
A R T I C L E S

Type 2 diabetes mellitus (DM2) affects over 110 million people world-
wide and is a principal contributor to atherosclerotic vascular disease,
blindness, amputation and kidney failure1. Defects in insulin secretion
are observed early in individuals with maturity-onset diabetes of the
young, a monogenic form of type 2 diabetes2; insulin resistance at tis-
sues including skeletal muscle is a cardinal feature of individuals with
fully developed DM2. Many molecular pathways have been implicated
in the disease process: β-cell development, insulin receptor signaling,
carbohydrate production and utilization, mitochondrial metabolism,
fatty acid oxidation, cytokine signaling, adipogenesis, adrenergic sig-
naling and others. It is unclear, however, which of these or other path-
ways are disturbed in, and might be responsible for, DM2 in its
common form.

Expression profiling using DNA microarrays enables researchers to
survey the genome for transcripts whose levels are altered in tissue
from individuals with disease. Microarray data can be used to classify
individuals according to molecular characteristics and to generate
hypotheses about disease mechanisms. This approach has been suc-
cessful in the study of cancer3, where large changes in the expression of
individual genes have often been observed. When alterations in gene
expression are more modest, however, the large number of genes
tested, high variability between individuals and limited sample sizes
typical of human studies make it difficult to distinguish true differ-
ences from noise.

One promising approach to increase power exploits the idea that
alterations in gene expression might manifest at the level of biological
pathways or coregulated gene sets, rather than individual genes. Subtle
but coordinated changes in expression might be detected more readily
by combining measurements across multiple members of each gene
set. A straightforward strategy for identifying such differences is to
examine top-ranking genes in a microarray experiment and then to
create hypotheses about pathway membership. This is both subjective
and post hoc, however, and thus prone to bias. A more objective set of
approaches4,5 tests for enrichment of pathway members among the
top-ranking genes in a microarray study, comparing them to a null
distribution in which genes are randomly distributed. Because func-
tionally related genes are often coregulated, however, a positive result
in such a test can be due solely to intrinsic correlation in gene expres-
sion rather than any relationship between expression of pathway
members and the phenotype of interest.

We present an analytical technique designed to test a priori defined
gene sets (for example, pathways) for association with disease pheno-
types. We apply this method to gene expression profiles of human dia-
betic muscle, identifying a set of genes whose expression is correlated
with insulin resistance and aerobic capacity. These results suggest
hypotheses about pathways contributing to human metabolic disease
and, more generally, show the value of incorporating information about
functional relationships among genes in the analysis of microarray data.

1Whitehead Institute/MIT Center for Genome Research, Cambridge, Massachusetts, USA. 2Department of Medicine, Harvard Medical School, Boston, Massachusetts,
USA. 3Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA. 4Department of Endocrinology, Wallenberg Laboratory, University
Hospital MAS, Lund University, S-205 02 Malmo, Sweden. 5Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. 6Department of
Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 7Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
8Divisions of Pediatrics and Endocrinology, Children’s Hospital, Boston, Massachusetts, USA. 9Department of Molecular Biology and Diabetes Unit, Massachusetts
General Hospital, Boston, Massachusetts 02114, USA. 10These authors contributed equally to this work. 11These two authors contributed equally to this work.
Correspondence should be addressed to D.A. (altshuler@molbio.mgh.harvard.edu) or L.C.G. (leif.groop@endo.mas.lu.se).

PGC-1α-responsive genes involved in oxidative
phosphorylation are coordinately downregulated in
human diabetes
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DNA microarrays can be used to identify gene expression changes characteristic of human disease. This is challenging, however,
when relevant differences are subtle at the level of individual genes. We introduce an analytical strategy, Gene Set Enrichment
Analysis, designed to detect modest but coordinate changes in the expression of groups of functionally related genes. Using this
approach, we identify a set of genes involved in oxidative phosphorylation whose expression is coordinately decreased in human
diabetic muscle. Expression of these genes is high at sites of insulin-mediated glucose disposal, activated by PGC-1α and correlated
with total-body aerobic capacity. Our results associate this gene set with clinically important variation in human metabolism and
illustrate the value of pathway relationships in the analysis of genomic profiling experiments.
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RESULTS
We used DNA microarrays to profile expression of over 22,000 genes
in skeletal muscle biopsy samples from 43 age-matched males
(Table 1), 17 with normal glucose tolerance (NGT), 8 with impaired
glucose tolerance (IGT) and 18 with DM2. We obtained samples at
the time of diagnosis (before treatment with hypoglycemic medica-
tion) and under the controlled conditions of a hyperinsulinemic
euglycemic clamp. When assessed with either of two different ana-
lytical techniques3,6 that take into account the multiple compar-
isons implicit in microarray analysis, no single gene had a
significant difference in expression between the diagnostic cate-
gories (data not shown). This result is consistent with smaller stud-
ies7,8 that did not identify any individual gene whose expression
difference was significant when corrected for the large number of
hypotheses tested9,10.

Gene Set Enrichment Analysis
To test for sets of related genes that might be systematically altered in
diabetic muscle, we devised a simple approach called Gene Set
Enrichment Analysis (GSEA), which we introduce here (Fig. 1) and
describe in more detail elsewhere (A.S. et al., manuscript in prepara-
tion). The method combines information from the members of previ-
ously defined sets of genes (for example, biological pathways) to
increase signal relative to noise and improve statistical power.

For a given pairwise comparison (for example, highly expressed in
individuals with NGT versus those with DM2), we rank all genes
according to the difference in expression (using an appropriate met-
ric, such as signal-to-noise ratio, SNR). The null hypothesis of GSEA
is that the rank ordering of the genes in a given comparison is ran-
dom with regard to the diagnostic categorization of the samples. The

alternative hypothesis is that the rank ordering of the pathway mem-
bers is associated with the specific diagnostic criteria used to catego-
rize the groups of affected individuals.

We then measure the extent of association by a non-parametric,
running sum statistic termed the enrichment score (ES) and record the
maximum ES (MES) over all gene sets in the actual data from affected
individuals (Fig. 1). To assess the statistical significance of the MES, we
use permutation testing of the diagnostic labels of the individuals (for
example, whether an individual is affected with NGT or DM2; Fig. 1).
Specifically, we compare the MES achieved in the actual data to that
seen in each of 1,000 permutations that shuffled the diagnostic labels
among the samples. The significance of the MES score is calculated as
the fraction of the 1,000 random permutations in which the top path-
way gave a stronger result than that observed in the actual data.
Because the permutation test involves randomization of the diagnostic
labels, it is a test for the dependence on the actual diagnostic status of
the affected individuals. Moreover, because the actual MES is com-
pared to the distribution of maximal ES values over all pathways
examined in each of the randomized data sets, it accounts for multiple
pathways tested, and no further correction is required9,10.

Decreased expression of genes involved in oxidative
phosphorylation
We applied GSEA to the microarray data described above, using 149
gene sets that we compiled (Supplementary Table 1 online). Of these
gene sets, 113 are grouped according to involvement in metabolic
pathways (derived from public or local curation11) and 36 consist of
gene clusters that are coregulated in a mouse expression atlas of 46 tis-
sues12. The gene sets were selected without regard to the results of the
microarray data from the affected individuals. The top gene set in
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Table 1 Clinical and biochemical characteristics of male subjects with NGT, IGT and DM2

Class P value
NGT IGT DM2 NGT versus IGT IGT versus DM2 NGT versus DM2

n 17 8 18

Age, y 66.1 (1.0) 66.4 (1.6) 65.5 (1.8)

BMI, kg/m2 23.6 (3.4) 27.1 (4.8) 27.3 (4.0) 5.70 × 10–3

WHR 0.91 (0.09) 0.97 (0.04) 0.99 (0.03) 3.00 × 10–2 3.83 × 10–3

Triglycerides, mmol/l 1.03 (0.40) 1.83 (1.60) 2.04 (1.13) 2.63 × 10–3

Cholesterol, mmol/l 5.39 (0.09) 4.60 (1.48) 5.77 (0.97)

OGTT

Glucose 0 min, mmol/l 4.67 (0.50) 5.05 (0.46) 7.83 (2.3) 9.22 × 10–5 2.01 × 10–5

Insulin 0 min, µU/ml 5.41 (3.3) 13.38 (8.9) 12.0 (6.0) 4.05 × 10–2 4.10 × 10–4

Glucose 120 min, mmol/l 6.58 (0.94) 9.15 (0.8) 14.9 (4.0) 2.51 × 10–6 8.91 × 10–6 4.90 × 10–8

Insulin 120 min, µU/ml 33.5 (19.3) 125.1 (66.1) 43.5 (25.6) 5.47 × 10–3 9.73 × 10–3

M value, mg/kg/min 8.74 (3.15) 6.32 (3.08) 4.22 (1.72) 2.30 × 10–5

VO2max, ml O2/kg/min 32.1 (5.46) 26.5 (4.6) 24.3 (5.6) 1.72 × 10–2 3.09 × 10–4

Glycogen, mmol/kg 371.1 (77.0) 326.5 (88.0) 350.6 (97.8)

Type I fibers

Number, % 37.2 (13.5) 33.5 (3.6) 36.4 (9.3)

Area, % 39.1 (14.4) 32.7 (0.91) 40.1 (10.7) 2.35 × 10–2

Capillaries/fiber 3.91 (0.72) 4.05 (1.04) 4.14 (0.75)

Type IIb fibers

Number, % 73.8 (42.1) 60.2 (51.4) 72.2 (36.7)

Area, % 31.3 (18.0) 24.7 (18.3) 36.2 (15.4)

Capillaries/fiber 2.97 (0.71) 3.05 (0.87) 3.02 (0.65)

Values are mean (s.d.). OGTT, oral glucose tolerance test. M value is the total body glucose uptake. VO2max is the total body aerobic capacity. Only values of P < 0.05
are shown for pairwise comparisons, using a two-sided t-test.
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A R T I C L E S

GSEA analysis yielded an MES score (MES = 346) that was significant
at P = 0.029 over the 1,000 permutations of the 149 pathways. That is,
in only 29 of 1,000 permutations did the top pathway (of the 149)
exceed the score achieved by the top pathway achieved using the actual
diagnostic labels.

The maximal ES score was obtained for an internally curated set
consisting of genes involved in oxidative phosphorylation (we refer to
this gene set as OXPHOS). Notably, the four gene sets with the next
highest ES scores overlap with this OXPHOS gene set, and their
enrichment is almost entirely explained by the overlap: a locally
curated set of genes involved in mitochondrial function, a set of genes
identified with the keyword ‘mitochondria,’ a cluster (referred to here
as c20) of coregulated genes derived from the comparison of publicly
available mouse data and a set of genes related to oxidative phosphory-
lation defined at the Affymetrix website11.

Examination of the individual expression values for the 106
OXPHOS genes identifies the source of this signal (Fig. 2). Although
the typical decrease in expression for individual OXPHOS genes is
very modest (∼ 20%), the decrease is consistent across the set: 89% (94
of 106) of the genes showing lower expression in individuals with
DM2 relative to those with NGT (Fig. 2). As controls, we confirmed
that the result is independent of specific aspects of data processing
(such as scaling, thresholding, filtering) or of selection of difference
metrics (data not shown). Moreover, the result identified by GSEA is
supported by previous observations: others have suggested that oxida-
tive capacities are altered in insulin resistant muscle13,14, and recent
microarray analyses of human diabetic muscle have identified genes in
oxidative phosphorylation among their top-ranked genes (ref. 7 and
M.E. Patti et al., manuscript submitted).

OXPHOS-CR: a coregulated subset of OXPHOS genes
One of the overlapping gene sets identified by GSEA is cluster c20,
defined as a set of genes that are tightly coregulated across many tis-
sues. The partial overlap of OXPHOS with the coregulated cluster led
us to ask whether all OXPHOS genes are coordinately regulated. We
examined transcriptional coregulation of mouse homologs of
OXPHOS genes across a mouse tissue expression atlas12. This identi-
fied a previously unrecognized subset of the OXPHOS biochemical
pathway, corresponding to about two-thirds of the OXPHOS genes,
that are strongly correlated across mouse tissues (r = 0.61; Fig. 3a).

We term this subset OXPHOS-CR (oxidative phosphorylation co-
regulated). The remaining OXPHOS genes show little co-regulation
with OXHPOS-CR genes or with each other (Fig. 3a). The OXPHOS-
CR subset was strongly expressed in 3 of 46 tissues: skeletal muscle,
heart and brown fat. We note that these are the principal sites of
insulin-mediated glucose disposal in mice.

We next asked whether the downregulation of OXPHOS observed
in DM2 was a general property of all OXPHOS genes or was specific
to OXPHOS-CR genes. Notably, the bulk of the statistical signal we
observe in GSEA is accounted for by OXPHOS-CR (Supplementary
Fig. 1 online). Namely, the OXPHOS-CR subset showed a stronger
mean deviation than the remainder of the OXPHOS gene set (mean
SNR of 0.235 versus 0.128; P = 0.04) and was itself significant in the
GSEA analysis (nominal P value = 0.001, as compared with nominal
P = 0.226 for the remainder of the OXPHOS set). To see if these
changes were secondary to hyperglycemia per se or preceded the onset
of frank diabetes, we compared expression of OXPHOS-CR in indi-
viduals with NGT to that in individuals with IGT, the pre-diabetic
state. We found that expression of OXPHOS-CR was also downregu-
lated in individuals with IGT (nominal P < 10–4). This suggests that
downregulation of OXPHOS-CR precedes onset of hyperglycemia.
Thus, GSEA allowed us to detect a subset of OXPHOS genes, called
OXPHOS-CR, with three key properties: (i) they are members of the
oxidative phosphorylation pathway (ii) they are tightly coregulated
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Figure 1  Schematic overview of GSEA. The goal of GSEA is to determine
whether any a priori defined gene sets (step 1) are enriched at the top of
a list of genes ordered on the basis of expression difference between two
classes (for example, highly expressed in individuals with NGT versus
those with DM2). Genes R1,…RN are ordered on the basis of expression
difference (step 2) using an appropriate difference measure (for example,
SNR). To determine whether the members of a gene set S are enriched at
the top of this list (step 3), a Kolmogorov-Smirnov (K-S) running sum
statistic is computed: beginning with the top-ranking gene, the running
sum increases when a gene annotated to be a member of gene set S is
encountered and decreases otherwise. The ES for a single gene set is
defined as the greatest positive deviation of the running sum across all N
genes. When many members of S appear at the top of the list, ES is high.
The ES is computed for every gene set using actual data, and the MES
achieved is recorded (step 4). To determine whether one or more of the
gene sets are enriched in one diagnostic class relative to the other (step 5),
the entire procedure (steps 2–4) is repeated 1,000 times, using permuted
diagnostic assignments and building a histogram of the maximum ES
achieved by any pathway in a given permutation. The MES achieved using
the actual data is then compared to this histogram (step 6, red arrow),
providing us with a global P value for assessing whether any gene set is
associated with the diagnostic categorization.
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A R T I C L E S

across many tissues and are highly expressed in the principal sites of
insulin-mediated glucose disposal and (iii) their expression is subtly
but consistently lower in muscle from individuals with both the pre-
diabetic state IGT and DM2.

PGC-1α induces expression of OXPHOS-CR
The strong correlation in expression of the OXPHOS-CR genes and
their coordinated downregulation in diabetic muscle led us to explore
mechanisms that might mediate this tight control. We reasoned that
peroxisome proliferator-activated receptor γcoactivator 1α (PGC-1α,
encoded by PPARGC1), a cold-inducible regulator of mitochondrial
biogenesis, thermogenesis and skeletal muscle fiber–type switch-
ing15–17, was a prime candidate for mediating these effects. Consistent
with this hypothesis, we observed that mean levels of PPARGC1 tran-
script were similarly lower (by ∼ 20%) in the diabetic muscle and noted
that the promoters of several of the OXPHOS-CR genes have been
reported to contain binding sites for nuclear respiratory factor 1, a
transcription factor coactivated by PGC-1α18.

To test directly whether OXPHOS-CR genes might be transcrip-
tional targets of PGC-1α, we expressed PGC-1α in a mouse skeletal

muscle cell line using an adenoviral expression vector17 and used DNA
microarrays to profile expression of the OXPHOS genes over a 3-d
period. We found that a subset of OXPHOS genes was strongly upreg-
ulated in a time-dependent manner in response to PGC-1α and that
this subset corresponded almost precisely to OXPHOS-CR (Fig. 3b).
These in vitro results support the hypothesis that PGC-1α has a role in
the regulation of OXPHOS-CR, both across the mouse tissue com-
pendium and in the observed downregulation in diabetes.

Expression of OXPHOS-CR and measures of whole-body
physiology
Metabolic control theory suggests that small adjustments in many
sequential steps of a metabolic pathway can lead to a substantial
change in the total flux through the pathway, whereas large changes in
a single enzyme might have no measurable effects19. To test the
hypothesis that differences in OXPHOS-CR gene expression in dia-
betic individuals might be related to changes in total body metabo-
lism, we examined the relationships between diabetes status,
expression of OXPHOS-CR genes and maximal oxygen uptake
(VO2max) as measured in affected individuals (Fig. 4). Consistent
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Figure 3  OXPHOS-CR represents a coregulated subset
of OXPHOS genes responsive to the transcriptional
coactivator PGC-1α. (a) Normalized expression profile
of 52 mouse homologs of the human OXPHOS genes
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were hierarchically clustered32. The pink tree on the
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NDUFS5, SDHA, SDHB, UQCRB and UQCRC1.
(b) Normalized expression profile of OXPHOS mouse
homologs in a mouse skeletal muscle cell line
during a 3-d time course in response to PGC-1α. The
expression profile includes infection with control
vectors (expressing GFP) or with vectors expressing
PGC-1α before infection (d 0) and 1, 2 and 3 d after
adenoviral infection, all done in duplicate.
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A R T I C L E S

with previous reports20, diabetes and VO2max were correlated in
affected individuals (R2

adj = 0.28, P = 0.0005). Notably, we found that
the expression of OXPHOS-CR genes in muscle was strongly corre-
lated with VO2max (R2

adj = 0.22, P = 0.0012; Fig. 4), a measure of
total-body physiology. The top ranking OXPHOS-CR gene, ubiquinol
cytochrome c reductase binding protein (UQCRB), was even a
stronger predictor (R2

adj =0.31, P < 0.0001). Expression of OXPHOS-
CR genes is not merely a proxy for diabetes status, however, because a
two-variable regression of VO2max on diabetes status and OXPHOS-
CR expression level shows that both variables contribute significantly
to the correlation (P = 0.05 for the model with both variables as com-
pared to the model with only diabetes status).

These results do not seem to be secondary to other known predic-
tors of oxidative capacity. We found no relationship between body
mass index or waist-to-hip ratio and OXPHOS-CR gene expression
(R2

adj < 0.01 in both cases). In addition, there was no significant rela-
tionship between quantitative measures of fiber types and OXPHOS-
CR expression (data not shown). Thus, decreased in expression of
OXPHOS-CR genes in muscle seems to be associated with changes in
total-body aerobic capacity, even beyond their correlation to diabetes
status, body habitus or muscle-fiber type.

DISCUSSION
Our results indicate that decreases in expression of OXPHOS-CR
genes accompany, and might possibly contribute to, DM2. The rela-
tionship between OXPHOS and DM2 is richly supported by clinical
investigation, exercise physiology, pharmacology and genetics. For
example, the mitochondria of diabetic individuals show ultrastruc-
tural changes as well as decreases in oxidative phosphorylation activ-
ity13,21. Whole-body V02max (which we have shown to be correlated
with OXPHOS-CR expression) predicts future development of DM2
(ref. 20). Exercise and caffeine consumption both increase oxidative
phosphorylation capacity and can delay or prevent onset of dia-
betes17,20,22,23. Inherited mutations in mitochondrial DNA, which
encodes 13 subunits of the electron transport chain, and whose copy
number is under the control of PGC-1α16, cause rare, inherited forms
of diabetes24. Missense variants in PGC1-α have been reported to be
associated with DM2 (refs. 25,26), although it is not yet clear if this
association is reproducible27. Moreover, of the handful of genes in
which variants have been clearly shown to influence risk of human
diabetes, two are transcriptional partners of PGC1-α: HNF4-α (muta-
tions of which cause early-onset diabetes) and PPARG, in which the
Pro12Ala polymorphism is associated with risk of DM2 (reviewed in
ref. 24). Further investigation will be required to test the hypothesis
that the PGC-1α-regulated, OXPHOS-CR genes might represent a
common link to these varied phenomena. If this hypothesis is valid, it
would suggest that modulation of OXPHOS-CR activity might repre-
sent a target for the prevention and treatment of DM2.

More generally, methods like GSEA may be valuable in efforts to
relate genomic variation to disease and measures of total-body physi-
ology. Single-gene methods are powerful only when the individual
gene effect is marked and the variance is small across individuals,
which may not be the case in many disease states. Methods like GSEA
are complementary to single-gene approaches and provide a frame-
work with which to examine changes operating at a higher level of bio-
logical organization. This may be needed if common, complex
disorders typically result from modest variation in the expression or
activity of multiple members of a pathway. As gene sets are systemati-
cally assembled using functional and genomic approaches, methods
such as GSEA will be valuable in detecting coordinated variation in
gene function that contributes to common human diseases.

METHODS
Human subjects and clinical measurements. We selected 54 men of similar
age but with varying degree of glucose tolerance who had been participating in
The Malmö Prevention Study in southern Sweden for more than 12 years20.
The investigation was approved by the Ethics Committee at Lund University,
and informed consent was obtained from each of the volunteers. All subjects
were Northern Europeans, and their glucose tolerance status was assessed using
standardized 75-gram oral glucose tolerance test (OGTT) and by applying
WHO85 criteria20. At the initial OGTT done 10 years earlier, none of the men
had DM2 (ref. 20). An OGTT done at the time of the biopsy showed that 20 of
the subjects had developed DM2, 8 fulfilled the criteria for IGT and 26 had
NGT. As diabetes was diagnosed at the time of the repeat OGTT, none of the
subjects were on medication for hyperglycemia or diabetes-related conditions.

Anthropometric and insulin sensitivity measures were done as previously
described28. We measured height, weight, waist-to-hip ratio and fat-free mass on
the day of the euglycemic clamp. We measured VO2max using an incremental
work-conducted upright exercise test with a bicycle ergometer (Monark Varberg)
combined with continuous analysis of expiratory gases and minute ventilation.
Exercise was started at a workload varying between 30W and 100W depending on
the previous history of endurance training or exercise habits and then increased by
20–50W every 3 min until a perceived exhaustion or a respiratory quotient of 1.0
was reached. Maximal aerobic capacity was defined as the VO2 during the last 30 s
of exercise and is expressed per lean body mass. We determined insulin sensitivity
with a standard 2-h euglycemic hyperinsulinemic clamp combined with infusion
of tritiated glucose to estimate endogenous glucose production and indirect
calorimetry (Deltatrac, Datex Instrumentarium) to estimate substrate oxida-
tion28. We calculated the rate of glucose uptake (also referred to as the M value)
from the infusion rate of glucose and the residual rate of endogenous glucose pro-
duction measured by the tritiated glucose tracer during the clamp.
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Figure 4   OXPHOS-CR predicts total-body aerobic capacity (VO2max).
(a) Linear regression was used to model VO2max with diabetes status, the
mean centroid of OXPHOS-CR gene expression, expression of UQCRB or in
combination as explanatory (predictor) variables. The explanatory power and
significance of the model are shown in the table. (b) Linear regression of
VO2max against the mean centroid of OXPHOS-CR gene expression.
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A R T I C L E S

We took percutaneous muscle biopsy samples (20–50 mg) from the vastus
lateralis muscle under local anesthesia (1% lidocaine) after the 2-h euglycemic
hyperinsulinemic clamp using a Bergström needle29. We determined fiber-
type composition and glycogen concentration as previously described30. We
quantified and calculated the fibers using the COMFAS image analysis system
(Scan Beam).

Cell culture and adenoviral infection. We cultured mouse myoblasts (C2C12
cells) and differentiated them into myotubes as previously described16. After
3 d of differentiation, we infected them with an adenovirus expressing either
green fluorescent protein (GFP) or PGC-1α as previously described17.

mRNA isolation, target preparation and hybridization. We prepared targets
from human biopsy or mouse cell lines as previously described3 and hybridized
them to the Affymetrix HG-U133A or MG-U74Av2 chip, respectively. We
selected only those scans with 10% Present calls and a GAPD 3′/GAPD 5′
expression ratio <1.33. We obtained gene expression data for 54 human sam-
ples, but only 43 met these selection criteria; the analysis in this paper is limited
to these 43 individuals.

Data scaling and filtering. We subjected human microarray data to global scal-
ing to correct for intensity-related biases. For each scan, we binned all genes
according to their expression intensity and recorded the median intensity of
each to serve as a calibration curve for that scan. We then scaled the expression
to the calibration curve of the scan from one individual with NGT (individual
mm12), which we visually inspected and deemed high-quality, using a linear
interpolation between the calibration points. We then filtered the 22,283 genes
on the HG-U133A chip to eliminate genes that had extremely low expression. A
previous study suggested that an Affymetrix average difference level of 100 cor-
responds to an extremely low level (‘not expressed’; ref. 12). Therefore, we only
considered genes for which there was at least a single measure (average differ-
ence) greater than 100. Of the 22,283 genes on the HG-U133A chip, 10,983
genes met this filtering criterion.

Single gene microarray analysis. We carried out microarray analysis to identify
individual genes that are significantly different between diagnostic classes using
two software packages. First, we carried out marker analysis as previously
described using GeneCluster3. Significance of individual genes was tested by
permutation of class labels (5,000 iterations). We used both the t-test and SNR
difference metrics in these analyses, both yielding comparable results. Second,
we used the software package SAM, using a ∆ = 0.5, to search for gene expres-
sion values significantly different between classes6.

Compilation of gene sets. We analyzed 149 gene sets consisting of manually
curated pathways and clusters defined by public expression compendia
(Supplementary Table 1 online). First, we used two different sets of metabolic
pathway annotations. We manually curated genes belonging to the following
pathways: free fatty-acid metabolism, gluconeogenesis, glycolysis, glycogen
metabolism, insulin signaling, ketogenesis, pyruvate metabolism, reactive
oxygen species homeostasis, Krebs cycle, oxidative phosphorylation
(OXPHOS) and mitochondria, using standard textbooks, literature reviews
and LocusLink. We also downloaded NetAFFX11 annotations (October 2002)
corresponding to GenMAPP metabolic pathways. To identify sets of coregu-
lated genes, we used self-organizing maps to group the GNF mouse expression
atlas into 36 clusters12,31. Genes in these 36 groups were converted to
Affymetrix HG-U133A probe sets using the ortholog tables available at the
NetAFFX website (October 2002).

Rationale for grouped gene analysis. Consider a microarray data set with sam-
ples in two categories, A and B. For the sake of simplicity, let the size of A and B
each be n. Consider a gene set S for which the expression levels differ between
samples of A and B. Model the data set so that the entry Dij for gene i and sam-
ple j is normally distributed with mean µij and standard deviation σ, where

0,

i ∈ S, j ∈ B
i ∈ S, j ∈ A       .
i ∉ S

{µij = 
–α,
+α,

Then the SNR for an individual gene in S is proportional to

Suppose, on the other hand, that we know S and add the expression levels for
all genes in S. Then the SNR is proportional to

where M is the number of genes in S. This increases the mean of our statistic
(which is standard normal for the null hypothesis of no gene set association) by
a factor of ��M. If the noise is in fact correlated for genes of S, this reduces the
benefit, but we can still expect a large gain. In practice we will not be able to
select a gene set containing fully concordant expression levels, but as long as an
appreciable fraction of our gene set has this property, we can expect a benefit
from the grouped gene approach.

Gene Set Enrichment Analysis (GSEA). GSEA determines if the members of a
given gene set are enriched among the most differentially expressed genes
between two classes. First, the genes are ordered on the basis of a difference
metric. The results presented in the current manuscript use the SNR difference
metric, which is simply the difference in means of the two classes divided by the
sum of the standard deviations of the two diagnostic classes. In general, other
difference metrics can also be used.

For each gene set, we then make an enrichment measure called the ES, which
is a normalized Kolmogorov-Smirnov statistic. Consider the genes R1,.., RN

that are ordered on the basis of the difference metric between the two classes
and a gene set S containing G members. We define

if Ri is not a member of S, or

if Ri is a member of S.
We then compute a running sum across all N genes. The ES is defined as

or the maximum observed positive deviation of the running sum. ES is mea-
sured for every gene set considered. To determine whether any of the given gene
sets shows association with the class phenotype distinction, we permute the
class labels 1,000 times, each time recording the maximum ES over all gene sets.
In this regard, we are testing a single hypothesis. The null hypothesis is that no
gene set is associated with the class distinction.

In this manuscript, after identifying OXPHOS-CR as a subset of co-regu-
lated OXPHOS genes, we tested it (a single gene set) for association with clinical
status using GSEA. Because OXPHOS-CR is not independent of the OXPHOS
set interrogated in the initial analysis, this cannot be viewed as an independent
hypothesis. For this reason, these P values are explicitly marked as nominal P
values.

GSEA has been implemented as a software tool for use with microarray data
and will be presented in fuller detail, including a discussion of different vari-
eties of multiple hypothesis testing and applications to other biomedical prob-
lems, in a companion paper (A.S. et al., manuscript in preparation).

Evaluating OXPHOS coregulation in mouse expression data sets. We used
the NetAFFX website to identify probe sets on the mouse expression chips
corresponding to human OXPHOS probe sets. We identified a total of 114
(106 of which passed our filtering criterion) probe sets corresponding to the
human genes related to oxidative phosphorylation. Using the October 2002

Σmax
1 ≤ j ≤ N

Xi
i=1

j

N–G
G

Xi =�

G
N–G
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nM ,α
σ
�
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�
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A R T I C L E S

ortholog tables at NetAFFX, we identified 61 mouse orthologs on the
Affymetrix MG-U74Av2 chip. Of these 61 probe sets, 52 were represented in
the GNF mouse expression atlas12. These expression data were normalized to
a mean of 0 and a variance of 1. Data were hierarchically clustered and visu-
alized using the Cluster and TreeView software packages32. We parsed these
52 genes into 32 coregulated probe sets and 20 probe sets that are not coreg-
ulated, based on the dendrogram in Figure 3. Forty distinct HG-U133A
probe sets mapped to the 32 coregulated mouse probe sets, and 19 distinct
HG-U133A probe sets mapped to the 20 mouse probe sets that are not coreg-
ulated. Five HG-U133A probe sets are shared between these two groups, rep-
resenting ambiguous cases (human probe sets that map to two mouse probe
sets, one of which is coregulated and the other of which is not). We omitted
these five ambiguous human probe sets from our analysis. This left a total of
35 HG-U133A probe sets, which we call OXPHOS-CR genes, and a total of
14 HG-U133A probe sets, which we call OXPHOS not CR. Thirty-four and
13 of these genes, respectively, passed our filtering criteria, and these were
used in Supplementary Figure 1 online as well as in the OXPHOS-CR analy-
sis described in the paper.

Linear regression analysis. We generated linear regression models using SAS
(SAS Institute). We used clinical variables as dependent variables and OXPHOS-
CR gene expression levels or other clinical/biochemical measures as the indepen-
dent (explanatory or predictor) variables. To compute the mean centroid of
OXPHOS-CR, we normalized the gene expression levels of the 34 OXPHOS-CR
genes to a mean of 0 and a variance of 1 across all 43 individuals. The OXPHOS-
CR mean centroid vector is simply the mean of these 34 expression vectors. In
some regression analyses, we introduced dummy variables to represent diabetes
status. For the regressions we carried out, we report the adjusted squared correla-
tion coefficient (R2

adj), which corrects for the degrees of freedom.

URLs. Further details on microarray data sets and analysis are available at
http://www-genome.wi.mit.edu/mpg/oxphos/. Further data on microarrays
are available at http://www-genome.wi.mit.edu/cancer/, http://www-stat.stan-
ford.edu/∼ tibs/SAM/ and http://www.affymetrix.com/. The gene expression
atlas is available at http://expression.gnf.org/.

Note: Supplementary information is available on the Nature Genetics website.
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