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Abstract: Distributed computing, e.g., cluster and cloud computing, has been applied in almost all
areas for data processing, while high resource efficiency and user satisfaction are still the ambition
of distributed computing. Task scheduling is indispensable for achieving the goal. As the task
scheduling problem is NP-hard, heuristics and meta-heuristics are frequently applied. Every method
has its own advantages and limitations. Thus, in this paper, we designed a hybrid heuristic task
scheduling problem by exploiting the high global search ability of the Genetic Algorithm (GA)
and the fast convergence of Particle Swarm Optimization (PSO). Different from existing hybrid
heuristic approaches that simply sequentially perform two or more algorithms, the PGA applies the
evolutionary method of a GA and integrates self- and social cognitions into the evolution. We conduct
extensive simulated environments for the performance evaluation, where simulation parameters are
set referring to some recent related works. Experimental results show that the PGA has 27.9–65.4%
and 33.8–69.6% better performance than several recent works, on average, in user satisfaction and
resource efficiency, respectively.

Keywords: distributed computing; genetic algorithm; swarm intelligence; task scheduling

MSC: 68M20

1. Introduction

Distributed computing systems, especially cloud computing, have been applied widely
in production and science research. Task scheduling is one of the most concerning open
issues for various distributed systems [1] for optimizing the resource efficiency [2], user
satisfaction [3], energy efficiency [4,5], etc. In a distributed computing system, there are
multiple multi-core servers with various capacities for processing computing tasks. The
task scheduling is to decide which computing unit (e.g., computing cores) will be where
each task is processed and the execution order of tasks assigned on each computing unit.

The task scheduling problem has been proven NP-hard when there are more than two
computing units [6]. This means that there is no exact method to solve the scheduling prob-
lem within a reasonable time for large-scale computing systems unless NP = P because the
time complexity of an exact method is exponentially increased with the system scale. Thus,
related works mainly focus on designing heuristic or meta-heuristic search approaches to
provide an accepted solution with polynomial time for the problem.

A heuristic method exploits the local search approach designed for a specific prob-
lem [7,8], to find a local optimal solution with very little time consumption. Inspired by
natural laws or social phenomena, meta-heuristics employ general search strategies imple-
mented with random methods [9,10]. Benefits from global search abilities, meta-heuristics
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can achieve better performance than heuristics with a few time overheads in many cases
and are widely applied in various decision-making situations. Thus, in this paper, we are
concerned with the design of meta-heuristics for solving the task scheduling problem.

There are numerous meta-heuristic methods, and each has its own advantages and
limitations. The hybrid of two or more methods can achieve complementary advantages
of these methods and thus can provide better performance than each of them. There
are three hybridization methods for combining two or more heuristic or meta-heuristic
methods, as shown in Figure 1. The first one is sequentially exploiting the population
updating strategies of two or more algorithms in each iterative or evolutionary process
(as shown in Figure 1b). The second one is first performing the population strategies of
one algorithm and then another algorithm (as shown in Figure 1c). Both of these two
hybridization methods sequentially exploit rather than combine the benefits of multiple
meta-heuristic algorithms and thus have limited or even worse performance. Therefore,
we consider exploiting the third hybridization method, which integrates two or more
updating strategies, to propose a hybrid heuristic task scheduling algorithm for distributed
computing by integrating the swarm cognition into the evolutionary strategy.
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Figure 1. The hybridization methods for combining two or more heuristic or meta-heuristic methods.
(a) Basic framework. (b) Hybridization 1. (c) Hybridization 2. (d) Hybridization 3.

In this paper, we design a task scheduling method by integrating a Genetic Algorithm
(GA) with Particle Swarm Optimization (PSO). A GA and PSO are both representative and
classical meta-heuristics and have been widely used in in many areas, thanks to their good
performance and easy implementations [11,12]. GA has a powerful global search ability
due to the large population diversity produced by the crossover and mutation operators.
However, a GA has a slow convergence velocity in the search process. Conversely, PSO
quickly converges but is easily trapped into a local optimal position, where the position of
each particle is updated based on its personal best position and the global best position of
all particles in the evolution process. Therefore, in this paper, we combine both benefits
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of a GA and PSO by integrating the updating idea of PSO into the evolution process of
GA, and propose a new hybrid heuristic method (PGA) for task scheduling in distributed
computing systems.

The contributions of this paper can be briefly summarized as follows.

• We formulate the task scheduling problem with deadline constraints into a binary
nonlinear programming model (BNLP) for distributed computing systems. There are
two optimization objectives of BNLP. The major optimization objective is maximizing
the number of tasks with deadline satisfaction, which is one of the metrics quantifying
user satisfaction. The minor one is maximizing the overall resource utilization, which
is a widely used quantitative metric for resource efficiency.

• We design a hybrid heuristic method for solving the task scheduling problem named
PGA. In the PGA, each chromosome represents one solution mapping tasks onto
computing units, and the fitness function is the objective of formulated BNLP. In the
evolution process of the GA, the PGA adds two crossover operations to speed up the
evolutionary rate, inspired by PSO, which crosses the current chromosome with its
own historical best chromosome and the global best chromosome, respectively, for
each individual.

• To evaluate the performance of the PGA, we conduct extensive simulated experi-
ments, where the system parameters are set referring to related works. Experiment
results confirm the performance superiority of the PGA in both user satisfaction and
resource efficiency, compared with seven heuristic/meta-heuristic/hybrid heuristic
task scheduling methods proposed recently.

In the following of this paper, Sections 2 and 3 illustrate our formulated model and
proposed hybrid heuristic task scheduling method, respectively. In Section 4, we evaluate
the performance of our proposed method. Section 5 gives recent works related to solving
the task scheduling problem, and Section 6 concludes this paper.

2. Problem Formulation

In this section, we present the formulation of the task scheduling problem concerned
in this paper. The notations used in the formulation are outlined in Table 1.

In a distributed computing system, there are S computing servers, s1, s2, . . . , sS. The
server sj has nj cores, each with gj computing capacity. During a period of time, there are T
tasks requesting processing on the system represented by t1, t2, . . . , tT . The task ti needs
ci computing resource for its processing and requires di deadline, i.e., the system finishes
the task before di or just rejects it (In this paper, we consider tasks with hard deadline
constraints, and leave the concern of soft deadline requirements as one of our future works).
Without loss of generality, we assume that d1 ≤ d2 ≤ . . . ≤ dT . Then, we ti is assigned to
one core of sj; its execution time is ci/gj.

In this paper, we consider independent computing-intensive tasks, i.e., there is no data
or logical dependency between the two tasks. This is because independent tasks, such as
bag-of-tasks (BoT) applications, are very common in distributed systems, and it is worth
designing a scheduling method for independent tasks [13]. In the future, we will study
the extension of our work and the new approach for the scheduling of workflow tasks
with dependencies on each other. In fact, our model and method (PGA) can be applied for
scheduling interdependent tasks by just adding their dependency constraints.

For the formulation of the task scheduling problem, we define binary variables xi,j,k to
represent whether ti is assigned to kth core of sj, as shown in Equation (1).

xi,j,k =

{
1, if ti is assigned to the kth core in sj

0, otherwise

1 ≤ i ≤ T, 1 ≤ j ≤ S, 1 ≤ k ≤ nj. (1)

Then, the tasks assigned to kth core of sj include {ti|xi,j,k = 1}. In this paper, we do
not use the execution redundancy that can improve the makespan of tasks but reduce
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the resource efficiency. Thus, a task cannot be assigned to more than one core for its
execution, i.e.,

S

∑
j=1

nj

∑
k=1

xi,j,k ≤ 1, 1 ≤ i ≤ T. (2)

Table 1. The notations used in our formulation.

Notation Description

T The number of tasks
ti The ith task
ci The computing resource amount required by ti
di The deadline required by ti
fi The finish time of ti
S The number of computing servers
sj The jth server
nj The number of cores equipped in sj
gj The computing capacity of each core in sj
oS

j The occupied time of sj for task executions
oj,k The use time of kth core in sj
uS

j The resource utilization of sj

U The overall resource utilization of the system
N The number of tasks with deadline satisfactions

For tasks assigned to one core, the number of tasks whose deadlines are satisfied is
optimal when applying the earliest deadline first (EDF) execution order [14]. With an EDF
execution order, the finish time of each task can be calculated by Equation (3).

fi =
S

∑
j=1

nj

∑
k=1

(xi,j,k ·
i

∑
i′=1

(xi′ ,j,k ·
ci′

gj
)), 1 ≤ i ≤ T (3)

where fi represents the finish time of ti when the task is assigned to a core for its execution,
and fi = 0 if ti is not assigned by any one core when the task is rejected. ∑i−1

i′=1(xi′ ,j,k · ci′/gj)
is the cumulative execution time of tasks that have earlier deadlines than ti and are assigned
to kth core of sj. Thus, ∑i

i′=1(xi′ ,j,k · ci′/gj) is the finish time when ti is assigned to the kth
core of sj. Then, the deadline constraints required by tasks can be formulated as Equation (4).
Equation (4) also holds for rejected tasks.

fi ≤ di, 1 ≤ i ≤ T. (4)

For each core, the use time is the cumulative time consumed by executing tasks
assigned to the core, which can be formulated as Equation (5), where oj,k is the use time of
kth core in sj. The occupied time of a server is the maximum use time of its cores and thus
can be calculated by Equation (6), where oS

j is the occupied time of sj for task executions.

oj,k =
T

∑
i=1

(xi,j,k ·
ci
gj
), 1 ≤ j ≤ S, 1 ≤ k ≤ nj. (5)

oS
j =

nj
max
k=1
{oj,k}, 1 ≤ j ≤ S. (6)

Then the resource utilization of each server can be obtained from Equation (7), and the
overall resource utilization of the distributed system can be achieved using Equation (8),
where uS

j is the resource utilization of sj. U is the overall resource utilization. ∑
nj
k=1 oj,k · gj

is the amount of resources consumed by task executions in sj, and oS
j · nj · gj is the occupied

resource amount of sj.
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uS
j =

∑
nj
k=1 oj,k · gj

oS
j · nj · gj

=
∑

nj
k=1 oj,k

oS
j · nj

, 1 ≤ j ≤ S. (7)

U =
∑S

j=1(∑
nj
k=1 oj,k · gj)

∑S
j=1(o

S
j · nj · gj)

. (8)

Based on the above formulations, the task scheduling problem can be modeled as the
following optimization problem.

Maximizing N + U, (9)

subject to

N =
T

∑
i=1

S

∑
j=1

nj

∑
k=1

xi,j,k, (10)

and Equations (1)–(8)

where xi,j,k, 1 ≤ i ≤ T, 1 ≤ j ≤ S, 1 ≤ k ≤ nj, are the decision variables. The objective
is maximizing the number of tasks with deadline meets (N) plus the overall resource
utilization (U), where N is calculated by Equation (10). Noticing that the utilization U is
no more than 1, the number of tasks with a deadline meeting N is the major optimization
objective, and the utilization U is the minor one. Because the decision variables are
binary and constraints (3), (6) and (8) are non-linear, the optimization problem belongs
to a constrained binary non-linear programming problem (BNLP). This problem can be
solved by existing tools, e.g., lp_solve [15] and the optimization toolbox of MathWorks [16].
However, these tools take exponential time to solve a BNLP, on average, and thus cannot
be applied for middle to large-scale problems.

3. PGA: The Hybrid Heuristic Scheduling Method

In this section, we present a hybrid heuristic method for solving the task scheduling
problem formulated in the previous section, based on the ideas of a GA and PSO. Our
proposed method, the PGA, is outlined in Algorithm 1, which integrates the idea of self-
cognition and social cognition of PSO into GA. We need to design the encoding/decoding
method for the map between chromosomes and scheduling solutions first when applying
GA. The encoding/decoding method used in our method is as follows. In our method,
similar to PSO instead of a GA, individual and chromosome are two different things.
Chromosomes are to individuals what positions are to particles. An individual has only
one chromosome, and its chromosome can be changed with population evolutions.

Based on the encoding/decoding method, the PGA first initializes a population with
multiple individuals (line 1), where each gene value of the chromosome for every individual
is set between 1 and the core number, randomly. Moreover, the PGA evaluates the fitness
of each individual (line 2). The fitness function is the objective of the optimization problem
formulated in Section 2, i.e., N + U, where N and U can be get from the task scheduling
solution decoded by the chromosome. Then, the PGA records the current chromosome as
the personal best chromosome for each individual (line 3), and the chromosome with the
best fitness as the global best chromosome (line 4).

After the initialization, the PGA evolves the population iteratively with crossover,
mutation, and selection operators. In each evolution, the PGA first invokes the crossover
operator on each individual with a probability (the crossover probability) three times
(line 7), which crosses its chromosome with the chromosome of another individual, its
personal best chromosome, and the global best chromosome, respectively. Each time the
crossover operator is invoked, two new chromosomes (offspring) are produced, and there
are six new chromosomes are produced by the crossover operator for each chromosome.
For each new chromosome, the PGA evaluates its fitness and updates the personal best
chromosome and the global best chromosome as it if it had better fitness (lines 8–10).
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For each individual, the PGA performs the mutation operator on its chromosome with
a probability (the crossover probability), which can produce a new chromosome (line 11).
Moreover, the PGA evaluates the fitness of the new chromosome and updates the personal
and the global best chromosomes as the new one when the new one has better fitness for
the individual (line 12).

At the end of each evolution, for each individual, the PGA uses the selection operator
to select a chromosome as its chromosome for the next round of evolution (line 14). For an
individual, the candidate chromosomes of the selection include its current chromosome,
six new chromosomes produced by the crossover operator, and the new chromosome by
the mutation operator.

After the evolution phase finishes, the PGA returns the task scheduling solution
decoded by the global best chromosome (lines 15 and 16). The maximum evolution
generation is set for the terminal condition in this paper.

In the remainder of this section, we will illustrate the encoding/decoding method and
the operators used in the evolution, respectively.

Algorithm 1 PGA: the hybrid heuristic scheduling method

Require: The information of tasks and computing servers, the parameters of GA;
Ensure: the solution of task scheduling;

1: Initializing a population (individuals), i.e., setting the chromosome of each individual randomly;
2: Evaluating the fitness of each individual;
3: Recording the personal best chromosome (pb) as the initialized one for each individual;
4: Setting the global best chromosome (gb) as the chromosome with the best fitness in the population;

5: while The terminal condition is not met do
6: for Each individual do
7: Crossing its chromosome with the chromosome of another individual that is randomly

selected, pb, and gb, with a certain probability, respectively, and producing six new chromosomes
(each crossover operator produces two new chromosomes);

8: Evaluating fitnesses of six new chromosomes, and getting the best chromosome (℘) that
has the best fitness from these six chromosomes;

9: If the fitness of ℘ is better than that of pb, then pb is updated as ℘;
10: If the fitness of ℘ is better than that of gb, then gb is updated as ℘;
11: Mutating its chromosome with a certain probability, which produces one new chromosome;

12: Evaluating the fitness of the new chromosome and updating pb and gb if the new chromo-
some has a better fitness, respectively.

13: for Each individual do
14: Selecting one chromosome from its current chromosome and seven new chromosomes

produced by it by crossover and mutation operations (lines 7 and 11), which is set as the new
chromosome of the individual for the next evolution;

15: Decoding gb into a task scheduling solution;
16: return the task scheduling solution;

3.1. The Encoding or Decoding Method

In a PGA, a chromosome is expressed by a vector, and its genes are the values of all
dimensions. For each chromosome, genes have a one-to-one correspondence with tasks. The
possible value of every gene is between 1 and the number of computing cores in the system,
which identifies the core where the corresponding task is assigned. Then, given a chromosome,
we can decode an assignment of tasks to cores. Moreover, with the EDF scheme for executing
tasks in each core, we can get a task-scheduling solution from a chromosome. Next, we give
an example to help readers understand the encoding/decoding method.

Assuming a distributed system consisting of 2 computing cores, there are 4 tasks that
need to be processed. Then there are 4 genes in each chromosome, which respectively
correspond to these 4 tasks. The possible value of each gene includes 1 and 2, which
represent the core where the corresponding task is assigned. The chromosome with the
code (1, 1, 2, 2) represents that the first and the last two tasks are assigned to the first and
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the second cores, respectively. For two tasks assigned to a core, the task with the earlier
deadline will be executed first.

3.2. The Crossover Operator

In this paper, we use the uniform crossover operator to produce two offspring from
two chromosomes, which helps to enhance the exploitation ability of the PGA [17]. The
uniform crossover operator swaps two genes between two chromosomes with a probability
in each dimension (gene position). In the implementation, for each gene position, a random
number between 0 and 1 is generated with a uniform distribution, and two genes of two
chromosomes are swapped in the position if the random number is less than the pre-
defined probability. In the task scheduling problem, the swap between two genes of two
chromosomes means that the cores that the corresponding task is assigned to are swapped
in corresponding scheduling solutions.

As an example in Figure 2, the uniform crossover operator is performed on two chromo-
somes (4, 5, 9, 2, 5, 10, 10, 8, 3) and (7, 6, 8, 1, 7, 2, 1, 8, 4), and the genes of chromosomes are
swapped in the second, fourth, and seventh dimensions. Two offspring (new chromosomes)
are produced, which are (4, 6, 9, 1, 5, 10, 1, 8, 3) and (7, 5, 8, 2, 7, 2, 10, 8, 4).

4 5 9 2 5 10 10 8 3

7 6 8 1 7 2 1 8 4

4 6 9 1 5 10 1 8 3

7 5 8 2 7 2 10 8 4

Chromosome 1

Chromosome 2

Offspring 1

Offspring 2

Figure 2. An example for illustrating the uniform crossover operator.

There are two parameters (probabilities) that need to be set for the crossover operator.
One for deciding whether to perform the crossover operator for every individual and
another for each dimension. Both parameters have an impact on the population diversity
and convergence of the PGA. When the probability is great, there will be more individuals
or genes crossed, and more new chromosomes will be generated, which can increase the
population diversity. However, the increase of the diversity is limited, as the crossover
operator cannot generate new genes in a dimension. However, this helps to pass good
genes to the next generations and thus speeds the convergence. Therefore, these parameters
should be adaptive to population diversity and convergence, which is one of our future
works. In this paper, we set both probabilities as the same value.

3.3. The Mutation Operator

For each individual, a mutation operator is performed on its chromosome with a proba-
bility. In this paper, we use the uniform mutation operator as it helps to maintain population
diversity. Similar to the uniform crossover operator, for a chromosome mutating, the uniform
mutation operator generates a random number in the range of [0, 1] for each gene position
and mutates the gene of the chromosome in the position if the random number is less than
pre-set probability. The mutation of a gene is to set its value as another possible one that can
be randomly generated. In the task scheduling problem, the mutation of a gene changes the
core that the corresponding task is assigned to.

For example, as shown in Figure 3, the uniform mutation operator is performed on
the chromosome (10, 9, 1, 6, 10, 6, 5, 1, 7), and mutates the second and fifth genes to 4 and 2,
respectively. Then we can get a new chromosome (10, 4, 1, 6, 2, 6, 5, 1, 7).
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10 9 1 6 10 6 5 1 7

10 4 1 6 2 6 3 3 7

Chromosome

Offspring

Figure 3. An example for illustrating the uniform mutation operator.

The mutation operator can largely increase the population diversity, as it can generate
new genes in each dimension, but this decreases the convergence rate. Thus, the mutation
probability also should be set carefully. Intuitively, all of the crossover, mutation, and
selection operators affect diversity and convergence, and they all should be adaptively
configured. In addition, it is very probable that these operators are interconnected in their
performance, which is seldom studied.

3.4. The Selection Operator

At the end of each evolution, the PGA constructs a new population from the current
population, and new chromosomes are produced using the crossover and mutation oper-
ators, by the selection operator, for the next evolution. To be specific, the PGA performs
the roulette wheel selection on each individual. For each individual, there is one current
chromosome and seven produced chromosomes at the end of each evolution. Then the PGA
uses the roulette wheel selection to select one chromosome from these eight chromosomes
as the new chromosome of the individual, where the probability that a chromosome is
selected is proportional to its fitness.

For the selection operator, there is a tradeoff between exploration and exploitation
that needs to be considered. For a chromosome with high fitness, it has a great probability
of being selected for the next evolution and vice versa. This helps to preserve the good
gene and make the convergence fast but decreases the population diversity to a certain
extent. One feasible idea is to guarantee diversity in the early stage and to ensure strong
convergence in the late stage. One of our future works is studying adaptive selection
according to diversity and convergence.

3.5. Time Complexity Analysis

As illustrated in the previous subsections, the crossover, mutation, and selection
operators traverse all dimensions, and thus, each operator has O(T) time complexity. From
Algorithm 1, we can see that, in each iteration of the population evolution, the crossover
operator is performed three times (line 7) and the mutation operator one time (line 11),
one for each individual. Thus, each iteration has O(T · D) time complexity, where D is the
number of individuals. Then, the time complexity of the PGA is O(T · D · ITE), where ITE
is the number of iterations. Compared with a GA, the PGA performs the crossover operator
two more times and, thus, has the same time complexity as a GA and PSO.

4. Performance Evaluation

In this section, we evaluate the performance of our method with extensive simulated
experiments. We first present the experiment environment used for the performance
evaluation and then analyze the experiment results in the following.

4.1. Experiment Environment

To evaluate the performance of our PGA, we simulate a distributed system referring
to some related works [18–20]. The parameters of our simulated experiments are shown in
Table 2. In the simulated system, there are 50 servers; each has 2–64 cores. The computing
capacity of each core in a server is set in the range of [1000, 4000] Million Instructions
Per Second (MIPS) randomly. One thousand tasks are generated to be processed by
the distributed system. For each task, the amount of its required computing resource is
[1000, 100,000] Million Instructions (MI), and its deadline is set as [1, 100] seconds, randomly.
To evaluate the energy consumed by servers, we use the most popular linear model, where
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the consumed energy (Ej) can be estimated with the resource utilization for each server

using Equation (11). Where Pidle
j and P f ull

j are the consumed power when the server runs
at idle and full loads, respectively. u(τ)j is the resource utilization changed with time τ.

Ej =
∫

τ
(Pidle

j + (P f ull
j − Pidle

j ) · u(τ)j)dτ, 1 ≤ j ≤ S. (11)

The power consumed by each server is shown in Table 3, which is set according to the
core number, referring to [21–23].

Table 2. The parameters of our simulated experiments.

Parameter Value

server number 50
core number of each server [2, 64]

computing capacity of each core [1000, 4000] MIPS
computing resource requirement of each task [1000, 100,000] MI

deadline of each task [1, 100] seconds
mutation probability 0.1
crossover probability 0.5

acceleration coefficients of PSO 2.0
(linearly decreased) inertia weight of PSO [0.5, 1.2]

Table 3. The power of a server.

The Core Number Pidle P f ull

[1, 8) 110 175
[8, 16) 125 210
[16, 24) 210 300
[24,+∞) 350 500

The compared methods used in our experiments include the following.

HC The hill climbing method (HC) is one of the commonly used meta-heuristics for task
scheduling [24,25]. Given a starting position, HC searches for a neighbor of the
current position until there is no neighbor that has better fitness, with the scheme of
depth-first search.

GA The basic idea of [26], which exploits the principle of a Genetic Algorithm (GA) for
scheduling tasks.

GAHC The method used by Hussain and Al-Turjman [20] uses the idea of HC to improve
the quality of each chromosome at the beginning of each evolution for the GA. Instead
of the selection operator of a GA, GAHC replaces the chromosome with its offspring
with better fitness after each of the crossover and mutation operators.

PSO Particle swarm optimization (PSO) is also one of the most popular approaches for the
task scheduling problem, e.g., [27].

PSO_M This is the work proposed by Hafsi et al. [28], which integrates the mutation
operator into PSO. PSO_M adds the mutation operator for each particle at the end of
each iteration of PSO.

GA+PSO The method used in [29] exploits a GA and PSO in the first half and the second
half of the evolution phase, respectively.

GA_PSO The method proposed by Wang et al. [30] uses a GA and PSO in each iteration
of the population evolution.

We compare our method with the above methods in the following three aspects.
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User Satisfaction The satisfaction strongly affects the income and reputation of operating
a distributed system [31], which usually is quantified by the completion rates of
tasks. In this paper, we use the following two metrics for the quantification of
the satisfaction, the number (N) and the computing size (∑T

i=1 ∑S
j=1 ∑

nj
k=1(xi,j,k · ci))

of tasks with deadlines met, where the computing size of a task is the number of
computing resources required by the task.

Resource Efficiency In general, the task load finished by consuming per unit of resources
can be applied to quantifying the resource efficiency in distributed systems. Two
metrics are used in our experiments for evaluating the resource efficiency, which is the

overall resource utilization (U) and energy efficiency (
∑T

i=1 ∑S
j=1 ∑

nj
k=1(xi,j,k ·ci)

∑S
j=1 Ej

). Energy

efficiency is the processed computing size per unit of energy, which is the ratio of
processed computing size to the consumed energy.

Processing Efficiency The processing efficiency can reflect the speed-up of the distributed
processing system. In this paper, the processing efficiency is quantified by dividing
the processed computing size by the makespan of processed tasks, i.e., the processing

speed, which is calculated by
∑T

i=1 ∑S
j=1 ∑

nj
k=1(xi,j,k ·ci)

maxT
i=1{ fi}

.

In our experiment, we repeat the following procedures 100 times: generating a dis-
tributed system, measuring each method in every metric, and normalizing each metric
value of each method by dividing it by that of HC to highlight the relative performance of
different methods. In the following, we report the normalized (relative) performance in
each metric.

4.2. Experiment Results
4.2.1. User Satisfaction

Figures 4 and 5 give the relative performance of various methods in user satisfaction.
As shown in these figures, we can see that the PGA completes 27.9–55.8% more tasks and
32.8–65.4% larger computing size in distributed systems, on average. This verifies that
the PGA can achieve better user satisfaction than other methods. The main benefit of the
PGA is exploiting the self-cognition and social cognition idea of PSO in a GA, which not
only ensures the powerful exploration ability of a GA but also makes up for the weak
exploitation ability with PSO. Figures 4 and 5 show the PGA has a much better performance
than a GA and PSO, which indicates the high integration efficiency of our method.

The distributed systems process about 50% more tasks and about 60% larger com-
puting size, on average, when applying the PGA, compared with PSO_M, GA+PSO, and
GA_PSO. These four methods are all designed by combining PSO and GA. Thus, this can
prove that our method has much higher efficiency in the integration of a GA and PSO for
designing hybrid heuristic algorithms.

The experimental results show that HC has the worst user satisfaction with these
methods. This is mainly because HC is a search strategy with a single individual, where
its performance is sensitive to the searching starting point, and it is easy to fall into a
local optimal location. Other methods are all searching with a population, which can
exploit the cooperation among multiple individuals to improve the global search ability.
Individual search strategies like HC can be used to improve the quality of each individual
for population meta-heuristic algorithms for better performance. For example, GAHC has
17.9% and 21.1% better performance than a GA by applying HC for each individual in the
number and computing size of processed tasks, respectively, as shown in Figures 4 and 5.
However, local search strategies may decrease the exploration ability of each individual
and thus increase the probability of trapping into local optimums of other meta-heuristic
methods. One of our future works is to study such impacts of individual search strategies
on the performance of population meta-heuristic algorithms for integrating them.
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From Figures 4 and 5, we can also see that PSO_M, GA + PSO, and GA_PSO have
comparable performance. The main reasons are as follows. The performance of a GA and
PSO are similar. PSO_M, GA + PSO, and GA_PSO all combine a GA and PSO. GA+PSO
and GA_PSO separately use a GA and PSO, which cannot achieve a better performance
than either of them. PSO_M operates a mutation on each particle in every iteration for
PSO. This can help a particle to escape from a local optimal position but may decrease the
convergence rate. Therefore, the integration approach of multiple meta-heuristics should
be carefully designed for good performance.

Figure 4. The relative numbers of tasks with deadline meets when applying various task schedul-
ing methods.

Figure 5. The relative computing sizes of tasks with deadline meets when applying various task
scheduling methods.

4.2.2. Resource Efficiency

Figures 6 and 7 show the relative resource utilizations and energy efficiencies achieved
using various task scheduling methods. The PGA achieves 33.8–69.6% higher utilization
and 25.7–57.3% better energy efficiency than the compared methods. This proves that
our method has a high resource efficiency for scheduling tasks in distributed systems by
combining a GA and PSO. The reason that our method has higher resource utilization and
energy efficiency than other methods is as follows. Compared with other methods, the PGA
processes more computing size, which means more resources are consumed by processing
tasks. However, the PGA consumes comparable time for finishing these tasks with other
methods, which implies that comparable resources are occupied for processing these tasks.
Thus, the resource utilization achieved by the PGA is higher than by other methods. A
high resource utilization often means a good load balance among computing cores and,
thus, a low energy waste.
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Figure 6. The relative resource utilizations achieved by various task scheduling methods.

Figure 7. The relative energy efficiencies achieved by various task scheduling methods.

4.2.3. Processing Efficiency

Figure 8 presents the processing efficiencies of distributed systems when applying
different task scheduling methods. As shown in this figure, the PGA has 53.1–112.3%
higher processing efficiency than compared methods. This is because the PGA processes
more task loads with a similar time compared with other methods. This phenomenon
indicates that the PGA provides a higher speed-up than others and thus can be applied for
distributed systems very well.

Figure 8. The relative processing efficiencies achieved by various task scheduling methods.

5. Related Works

Distributed systems, e.g., cloud computing and cluster computing, have been applied
in all walks of life, which benefit from the rapid development of information and commu-
nication technologies. Moreover, there are plenty of research works on task scheduling for
improving user satisfaction and/or resource efficiency in various distributed systems. The
characteristics of related works are outlined in Table 4.
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Table 4. The characteristics of related works.

Works Used Algorithm Hybrid

Wang et al. [32] designed heuristic no
Ma et al. [33] designed heuristic no

Mangalampalli et al. [34] CSO no
Otair et al. [35] designed population optimization no

Teraiya and Shah [27] PSO no
Chandrashekar et al. [36] ACO no

Yeh et al. [37] SSO no
Nwogbaga et al. [29] GA and PSO H2

Sharma et al. [38] PSO and ACO H2
Wang et al. [30] GA and PSO H1

Kumar and Karri [39] EOA and EFO H1
Cheikh and Bougara [40] PSO and extremal optimization H2

Hussain and Al-Turjman [20] GA and HC H1
Hafsi et al. [28] PSO and the mutation operator of GA H1

Chhabra et al. [41] OBL, PSO, and WOA H1 + H2
Ours GA and PSO H3

“hybrid” column represents the hybridization strategy used by the related works. “no” means the work used a
single heuristic or meta-heuristic algorithm. “H1/2/3” represents hybridization 1/2/3 as shown in Figure 1.

Due to the NP-hard nature of the task scheduling problem, existing works mainly ex-
ploited heuristics and meta-heuristics to solve the problem. For example, Wang et al. [32]
presented a heuristic approach to improve user satisfaction and the resource cost for a hybrid
cloud which consists of private and public clouds. This work assigned tasks whose require-
ments could not be satisfied by the public cloud to the private cloud at first, considering
the scarcity of private resources. The heuristic method proposed by Ma et al. [33] iteratively
assigned the next task to the server with the most available resources for load balancing.
Mangalampalli et al. [34] used Cat Swarm Optimization (CSO) algorithm to map tasks and
virtual machines in cloud computing for minimizing makespan, energy consumption, and
total power cost at data centers. IMOMVO [35] designed an improved multi-verse optimizer, a
novel population optimization technique, for task scheduling in cloud computing to improve
task execution performance. Teraiya and Shah [27] used PSO to design the new scheduling
approach, which considered each task as a particle and exploited the PSO technique to identify
the most critical task for a prior execution. Chandrashekar et al. [36] exploited Ant Colony
Optimization (ACO) for task scheduling in cloud computing to improve the makespan and
the resource cost. Yeh et al. [37] applied Simplified Swarm Optimization (SSO) to reduce the
energy consumption and task computing time for cloud computing.

Each of the above works used one heuristic or meta-heuristic algorithm and did not
exploit the complementary advantages of multiple algorithms for better task-scheduling
solutions. Some studies considered combining a meta-heuristic algorithm with another
heuristic or meta-heuristic algorithm for task scheduling. The method used in [29] exploited
a GA in the first half of the evolution phase and PSO in the second half. With the same
hybridization strategy to [29], Sharma et al. [38] used PSO and ACO to reduce the latency
in fog computing. Wang et al. [30] continuously used a GA and PSO in each iteration of
the evolution, and Kumar and Karri [39] combined the earthworm optimization algorithm
(EOA) and the electric fish optimization algorithm (EFO) in the same way. Cheikh and
Bougara [40] first used PSO to get a solution for task scheduling. Then, with the initial-
ization of this solution, their method applied extremal optimization for a new solution.
These above works exploited two meta-heuristic algorithms separately and thus didn’t take
full advantage of the combination of these two algorithms. The method used by Hussain
and Al-Turjman [20] performed the HC operation on each parent to generate parents with
better fitnesses for a GA at the beginning of each evolution and replaced the selection
operator by the replacement operator that the parent is replaced with its offspring with
better fitness. Hafsi et al. [28] performed the mutation operator on each particle at the end
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of each iteration of PSO to overcome the drawback of easily trapping into local minima.
Chhabra et al. [41] proposed a hybrid heuristic method by incorporating opposition-based
learning (OBL) and PSO into Whale optimization algorithm (WOA), for scheduling BoT ap-
plications on physical cloud resources to minimize the makespan and energy consumption.
This work used OBL to generate the initial population and applied OBL and the velocity
update mechanism of PSO on whale exploration solutions, respectively, in the exploration
phase of WOA.

In this paper, different from existing works, we proposed a hybrid heuristic method
by integrating the principle idea of PSO into a GA, which combines both advantages of
a GA and PSO very well, to optimize user satisfaction and resource efficiency with deadline
constraints with task scheduling.

6. Conclusions

In this paper, we focus on the task scheduling problem with deadline constraints in
various distributed computing systems. To address the problem, we formulate it as BNLP
and propose a hybrid heuristic method, PGA, for solving the problem. The PGA combines
both advantages of a GA and PSO by integrating the self-cognition and social cognition
idea of PSO into the evolution of GA. Simulated experiments are conducted, and the results
verify the superior performance of the PGA in user satisfaction, resource efficiency, and
processing efficiency. The task scheduling is an instance of discrete optimization problems,
and the PGA performs well in its solving. We believe that the PGA can be also applied to
solving other discrete optimization problems as well as solving task scheduling, which is
one of our future works.

Even though the integration of multiple meta-heuristic methods has the opportunity
to provide a hybrid heuristic with good performance, some meta-heuristics are not com-
plementary, which may not improve or even degrade the performance by hybridizing
them. Furthermore, the integration strategy has an impact on performance. Therefore,
in the future, we will study the complementarity of different meta-heuristics and design
an efficient integration strategy for the hybrid of multiple meta-heuristics to improve the
performance of the distributed systems in various aspects.
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Abbreviations
The following abbreviations are used in this manuscript:

ACO Ant Colony Optimization
BNLP Binary non-linear programming
BoT Bag-of-tasks
CSO Cat Swarm Optimization
EFO Electric Fish Optimization
EOA Earthworm Optimization Algorithm
GA Genetic algorithm
GAHC GA with hill climbing
HC Hill climbing
MINLP Mixed-integer non-linear programming
MI Million instructions
MIPS Million instructions per second
OBL Opposition-based learning
PGA Hybrid GA and PSO
PSO Particle swarm optimization
PSO_M PSO with mutation operator
SSO Simplified Swarm Optimization
WOA Whale optimization algorithm
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