) obtained the highest accuracy and
stability compared to other models. It can be seen from Table 2 that compared with the
other seven models, RMSE improved by 12.2%, 3.9%, 30.5%, 9.3%, 12.5%, 9.5%, 3.9%, 3.3%,
and 14.3%, respectively; MAE, though the same as TCN, improved compared to others by
11.2%, 7.2%, 33.7%, 10.9%, 13.0%, 13.0%, 4.3%, and 15.7%, respectively. As with SMAPE,
the prediction performance of the PFVAE model improved by 5.1%, 4.8%, 14.5%, 5.5%,
11.7%, 6.2%, 1.3%, 3.7%, and 13.9%, respectively; and MSE, 23.3%, 7.5%, 51.8%, 17.7%,
23.7%, 14.8%, 7.6%, 6.5%, and 26.7%, respectively. Moreover, the maximum R-value and
R2-value of the proposed PFVAE model represent the best fit between the predicted and
observed values.

Table 2. Accuracy evaluation of prediction results of each model on temperature dataset.

Model RMSE MAE SMAPE MSE R R2

LSTM [34] 3.34 2.48 33.31 11.19 0.95 0.91
BiLSTM [36] 3.05 2.37 33.22 9.28 0.97 0.93

GRU [35] 4.22 3.32 37.00 17.83 0.93 0.86
BiGRU [37] 3.23 2.47 33.46 10.42 0.97 0.92

CNN-LSTM [38] 3.35 2.53 35.81 11.25 0.96 0.91
ConvLSTM [39] 3.24 2.53 33.70 10.48 0.96 0.92

TCN [48] 3.05 2.20 32.05 9.29 0.96 0.93
BayesLSTM [40] 3.03 2.30 32.83 9.18 0.96 0.93

VAE [53] 3.42 2.61 36.74 11.72 0.96 0.91
The proposed method 2.93 2.20 31.61 8.58 0.96 0.93

4.4. Humidity Prediction

In this study, we used the humidity data of Haidian District, Beijing, China to carry
out verification experiments. The sampling time was from 1 January 2017 to 31 December
2019, with a sampling frequency of 1 h. In Figure 9, we show part of the prediction results
of each model.
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As shown in Figure 10, our proposed model (PFVAE) has a minor error fluctuation
range, the most uniform and concentrated distribution, and the smallest average error of
the models.
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It can be seen from Table 3 that compared with the other seven models, our PFVAE
model improved RMSE by 19.0%, 8.5%, 19.6%, 5.7%, 20.4%, 0.7%, 4.1%, 2.1%, and 7.6%,
respectively; MAE improved by 20.4%, 4.3%, 19.3%, 2.5%, 21.8%, 0.6%, 3.2%, 2.1%, and
9.4%, respectively. As with SMAPE, though it is almost the same as ConvLSTM, it increased
by 20.7%, 9.7%, 25.5%, 9.8%, 27.2%, 5.6%, 3.1%, and 9.4%; and MSE, 34.4%, 16.3%, 35.4%,
16.3%,36.6%, 1.4%, 8.0%, 4.2%, and 14.8%, respectively. Moreover, the maximum R-value
and R2-value of the proposed PFVAE model represent the best fit between the predicted
and observed values. The results show that our proposed model is better than other models
in terms of prediction accuracy and result fit.

Table 3. Accuracy evaluation of prediction results of each model on the humidity dataset.

Model RMSE MAE SMAPE MSE R R2

LSTM [34] 20.47 15.74 29.78 419.13 0.62 0.31
BiLSTM [36] 18.12 13.08 26.15 328.19 0.72 0.46

GRU [35] 20.63 15.53 31.70 425.68 0.66 0.30
BiGRU [37] 17.59 12.84 26.18 309.44 0.75 0.49

CNN-LSTM [38] 20.83 16.03 32.47 433.83 0.65 0.29
ConvLSTM [39] 16.70 12.60 23.60 279.02 0.74 0.54

TCN [48] 17.29 12.94 25.03 299.06 0.74 0.51
BayesLSTM [40] 16.94 12.80 24.37 287.02 0.73 0.53

VAE [53] 17.96 13.83 26.06 322.71 0.71 0.47
The proposed method 16.58 12.52 23.61 274.85 0.75 0.55

5. Summary and Future Work

It is challenging to learn and fit the prediction model due to the high nonlinearity
and complex random distribution of time series data. This paper proposed a novel VAE
prediction model based on Planar flow, which uses LSTM as the encoder and decoder and
designs VAE as a time series data predictor, using Planar flow to transform the internal
structure of VAE to learn the time series data with complex characteristics. Through
verification experiments on a variety of time series datasets and the multiple evaluation
indicators such as RMSE, MAE, SMAPE, MSE, R, and R2, our proposed model is superior
to other models in terms of prediction accuracy. The proposed prediction approaches of
time series models in the paper can combine other parameter estimation algorithms [61–68]
with studying the parameter identification problems of linear and nonlinear systems with
different disturbances [69–77]. The proposed prediction approach can build the soft sensor
models and prediction models based on the time series data and can be applied to other
fields [78–86], such as signal processing and engineering application systems [87–91].

In future work, we will further verify the effectiveness of our proposed time series
forecasting model. Meanwhile, we will explore other normalizing flows to transform our
proposed prediction model.
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58. Ho, Y.H.; Chan, C.C.; Peng, W.H.; Hang, H.M.; Domański, M. ANFIC: Image Compression Using Augmented Normalizing Flows.
IEEE Open J. Circuits Syst. 2021, 2, 613–626. [CrossRef]

59. Rocca, J. Understanding Variational Autoencoders (VAEs). 2019. Available online: https://towardsdatascience.com/
understanding-variational-autoencoders-vaes-f70510919f73 (accessed on 7 December 2021).

60. Rezende, D.; Mohamed, S. Variational inference with normalizing flows. In Proceedings of the 32nd International Conference on
Machine Learning, Lille, France, 6–11 July 2015.

61. Ding, F.; Lv, L.; Pan, J.; Wan, X.; Jin, X.-B. Two-stage Gradient-based Iterative Estimation Methods for Controlled Autoregressive
Systems Using the Measurement Data. Int. J. Control Autom. Syst. 2019, 18, 886–896. [CrossRef]

62. Ding, F.; Wang, F.F.; Wu, M.H. Decomposition based least squares iterative identification algorithm for multivariate pseu-do-linear
ARMA systems using the data filtering. J. Frankl. Inst. 2017, 354, 1321–1339. [CrossRef]

63. Zhang, X.; Ding, F. Hierarchical parameter and state estimation for bilinear systems. Int. J. Syst. Sci. 2020, 51, 275–290. [CrossRef]
64. Zhang, X.; Yang, E.F. State estimation for bilinear systems through minimizing the covariance matrix of the state estimation errors.

Int. J. Adapt. Control Signal Process. 2019, 33, 1157–1173. [CrossRef]
65. Pan, J.; Ma, H.; Zhang, X.; Liu, Q.; Ding, F.; Chang, Y.; Sheng, J. Recursive coupled projection algorithms for multivariable

output-error-like systems with coloured noises. IET Signal Process. 2020, 14, 455–466. [CrossRef]
66. Xu, L.; Ding, F.; Zhu, Q. Decomposition strategy-based hierarchical least mean square algorithm for control systems from the

impulse responses. Int. J. Syst. Sci. 2021, 52, 1806–1821. [CrossRef]
67. Zhang, X.; Xu, L.; Ding, F.; Hayat, T. Combined state and parameter estimation for a bilinear state space system with moving

average noise. J. Frankl. Inst. 2018, 355, 3079–3103. [CrossRef]
68. Pan, J.; Jiang, X.; Wan, X.; Ding, W. A filtering based multi-innovation extended stochastic gradient algorithm for multivariable

control systems. Int. J. Control Autom. Syst. 2017, 15, 1189–1197. [CrossRef]
69. Ding, F.; Liu, G.; Liu, X.P. Partially Coupled Stochastic Gradient Identification Methods for Non-Uniformly Sampled Systems.

IEEE Trans. Autom. Control 2010, 55, 1976–1981. [CrossRef]
70. Ding, F.; Shi, Y.; Chen, T. Performance analysis of estimation algorithms of non-stationary ARMA processes. IEEE Trans. Signal

Process. 2006, 54, 1041–1053. [CrossRef]
71. Wang, Y.; Ding, F.; Wu, M. Recursive parameter estimation algorithm for multivariate output-error systems. J. Frankl. Inst.

2018, 355, 5163–5181. [CrossRef]
72. Zhang, X.; Ding, F. Adaptive parameter estimation for a general dynamical system with unknown states. Int. J. Robust Nonlinear

Control 2020, 30, 1351–1372. [CrossRef]
73. Zhang, X.; Ding, F.; Xu, L. Recursive parameter estimation methods and convergence analysis for a special class of nonlinear

systems. Int. J. Robust Nonlinear Control 2020, 30, 1373–1393. [CrossRef]
74. Zhang, X.; Ding, F. Recursive parameter estimation and its convergence for bilinear systems. IET Control Theory Appl.

2020, 14, 677–688. [CrossRef]
75. Xu, L. Separable Multi-innovation Newton Iterative Modeling Algorithm for Multi-frequency Signals Based on the Sliding

Measurement Window. Circuits Syst. Signal Process. 2022, 41, 805–830. [CrossRef]
76. Xu, L. Separable Newton Recursive Estimation Method Through System Responses Based on Dynamically Discrete Measurements

with Increasing Data Length. Int. J. Control Autom. Syst. 2022, 20, 432–443. [CrossRef]
77. Xu, L.; Ding, F.; Yang, E. Auxiliary model multi-innovation stochastic gradient parameter estimation methods for nonlinear

sandwich systems. Int. J. Robust Nonlinear Control 2021, 31, 148–165. [CrossRef]
78. Liu, S.; Ding, F.; Xu, L.; Hayat, T. Hierarchical Principle-Based Iterative Parameter Estimation Algorithm for Dual-Frequency

Signals. Circuits Syst. Signal Process. 2019, 38, 3251–3268. [CrossRef]
79. Wan, L.; Ding, F. Decomposition- and gradient-based iterative identification algorithms for multivariable systems using the

mul-ti-innovation theory. Circuits Syst. Signal Process. 2019, 38, 2971–2991. [CrossRef]

http://doi.org/10.1109/TCYB.2019.2945999
http://doi.org/10.3390/jmse8100805
http://doi.org/10.3390/su12062570
http://doi.org/10.1007/s00366-021-01362-2
http://doi.org/10.1016/j.procs.2021.02.036
http://doi.org/10.1109/TASLP.2020.2979603
http://doi.org/10.3390/app10010302
http://doi.org/10.1145/3414685.3417836
http://doi.org/10.1109/OJCAS.2021.3123201
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
http://doi.org/10.1007/s12555-019-0140-3
http://doi.org/10.1016/j.jfranklin.2016.11.030
http://doi.org/10.1080/00207721.2019.1704093
http://doi.org/10.1002/acs.3027
http://doi.org/10.1049/iet-spr.2019.0481
http://doi.org/10.1080/00207721.2020.1871107
http://doi.org/10.1016/j.jfranklin.2018.01.011
http://doi.org/10.1007/s12555-016-0081-z
http://doi.org/10.1109/TAC.2010.2050713
http://doi.org/10.1109/TSP.2005.862845
http://doi.org/10.1016/j.jfranklin.2018.04.013
http://doi.org/10.1002/rnc.4819
http://doi.org/10.1002/rnc.4824
http://doi.org/10.1049/iet-cta.2019.0413
http://doi.org/10.1007/s00034-021-01801-x
http://doi.org/10.1007/s12555-020-0619-y
http://doi.org/10.1002/rnc.5266
http://doi.org/10.1007/s00034-018-1015-1
http://doi.org/10.1007/s00034-018-1014-2


Mathematics 2022, 10, 610 17 of 17

80. Wang, X.; Ding, F. Modified particle filtering-based robust estimation for a networked control system corrupted by impulsive
noise. Int. J. Robust Nonlinear Control 2021, 32, 830–850. [CrossRef]

81. Pan, J.; Li, W.; Zhang, H. Control Algorithms of Magnetic Suspension Systems Based on the Improved Double Exponential
Reaching Law of Sliding Mode Control. Int. J. Control Autom. Syst. 2018, 16, 2878–2887. [CrossRef]

82. Ma, H.; Pan, J.; Ding, F.; Xu, L.; Ding, W. Partially-coupled least squares based iterative parameter estimation for multi-variable
out-put-error-like autoregressive moving average systems. IET Control Theory Appl. 2019, 13, 3040–3051. [CrossRef]

83. Ding, F.; Liu, P.X.; Yang, H. Parameter Identification and Intersample Output Estimation for Dual-Rate Systems. IEEE Trans. Syst.
Man Cybern. Part A Syst. Hum. 2008, 38, 966–975. [CrossRef]

84. Ding, F.; Liu, X.P.; Liu, G. Multiinnovation least squares identification for linear and pseudo-linear regression models. IEEE Trans.
Syst. Man Cybern. Part B Cybern. 2010, 40, 767–778. [CrossRef]

85. Xu, L.; Song, G. A Recursive Parameter Estimation Algorithm for Modeling Signals with Multi-frequencies. Circuits Syst. Signal
Process. 2020, 39, 4198–4224. [CrossRef]

86. Xu, L.; Ding, F.; Wan, L.; Sheng, J. Separable multi-innovation stochastic gradient estimation algorithm for the nonlinear dynamic
responses of systems. Int. J. Adapt. Control Signal Process. 2020, 34, 937–954. [CrossRef]

87. Shu, J.; He, J.; Li, L. MSIS: Multispectral Instance Segmentation Method for Power Equipment. Comput. Intell. Neurosci.
2022, 2022, 2864717. [CrossRef] [PubMed]

88. Peng, H.; He, W.; Zhang, Y.; Li, X.; Ding, Y.; Menon, V.G.; Verma, S. Covert non-orthogonal multiple access communication
assisted by multi-antenna jamming. Phys. Commun. 2022, 52, 101598. [CrossRef]

89. Hou, J.; Chen, F.; Li, P.; Zhu, Z. Gray-Box Parsimonious Subspace Identification of Hammerstein-Type Systems. IEEE Trans. Ind.
Electron. 2021, 68, 9941–9951. [CrossRef]

90. Zhao, Z.; Zhou, Y.; Wang, X.; Wang, Z.; Bai, Y. Water quality evolution mechanism modeling and health risk assessment based on
stochastic hybrid dynamic systems. Expert Syst. Appl. 2022, 193, 116404. [CrossRef]

91. Chen, Q.; Zhao, Z.; Wang, X.; Xiong, K.; Shi, C. Microbiological predictive modeling and risk analysis based on the one-step
kinetic integrated Wiener process. Innovat. Food Sci. Emerg. Technol. 2022, 75, 102912. [CrossRef]

http://doi.org/10.1002/rnc.5850
http://doi.org/10.1007/s12555-017-0616-y
http://doi.org/10.1049/iet-cta.2019.0112
http://doi.org/10.1109/TSMCA.2008.923030
http://doi.org/10.1109/TSMCB.2009.2028871
http://doi.org/10.1007/s00034-020-01356-3
http://doi.org/10.1002/acs.3113
http://doi.org/10.1155/2022/2864717
http://www.ncbi.nlm.nih.gov/pubmed/35027923
http://doi.org/10.1016/j.phycom.2022.101598
http://doi.org/10.1109/TIE.2020.3026286
http://doi.org/10.1016/j.eswa.2021.116404
http://doi.org/10.1016/j.ifset.2021.102912

	Introduction 
	Related Works 
	Method 
	Variational Auto-Encoder (VAE) 
	VAE Based on Normalizing Flows 
	Planar Flow: One of the Normalizing Flows 
	VAE Based on Planar Flow 


	Experimental Results and Discussions 
	Experiment Setup and Evaluation Indicators 
	PM2.5 Prediction 
	Temperature Prediction 
	Humidity Prediction 

	Summary and Future Work 
	References

