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Abstract In this paper we are addressing a new paradigm in the field of simulation-

based engineering sciences (SBES) to face the challenges posed by current ICT tech-

nologies. Despite the impressive progress attained by simulation capabilities and tech-

niques, some challenging problems remain today intractable. These problems, that are

common to many branches of science and engineering, are of different nature. Among

them, we can cite those related to high-dimensional problems, which do not admit

mesh-based approaches due to the exponential increase of degrees of freedom. We de-

veloped in recent years a novel technique, called Proper Generalized Decomposition

(PGD). It is based on the assumption of a separated form of the unknown field and it

This work has been partially supported by the Spanish Ministry of Science and Competitive-
ness, through grants number CICYT-DPI2011-27778-C02-01/02. Professor Chinesta is also
supported by the Institut Universitaire de France.

F. Chinesta
EADS Foundation Chair ”Advanced Computational Manufacturing Processes”
GEM, UMR CNRS - Centrale Nantes
Institut Universtaire de France
1 rue de la Noe, BP 92101, F-44321 Nantes cedex 3, France
E-mail: Francisco.Chinesta@ec-nantes.fr
A. Leygue & F. Boredeu
EADS Foundation Chair ”Advanced Computational Manufacturing Processes”
GEM, UMR CNRS - Centrale Nantes
1 rue de la Noe, BP 92101, F-44321 Nantes cedex 3, France
E-mail: {Adrien.Leygue,Felipe.Bordeu}@ec-nantes.fr
E. Cueto & D. Gonzalez
I3A, Universidad de Zaragoza
Maria de Luna s/n, 50018 Zaragoza, Spain
E-mail: {ecueto,gonzal}@unizar.es
A. Ammar
Arts et Métiers ParisTech
2 Boulevard du Ronceray, BP 93525, F-49035 Angers cedex 01, France
E-mail: Amine.AMMAR@ensam.eu
A. Huerta
Laboratori de Calcul Numeric
Universidad Politecnica de Cataluña
Jordi Girona, 1 Campus Nord, C2, E-08034 Barcelona, Spain
E-mail: antonio.huerta@upc.es



2

has demonstrated its capabilities in dealing with high-dimensional problems overcom-

ing the strong limitations of classical approaches. But the main opportunity given by

this technique is that it allows for a completely new approach for classic problems, not

necessarily high dimensional. Many challenging problems can be efficiently cast into

a multidimensional framework and this opens new possibilities to solve old and new

problems with strategies not envisioned until now. For instance, parameters in a model

can be set as additional extra-coordinates of the model. In a PGD framework, the re-

sulting model is solved once for life, in order to obtain a general solution that includes

all the solutions for every possible value of the parameters, that is, a sort of virtual

chart. Under this rationale, optimization of complex problems, uncertainty quantifica-

tion, simulation-based control and real-time simulation are now at hand, even in highly

complex scenarios, by combining an off-line stage in which the general PGD solution,

the virtual chart, is computed, and an on-line phase in which, even on deployed, hand-

held, platforms such as smartphones or tablets, real-time response is obtained as a

result of our queries.

1 Introduction

1.1 Motivation

Six unique initiatives have been recently selected (and funded with 100 millions of

euros per year) by the European Research Council based solely on their potential

for realizing scientific breakthroughs and influencing Europe’s social and industrial

challenges, including health. Their aim will then be to deliver major breakthroughs

in information and communication technologies (ICT), with the potential to provide

solutions to some of society’s biggest challenges. Despite being different there is a

common ingredient to all of them, which is to emphasize the necessity of making use

of advanced simulation-driven sciences and engineering, as will be highlighted below.

The six contenders, from which the two flagship initiatives will be selected, are: [1]

1. Guardian Angels for a Smarter Life [2]: a project aimed at developing tiny de-

vices without batteries that act like thinking and autonomous personal assistants,

providing information and communication technologies to assist people in all sorts

of complex situations delivering features and characteristics that go well beyond

human capabilities.

2. The Human Brain Project [3] whose goal is to understand the way the human brain

works. The long-term goal of the Human Brain Project is to build the informat-

ics, modeling, and supercomputing technologies that are needed to simulate and

understand the human brain.

3. IT Future of Medicine [4] proposes a data-driven, individualized medicine of the

future, based on the molecular/physiological/anatomical data from individual pa-

tients. The project outcomes will enable data-driven real-time calculation of health,

disease, therapy and its effects for individual patients.

4. Robot Companions for Citizens [5]: a project devoted to developing soft-skinned

and intelligent robots with highly developed perceptive, cognitive and emotional

skills. Robot Companions for Citizens will be based on the novel solid articulated

structures with flexible properties displaying soft behavior, haptic devices and sim-

ulation based real time control in deployed systems. These companions will also
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have new levels of perceptual, cognitive and emotive capabilities and be aware of

their physical and social surroundings and respond accordingly.

5. FuturICT Knowledge Accelerator and Crisis-Relief System [6]: What if global scale

computing facilities were available that could analyze most of the data available

in the world? What insights could scientists gain about the way society functions?

What new laws of nature would be revealed? Could society discover a more sustain-

able way of living? ICT (Information and Communication Technology) can analyze

vast amounts of data and complex situations so as to better predict natural disas-

ters, or manage and respond to man-made disasters that cross national borders or

continents.

6. Graphene Science and technology for ICT and beyond [7]: Graphene is a new sub-

stance developed by atomic and molecular scale manipulation that could replace

silicon as the wonder material of the 21st century. This aims to explore revolu-

tionary potentials, in terms of both conventional as well as radically new fields of

Information and Communication Technologies applications.

It is now well known [3] that the human brain consumes 4 watts for performing

some tasks that today’s computers will require the power of several nuclear plants. It

is then clear that our computers and algorithms for addressing the models encountered

in science and engineering are definitively suboptimal. The above six flagship projects

share some key aspects related to efficient computational sciences. It is expected that

these projects will reach a certain number of breakthroughs, but all of them will face

important limitations of today’s computer capabilities and, notably, simulation tech-

niques.

All these society needs require fast and accurate solutions, in general data-driven,

of very complex models, involving an unimaginable amount of information, in most

cases in real time and on deployed platforms. Up to now, the solution of complex

models, preferably fast and accurate, is addressed by using high performance comput-

ing and hyper powerful computing platforms. Obviously the consecution of the above

“dreams” will require as much as computational power (supercomputing) as possible,

and consequently, advances in hardware and software for high-performance computing

will be necessary. But at the same time, there is a need for a new generation simula-

tion techniques, beyond high-performance computing or nowadays approaches (most

of them proposed 40 years ago), to simply improve efficiency or to allow getting results

when other alternatives fail in the above challenging scenarios.

All the above challenging problems are data-driven. The importance of Dynamic

Data-Driven Application Systems –DDDAS – in the forthcoming decades has been

already noticed by the NSF Blue Ribbon Panel on Simulation Based Engineering Sci-

ences report, that in 2006 included DDDAS as one of the five core issues or challenges

in the field for the next decade (together with multi-scale simulation, model valida-

tion and verification, handling large data and visualization). This panel concluded

that “Dynamic data-driven application systems will rewrite the book on the validation

and verification of computer predictions” and that “research is needed to effectively use

and integrate data-intensive computing systems, ubiquitous sensors and high-resolution

detectors, imaging devices, and other data-gathering storage and distribution devices,

and to develop methodologies and theoretical frameworks for their integration into

simulation systems” [61] [32] [62]. Moreover, the NSF believes that “... The DDDAS

community needs to reach a critical mass both in terms of numbers of investigators,

and in terms of the depth, breadth and maturity of constituent technologies ...” [61].
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1.2 Nowadays computational issues

Today many problems in science and engineering remain intractable, in spite of the im-

pressive progresses attained in modeling, numerical analysis, discretization techniques

and computer science during the last decade, because their numerical complexity, or

the restrictions imposed by different requirements (real-time on deployed platforms,

for instance) make them unaffordable for today’s technologies.

We can enumerate different challenging scenarios for efficient numerical simulations:

– The first one concerns models that are defined in high dimensional spaces, usually

encountered in quantum chemistry describing the structure and mechanics of ma-

terials [11] [25], the kinetic theory description of complex materials [20] [48], social

dynamics and economic systems, vehicular traffic flow phenomena, complex bio-

logical systems involving mutation and immune competition, crowds and swarms

encountered in congested and panic flows, among many other unimaginable pos-

sibilities (see [18] and the references therein); the chemical modeling in too dilute

systems where the concept of concentration cannot be used, that results in the

so-called chemical master equation governing for example cell signaling and other

phenomena in molecular biology [16].

Models defined in high dimensional spaces suffer the so-called curse of dimension-

ality. If one proceeds to the solution of a model defined in a space of dimension d

by using a standard mesh based discretization technique, where M nodes are used

for discretizing each space coordinate, the resulting number of nodes reaches the

astronomical value of Md. With M ≈ 103 (a very coarse description in practice)

and d ≈ 30 (a very simple model) the numerical complexity results 1090. It is im-

portant to recall that 1080 is the presumed number of elementary particles in the

universe!.

Traditionally, high dimensional models were addressed by using stochastic simu-

lations. However these techniques have their own challenges: variance reduction

is always an issue and the construction of distribution functions in high dimen-

sional spaces remains in most cases unaffordable. It is also quite difficult within the

stochastic framework to implement parametric or sensitivity analysis that go be-

yond the brute force approach of computing a large number of expensive, individual

simulations.

– Online control can be carried out following different approaches. The most common

one consists in considering systems as a black box whose behavior is modeled by

a transfer function relating certain inputs to certain outputs. This modeling that

may seem poor has as main advantage the possibility of proceeding rapidly due to

its simplicity. This compromise between accuracy and rapidity was often used in

the past and this pragmatic approach has allowed us to control processes and to

optimize them, once the transfer function modeling the system is established.

The establishment of such goal-oriented transfer function is the trickiest point. For

this purpose, it is possible to proceed from a sometimes overly simplified physical

model or directly from experiments (allowing us to extract a phenomenological goal-

oriented transfer function) or from a well-balanced mixture of both approaches. In

all cases, the resulting modeling can only be applied within the framework that

served to derive it. However, on one hand, the fine description of systems requires a

sufficiently detailed description of them and, in that case, traditional goal-oriented

simplified modeling becomes inapplicable. On the other hand, actual physical mod-
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els result, in general, in complex mathematical objects, non-linear and strongly

coupled partial differential equations. Such mathematical objects are representing

physical reality up to a certain degree of accuracy. However, the available numerical

tools capable of solving these complex models require the use of powerful computers

that can require hours, days and weeks to solve them. Known as numerical simula-

tion, its output solution is very rich but it seems inapplicable for control purposes

that require fast responses, often in real-time.

Until now, numerical simulation has been used offline but in some cases it allows

us to define simplified models (with their inherent limitations and drawbacks) run-

ning in real-time that could be used online but such simplified modeling has the

previously quoted drawbacks.

– Many problems in parametric modeling, inverse identification, and process or shape

optimization, usually require, when approached with standard techniques, the di-

rect computation of a very large number of solutions of the concerned model for

particular values of the problem parameters. When the number of parameters in-

creases such a procedure becomes inapplicable.

– Traditionally, Simulation-based Engineering Sciences - SBES - relied on the use of

static data inputs to perform the simulations. These data could be parameters of

the model(s) or boundary conditions. The word static is intended to mean here

that these data could not be modified during the simulation. A new paradigm

in the field of Applied Sciences and Engineering has emerged in the last decade.

Dynamic Data-Driven Application Systems (DDDAS) constitute nowadays one of

the most challenging applications of simulation-based Engineering Sciences. By

DDDAS we mean a set of techniques that allow the linkage of simulation tools

with measurement devices for real-time control of simulations. DDDAS entails the

ability to dynamically incorporate additional data into an executing application,

and in reverse, the ability of an application to dynamically steer the measurement

process.

In this context, real time simulators are needed in many applications. One of the

most challenging situations is that of haptic devices, where forces must be translated

to the peripheral device at a rate of 500 Hz. Control, malfunctioning identification

and reconfiguration of malfunctioning systems also need to run in real time. All

these problems can be seen as typical examples of DDDAS.

– Augmented reality is another area in which efficient (fast and accurate) simulation

is urgently needed. The idea is supplying in real time appropriate information to the

reality perceived by the user. Augmented reality could be an excellent tool in many

branches of science and engineering. In this context, light computing platforms are

appealing alternatives to heavy computing platforms that in general are expensive

and whose use requires technical knowledge.

– Inevitable uncertainty. In science and engineering, in its widest sense, it now seems

obvious that there are many causes of variability. The introduction of such vari-

ability, randomness and uncertainty is a priority for the next decade. Although it

was a priority in the preceding decade, the practical progress attained seems fairly

weak.

While the previous list is by no means exhaustive, it includes a set of problems with

no apparent relationship between them that can however be treated in a unified manner

as will be shown in what follows. Their common ingredient is our lack of capabilities

(or knowledge) to solve them numerically in a direct, traditional way.
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2 Charts in science and engineering

The human being throughout the history developed several facilities for giving fast re-

sponses to a variety of questions. Thus, abaci were used 2700 years B.C. in Mesopotamia.

This abacus was a sort of counting frame primarily used for performing arithmetic cal-

culations. We associate this abacus to a bamboo frame with beads sliding on wires,

however, originally they were beans or stones moved in grooves in sand or on tablets

of wood, stone, or metal. The abacus was in use centuries before the adoption of the

written modern numeral system and is still widely used by raders. There are many

variants, the Mesopotamian abacus, the Egyptian, Persian, Greek, Roman, Chinese,

Indian, Japanese, Korean, native American, Russian, etc.

However, the initial arithmetic needs were rapidly complemented with more com-

plex representations. We are considering some few variants:

– Charts appeared for graphical representation of data with multiple meanings. How-

ever, there are common features that provide the chart with its ability to extract

meaning from data. In general a chart is graphical, containing very little text, since

humans infer meaning from pictures quicker than from text. A particular variant

of charts in the Nomogram.

– Nomography, is the graphical representation of mathematical relationships or laws.

It is an area of practical and theoretical mathematics invented in 1880 by Philbert

Maurice d’Ocagne and used extensively for many years to provide engineers with

fast graphical calculations of complicated formulas to a practical precision. Thus, a

nomogram can be considered as a graphical calculating device. There are thousands

of examples on the use of nomograms in all the fields of sciences and engineering.

The former facilities allowed for fast calculations and data manipulations. Nomo-

grams can be easily constructed when the mathematical relationships that they express

are purely algebraic, eventually non-linear. In those cases it was easy to represent some

outputs as a function of some inputs. The calculation of these data representations was

performed off-line and then used on-line in many branches of engineering sciences for

design and optimization.

However, the former procedures fail when addressing more complex scenarios. Thus,

sometimes engineers manipulate not properly understood physics and in that case the

construction of nomograms based on a too coarse modelling could be dangerous. In

that cases one could proceed by making several experiments from which defining a

sort of experiment-based nomogram. In other cases the mathematical object to be

manipulated consists of a system of complex coupled non-linear partial differential

equations, whose solution for each possible combination of the values of the parameters

that it involves is simply unimaginable for the nowadays computational availabilities.

In these cases experiments or expensive computational solutions are performed for

some possible states of the system, from which a simplified model linking the inputs

to the outputs of interest is elaborated. These simplified models have different names:

surrogate models, metamodels, response surface methodologies, ... Other associated

tricky questions are the one that concerns the best sampling strategy (Latin hypercube,

...) and also the one concerning the appropriate interpolation techniques for estimating

the response at an unmeasured position from observed values at surrounding locations.

Many possibilities exist, being Kriging one of the most widely used for interpolating

data.
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All these techniques allow defining a sort of numerical or graphical charts. However,

we must accept a certain inevitable inaccuracy when estimating solutions from the

available data. It is the price to pay if neither experimental measurements nor numerical

solutions of the fine but expensive model are achievable for each possible scenario.

Recently model order reduction opened new possibilities. First, proper orthogonal

decompositions (POD) allows extracting the most significant characteristic of the so-

lution, that can be then applied for solving models slightly different to the ones that

served to defined the reduced approximation bases. There is an extensive literature.

The interested readers can reefer to [63] [54] [19] [24] [39] [9] [56] [57] [58] [59] [12]

[70] and the numerous references therein. The extraction of the reduced basis is the

tricky point when using POD-based model order reduction, as well its adaptivity when

addressing scenarios far from the ones considered when constructing the reduced basis

[68] [69]. Another issue lies in the error control, and its connection with verification

and validation.

The calculation of the reduced basis is not unique. There are many alternatives.

Some ones introduce some improvements on the POD methodology, as is the case of the

Goal Oriented Model Constrained Optimization approach (see [23] and the references

therein) or the modal identification method (see [36] and the references therein). The

Branch Eigenmodes Reduction Method combined with the amalgam method is another

appealing constructor of reduced bases [73].

Another family of model reduction techniques lies in the used of reduced basis

constructed by combining a greedy algorithm and a priori error indicator. It needs for

some amount off-line work but then the reduced basis can be used on-line for solving

different models with a perfect control of the solution accuracy because the availability

of error bounds. When the error is inadmissible, the reduced basis can be enriched by

invoking again the same greedy algorithm. The interested readers can refer to [52] [53]

[72] [67] and the references therein. The main drawback of such an approach is the

amount of data that must be computed, stored and then manipulated.

Separated representations were introduced in the 80s by Pierre Ladeveze that pro-

posed a space-time separated representation of transient solutions involved in strongly

non-linear models, defining a non-incremental integration procedure. The interested

reader can refer to the numerous Ladeveze’s works [40] [41] [42] [43] [44] [45] [64] [55].

Later, separated representations were employed in the context of stochastic modelling

[60] as well as for solving multidimensional models suffering the so-called curse of

dimensionality, some of them never solved before [8]. The techniques making use of

separated representations computed on the fly were called Proper Generalized Decom-

positions – PGD –.

PGD constitutes an efficient multidimensional solver that allows introducing model

parameters (boundary conditions, initial conditions, geometrical parameters, material

and process parameters ...) as extra-coordinates. Then by solving only once and off-line

the resulting multidimensional model we have access to the parametric solution that

can be viewed as a sort of metamodel or virtual chart than can be then used on-line.

In what follows, we are describing within the PGD approach the way of introducing

extra-coordinates of different nature. Later, we will prove the potentiality of such an

approach for the efficient solution of a variety of problems.
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2.1 PGD at a glance

Consider a problem defined in a space of dimension d for the unknown field u(x1, · · · , xd).

Here, the coordinates xi denote any usual coordinate (scalar or vectorial) related

to physical space, time, or conformation space in microscopic descriptions [8] [11],

for example, but they could also include, as we illustrate later, problem parame-

ters such as boundary conditions or material parameters. We seek a solution for

(x1, · · · , xd) ∈ Ω1 × · · · ×Ωd.

The PGD yields an approximate solution in the separated form:

u(x1, · · · , xd) ≈

N
∑

i=1

X
1
i (x1) · . . . ·X

d
i (xd) =

N
∑

i=1

d
∏

j=1

X
j
i (xj) (1)

The PGD approximation is thus a sum of N functional products involving each

a number d of functions X
j
i (xj) that are unknown a priori. It is constructed by suc-

cessive enrichment, whereby each functional product is determined in sequence. At

a particular enrichment step n + 1, the functions X
j
i (xj) are known for i ≤ n from

the previous steps, and one must compute the new product involving the d unknown

functions Xj
n+1(xj). This is achieved by invoking the weak form of the problem under

consideration. The resulting problem is non-linear, which implies that iterations are

needed at each enrichment step. A low-dimensional problem can thus be defined in Ωj

for each of the d functions Xj
n+1(xj).

If M nodes are used to discretize each coordinate, the total number of PGD un-

knowns is N ·M · d instead of the Md degrees of freedom involved in standard mesh-

based discretizations. We will come back later to the issues related to the convergence

and optimality of the separated representations.

2.2 Parametric solutions based virtual charts

In the case of a field depending on the physical space x ∈ Ωx ⊂ R3, the time t ∈ It ⊂ R

and Q parameters p1, · · · , pQ, pj ∈ Ωpj , j = 1, · · · , Q, the solution is sought under the

separated form

u(x, t, p1, · · · , pQ) ≈

N
∑

i=1

Xi(x) · Ti(t) ·

Q
∏

j=1

P
j
i (p

j) (2)

As soon as this solution is available, after solving the multidimensional model within

the PGD framework, we can have access to any possible solution. In fact the represen-

tation (2) implies an approximation of each function. Thus the space functions Xi(x)

could be approximated for example by using a finite element interpolation that implies

knowing the value of each space function Xi(x) at the Mx nodes xk (k = 1, · · · ,Mx)

of the mesh used for approximating them, i.e. Xi(xk). The functions Ti(t) depending

on time will be expressed from the values of those functions at Mt time instants tl
(l = 1, · · · ,Mt), i.e. Ti(tl). Finally, the functions depending on the different parame-

ters P j
i (p

j) will be expressed from the values of those functions at Mpj values of each

parameter p
j
r (r = 1, · · · ,Mpj ), i.e. P

j
i (p

j
r). Thus, the solution consists of N vectors

of size Mx that contain the discrete representation of functions Xi(x), N vectors of
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size Mt that contain the discrete representation of functions Ti(t) and N vectors of

size Mpj that contain the discrete representation of functions P j
i (p

j), j = 1, · · · , Q.

If we imagine that Mx = Mt = Mp1 = · · · = MpQ = M, then the solution

representation involves N · (Q + 2) vectors of size M, that is N · (Q + 2) · M values

instead of the M2+Q involved by an equivalent mesh. If for a while we imagine Q = 10,

M = 100 and N = 10 the separated representation will involve 104 values instead of

1020 involved in a hypothetical equivalent mesh.

Thus, the PGD solver allowing the construction of the separated representation (2)

can be viewed as a solver that constructs on the fly a compressed representation of the

model solution. In the case of 2D models, involving two generic coordinates c1 and c2
and symmetric and positive definite differential operators, the separated representation

constructed by the PGD solver reads:

u(c1, c2) ≈

N
∑

i=1

C
1
i (c1) · C

2
i (c2) (3)

where the number of modes N corresponds to the one involved by the best separated

representation of the model solution u(c1, c2) obtained by applying on it a singular

value decomposition –SVD –. In higher dimensions, the higher-order SVD counterpart,

the so-called High Order SVD (HOSVD) is no more optimal. In any case the PGD

constructor can be viewed as a sort of “a priori” HOSVD. Some mathematical results

can be found in [13] [49] and the review [29] and the references therein.

When the differential operator involved in the model is non symmetric, the sepa-

rated representation obtained by applying any of the nowadays available PGD solvers

is suboptimal, that is, the number of terms in the finite sum N is higher that the

number of modes that the SVD (in 2D) or its higher order counterpart would require

when performing an “a posteriori” decomposition of the model solution.

In any case, even when PGD calculates suboptimal separated representations, at

least it allows calculating solutions of highly multidimensional models that cannot

be solved by using more experienced mesh-based discretizations. Thus the possibility

of solving a problem, even when its solution representation involves sometimes more

terms than strictly needed, is in any case a real success. Moreover, in general the

solution of models involving many parameters as extra-coordinates is performed only

once and off-line, and then it is particularized on-line. In these cases the optimality

issue is not crucial. However, when the solution involves too many terms, with respect

to an hypothetical optimal representation, i.e. N ≫ Nopt, one can proceed to an “a

posteriori” data compression, in order to alleviate as much as possible post-processing,

that is vital when real time responses are envisaged. For this purpose, we assume that

the suboptimal solution, calculated from the differential model by applying a PGD

solver, reads

u(x1, · · · , xd) ≈

N
∑

i=1

d
∏

j=1

X
j
i (xj) (4)

and we look for an enhanced representation uenh(x1, · · ·xd)

u
enh(x1, · · · , xd) ≈

Ñ
∑

i=1

d
∏

j=1

X̃
j
i (xj) (5)
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that verifies

u
enh(x1, · · · , xd) = u(x1, · · · , ud) (6)

whose integral counterpart writes

∫

Ω1×···×Ωd

u
∗ · (uenh(x1, · · · , xd)− u(x1, · · ·uD)) dx1 · · · dxd = 0 (7)

that is solved by invoking again the PGD solver.

uenh(x1, · · ·xd) results a more compact representation, i.e. Ñ ≤ N , sometimes

Ñ ≪ N . The problem (4)-(7) is equivalent to the application of a HOSVD on the

suboptimal solution (4). This post-compression allows substantial storage savings, an

important factor when using deployed devices, and also significant CPU time savings

when manipulating data in post-processing tasks. In real time applications this post-

compression can be decisive.

Until now, we presented the PGD as en efficient solver, however it can be also

viewed as a model reduction strategy when computing only the most relevant terms

of the separated representation. In that case an error is introduced, but because the

few number of terms retained, storage and data post-processing can be efficiently per-

formed.

In any case, as soon as a suboptimal or an enhanced separated representation is

available, it can be viewed as a virtual chart, a metamodel, containing an unimaginable

amount of information. For example, if the solution (2) applies for a model involving 10

parameters, all them considered as extra-coordinates, i.e.Q = 10, and 10 discrete values

are considered for describing each parametric dependency, i.e. M1 = · · · = M10 =

10 the solution (2) contains the information associated to 1010 possible scenarios.

Obtaining an equivalent amount of information would require the solution of 1010

transient 3D problems. Now, from this extremely rich metamodel, one could obtain

the solution for any possible scenario u(x, t, p1, · · · , p10) from the parametric solution

(2).

3 Parametric PGD based virtual charts: going beyond the nowadays

computational limits

In this section we revisit the computational issues enumerated in the first section

from the perspective of parametric PGD based virtual charts described in the previous

section. For this purpose, we are selecting some scenarios, that prove the potentiality

of the proposed approach. We first expose the main ideas though simple academic

examples based on the solution of the heat equation, and then we address in the next

section more complex situations.

3.1 Model parameters as extra-coordinates

In this section, we illustrate the PGD by considering the following parametric heat

transfer equation:

∂u

∂t
− k ·Δu− f = 0 (8)



11

with homogeneous initial and boundary conditions. The enforcement of non-homogeneous

initial and boundary conditions was deeply treated in [37] and [26].

Here (x, t, k) ∈ Ω × It × Ik, with Ω ⊂ R3, It ⊂ R and Ik ⊂ R. For the sake of

simplicity and without loss of generality the source term f is assumed constant. The

conductivity k is viewed as a new coordinate defined in the interval Ik. Thus, instead

of solving the thermal model for different discrete values of the conductivity parameter,

we wish to solve at once a more general problem, the price to pay being an increase of

the problem dimensionality. However, as the complexity of the PGD scales only linearly

(and not exponentially) with the space dimension, consideration of the conductivity as

a new coordinate still allows one to efficiently obtain an accurate solution.

The weighted residual form related to Eq. (8) reads:

∫

Ω×It×Ik

u
∗ ·

(

∂u

∂t
− k ·Δu− f

)

dx · dt · dk = 0 (9)

for all test functions u∗ selected in an appropriate functional space.

The PGD solution is sought in the form:

u (x, t, k) ≈

N
∑

i=1

Xi (x) · Ti (t) ·Ki (k) (10)

At enrichment step n of the PGD algorithm, the following approximation is already

known:

u
n−1 (x, t, k) =

n−1
∑

i=1

Xi (x) · Ti (t) ·Ki (k) (11)

We wish to compute the next functional product Xn (x) · Tn (t) ·Kn (k), which we

write as R (x) · S (t) ·W (k) for notational simplicity.

Thus, the solution at enrichment step n reads

u
n = u

n−1 +R (x) · S (t) ·W (k) (12)

We propose the simplest choice for the test functions u∗ used in Eq. (9):

u
∗ = R

∗ (x) · S (t) ·W (k) +R (x) · S∗ (t) ·W (k) +R (x) · S (t) ·W ∗ (k) (13)

With the trial and test functions given by Eqs. (12) and (13) respectively, Eq. (9)

is a non-linear problem that must be solved by means of a suitable iterative scheme.

In our earlier papers [8] and [10], we used Newton’s method. Simpler linearization

strategies can also be applied, however. The simplest one is an alternated directions

fixed-point algorithm, which was found remarkably robust in the present context. Each

iteration consists of three steps that are repeated until reaching convergence, that is,

until reaching the fixed point. The first step assumes S (t) and W (k) known from the

previous iteration and compute an update for R (x) (in this case the test function

reduces to R∗ (x) · S (t) ·W (k)).

In order to perform this step, the weak form is integrated in It×Ik because all the

functions involving the time t and the conductivity k are at the present step assumed

known. When the integral involves a separated form the integration is very cheap. To

understand it we consider the integral of a generic function:
∫

It×Ik

F (x, t, k) dt · dk (14)
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For computing the integral numerically one should compute an integral in It×Ik for

each value of x. Even when considering a discrete number of points xk, the integration

complexity scales with the number of points xk.

On the contrary, when the integral concerns a function that can be expressed in a

separated form, the integral reduces to:

∫

It×Ik

F (x, t, k) dt · dk =

∫

It×Ik

M
∑

j=1

F
x
j (x) · F

t
j (t) · F

k
j (k) dt · dk =

=

M
∑

j=1

F
x
j (x) ·

(∫

It

F
t
j (t) dt

)

·

(∫

Ik

F
k
j (k) dk

)

(15)

that implies 2 ·M one-dimensional integrals.

Now, from the just-updated R (x) and the previously-used W (k), we can update

S (t) (with u∗ = R (x) · S∗ (t) · W (k)). Finally, from the just-computed R (x) and

S (t), we update W (k) (with u∗ = R (x) ·S (t) ·W ∗ (k)). Again, the separability of the

functions to be integrated becomes a key point from the computational point of view.

This iterative procedure continues until reaching convergence. The converged func-

tions R (x), S (t) and W (k) yield the new functional product at the current enrichment

step: Xn (x) = R (x), Tn (t) = S (t) and Kn (k) = W (k). The explicit form of these op-

erations was described in many of our former works [26]. For the sake of completeness

they are given in the annex.

There are other constructors of the separated representation more efficient when

applying to non-symmetric differential operators, as the one based on the residual

minimization, among many others [27]. The issue related to the optimality of the

separated representations obtained by applying standard strategies will be addressed

in the next section. The enrichment is stopped as soon as the equation residual or any

other error estimator based on a quantity of interest [14] [46] is small enough.

We have seen that at each enrichment step the construction of the new functional

product in Eq. (10) requires non-linear iterations. If mi denotes the number of it-

erations needed at enrichment step i, the total number of iterations involved in the

construction of the PGD approximation is m =
∑i=N

i=1 mi. In the above example, the

entire procedure thus involves the solution of m three-dimensional problems for the

functions Xi(x), m one-dimensional problems for the functions Ti(t) and m algebraic

systems for the functions Ki(k). We can conclude that the complexity of the PGD pro-

cedure to compute the approximation (10) is of some tens of 3D steady-state problems

(the cost related to the 1D and algebraic problems being negligible with respect to the

3D problems). In a classical approach, one must solve for each particular value of the

parameter k a 3D problem at each time step. In usual applications, this often implies

the computation of several millions of 3D solutions. Clearly, the CPU time savings by

applying the PGD can be of several orders of magnitude.

3.2 Boundary conditions as extra-coordinates

For the sake of simplicity we first consider the steady state heat equation

∇ · (K · ∇u(x)) + f(x) = 0 (16)
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with x ∈ Ω ⊂ R3, subjected to the boundary conditions:

{

u(x ∈ Γd) = ug
(−K · ∇u) |

x∈Γn
· n = qg · n = qg

(17)

with K the conductivity tensor and n the outwards unit vector defined in the domain

boundary Γn , with ∂Ω ≡ Γ = Γd ∪ Γn and Γd ∩ Γn = ∅.

3.2.1 Neumann boundary condition as extra-coordinate

First, imagine that we are interested in knowing the model solution for Mq values

of the heat flux q1g , · · · , q
Mq
g prescribed on the domain boundary Γn, i.e. u(x; qig),

i = 1, · · · ,Mq. The space approximation is assumed given by a standard finite element

interpolation defined from Mx nodes. As discussed previously one possibility lies in

the solution of the thermal model for the different values of the prescribed flux, from

which one could define a metamodel. Thus, we must calculate the solution of Mq 3D

steady state heat problems and then store these solutions that involve Mx ·Mq data.

Another possibility consists of considering the prescribed heat flux qg as an extra-

coordinate defined in the interval Iq = [q−g , q+g ] (with eventually q−g = q1g and q+g =

q
Mq
g ) and then solving only once the resulting 4D heat equation for calculating the

general parametric solution u(x, q). For this purpose the solution is sought in the

separated form

u(x, qg) ≈

N
∑

i=1

Xi(x) ·Qi(qg) (18)

In order to enforce the prescribed Dirichlet boundary condition u(x ∈ Γd) = ug
the simplest procedure consists of choosing the first functional couple X1(x) · Q1(qg)

in order to ensure that u1(x ∈ Γd, qg) = X1(x ∈ Γd) ·Q1(qg) = ug. Thus, the remain-

ing terms of the finite sum Xi(x), i > 1, will be subjected to homogeneous essential

boundary conditions, i.e. Xi(x ∈ Γd) = 0, i > 1. Alternative possibilities for addressing

Dirichlet boundary conditions consist of using penalty or Lagrange multiplier formu-

lations. Other possibilities were considered in [37].

In order to use the approximation (18) we start by considering the weak form

related to Eq. (16), that writes: Find u(x) ∈ H1(Ω), verifying u(x ∈ Γd) = ug, such

that
∫

Ω

∇u
∗ · (K · ∇u) dx =

∫

Γn

u
∗ · (K · ∇u) · n dx+

∫

Ω

u
∗ · f(x) dx (19)

is verified ∀u∗ ∈ H1(Ω), with u∗(x ∈ Γd) = 0.

By introducing the Neumann condition given in (17) into (19) it results

∫

Ω

∇u
∗ · (K · ∇u) dx = −

∫

Γn

u
∗ · qg dx+

∫

Ω

u
∗ · f(x) dx (20)

For using the approximation (18) we must consider the extended-weak form defined

in the domain Ω × Iq

∫

Ω×Iq

∇u
∗ ·(K ·∇u) dx ·dqg = −

∫

Γn×Iq

u
∗ ·qg dx ·dqg+

∫

Ω×Iq

u
∗ ·f(x) dx ·dqg (21)
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that assuming at iteration n:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

un(x, qg) =
n−1
∑

i=1
Xi(x) ·Qi(qg) +Xn(x) ·Qn(qg) =

= un−1(x, qg) +Xn(x) ·Qn(qg)

u∗ = X∗(x) ·Qn(qg) +Xn(x) ·Q
∗(qg)

(22)

with un−1(x, qg) known, we can compute the new couple of unknown functions Xn(x)

andQn(qg) by applying the alternated directions fixed point algorithm just summarized

and described in the annex for a generic parametric problem, that is assumed to reach

the fixed point with a prescribed precision in mn iterations.

If we assume that the solution needs N terms in the finite sum, the solution will

involve N · (Mx +Mq) data. If we define m =
∑i=N

i=1 mi the separated representation

solution need the solution of m 3D problems for calculating functions Xi(x), i =

1, · · ·N , and m 1D problems for calculating the functions Qi(qg), i = 1, · · · , N . The

computing cost related to the solution of the 1D problems can be neglected with respect

to the one associated with the solution of the 3D problems. Thus, if m < Mq, PGD will

proceed faster than the solution of the model for the different values of the parameter

qig, i = 1, · · · ,Mq. From the point of view of the data storage, PGD is superior as soon

as N · (Mx +Mq) < Mx · Mq .

When considering only one parameter as extra-coordinate the superiority of PGD

with respect to standard procedures is not crucial, but as discussed previously, when

the number of extra-coordinates increases the benefit in using the PGD is impresive.

3.2.2 Dirichlet boundary condition as extra-coordinate

In this section we consider that we are interested in considering the solution of model

(16) for any value of ug in (17) in a certain interval Iu = [u−g , u+g ]. For this purpose we

consider the function ϕ(x) continuous in Ω such that Δϕ ∈ L2(Ω) and ϕ(x ∈ Γd) = 1.

Thus, we can define the change of variable [37]

u(x) = v(x) + ug · ϕ(x) (23)

that allows rewriting Eqs. (16) and (17) as:

∇ · (K · ∇v(x)) + ug · ∇ · (K · ∇ϕ(x)) + f(x) = 0 (24)

subjected to the boundary conditions:

{

v(x ∈ Γd) = 0

(−K · ∇v) |
x∈Γn

· n = ug · (K · ∇ϕ) |
x∈Γn

· n+ qg
(25)

that results in the weak form
∫

Ω

∇u
∗ · (K · ∇v) dx = −

∫

Ω

∇u
∗ · ug · (K · ∇ϕ) dx+

∫

Ω

u
∗ · f(x) dx−

−

∫

Γn

u
∗ · qg dx−

∫

Γn

u
∗ · ug · (K · ∇ϕ) · n dx (26)

that in fact only requires C0 continuity of the function ϕ(x).
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We can now introduce ug as extra-coordinate, searching the solution in the sepa-

rated form:

u(x, ug) ≈

N
∑

i=1

Xi(x) · Ui(ug) (27)

that needs for the extended weak-form
∫

Ω×Iu

∇u
∗ · (K · ∇v) dx · dug =

= −

∫

Ω×Iu

∇u
∗ · ug · (K · ∇ϕ) dx · dug +

∫

Ω×Iu

u
∗ · f(x) dx · dug−

−

∫

Γn×Iu

u
∗ · qg dx · dug −

∫

Γn×Iu

u
∗ · ug · (K · ∇ϕ) · n dx · dug (28)

on which the alternated directions fixed point algorithm applies again to calculate the

parametric solution (27).

3.2.3 Mixed boundary conditions as extra-coordinates

From the extended weak form
∫

Ω×Iu×Iq

∇u
∗ · (K · ∇v) dx · dug · dqg =

= −

∫

Ω×Iu×Iq

∇u
∗ · ug · (K · ∇ϕ) dx · dug · dqg +

∫

Ω×Iu×Iq

u
∗ · f(x) dx · dug · dqg−

−

∫

Γn×Iu×Iq

u
∗ · qg dx · dug · dqg −

∫

Γn×Iu×Iq

u
∗ ·ug · (K ·∇ϕ) ·n dx · dug · dqg (29)

one could compute a parametric solution involving Dirichlet and Neumann boundary

conditions as extra-coordinates, i.e. u(x, ug, qg) according to:

u(x, ug, qg) ≈

N
∑

i=1

Xi(x) · Ui(ug) ·Qi(qg) (30)

3.2.4 Non constant Neumann boundary conditions

We consider that in Eq. (17) qg = qg(x), with x ∈ Γn. First we assume that qg(x) can

be approximated on Γn from:

qg(x) ≈

Sq
∑

i=1

Q
k
g · ξk(x) (31)

where x ∈ Γn and Qk
g represents the prescribed nodal fluxes, i.e. Qk

g = gg(xk) at the

nodal positions xk ∈ Γn.

Now, introducing the approximation (31) into the weak form (20) it results

∫

Ω

∇u
∗ · (K · ∇u) dx = −

∫

Γn

u
∗ ·

⎛

⎝

i=Sq
∑

i=1

Q
k
g · ξk(x)

⎞

⎠ dx+

∫

Ω

u
∗ · f(x) dx (32)
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If the nodal fluxes Qk
g , k = 1, · · · , Sq, can take values into the intervals Ik

Q and

we are interested to calculating the general parametric solution u(x, Q1
g, · · · , Q

Sq
g ), it

suffices to consider the extended weak form related to Eq. (32)

∫

Ω×I1

Q
×···×I

Sq
Q

∇u
∗ · (K · ∇u) dx · dQ1

g · · · dQ
Sq
g =

= −

∫

Γn×I1

Q
×···×I

Sq
Q

u
∗ ·

⎛

⎝

Sq
∑

i=1

Q
k
g · ξk(x)

⎞

⎠ dx · dQ1
g · · · dQ

Sq
g +

+

∫

Ω×I1

Q
×···×I

Sq
Q

u
∗ · f(x) dx · dQ1

g · · · dQ
Sq
g (33)

and the solution separated representation

u(x, Q1
g, · · · , Q

Sq
g ) ≈

N
∑

i=1

Xi(x) ·

Sq
∏

j=1

G
j
i (Q

j
g) (34)

Then, from Eqs. (33) and (34) we can compute the parametric solution. In this

case the use of the separated representation is compulsory because the curse of dimen-

sionality that model (33) implies when Sq increases. Standard discretization strategies

fail for solving the multi-dimensional model (33) and the sampling of the parametric

space becomes inefficient when its dimensionality increases.

3.2.5 Non constant Dirichlet boundary consitions

In this section we consider the solution of model (16) for ug in Eq. (17) depending on

the space, i.e. ug(x), x ∈ Γd. If ug(x) can be approximated on Γd from

ug(x) ≈

Su
∑

k=1

U
k
g · ηk(x) (35)

where Uk
g represents the prescribed nodal temperatures, i.e. Uk

g = ug(xk) at the nodal

positions xk ∈ Γd taking values in the intervals Ik
U .

To compute the parametric solution u(x, U1
g , · · · , U

Su
g ) we first define the functions

ϕk(x) continuous in Ω and verifying Δϕ(x) ∈ L2(Ω), such that ϕk(x ∈ Γd) = ηk(x).

Thus, we can define the change of variable

u(x) = v(x) +

Su
∑

i=1

U
k
g · ϕk(x) (36)

that leads to the weak form

∫

Ω

∇v
∗ · (K · ∇v) dx = −

∫

Ω

∇v
∗ ·

(

Su
∑

k=1

U
k
g · (K · ∇ϕk)

)

dx+

∫

Ω

v
∗ · f(x) dx−

−

∫

Γn

v
∗ · qg dx−

∫

Γn

v
∗ ·

(

Su
∑

k=1

U
k
g · (K · ∇ϕk) · n

)

dx (37)
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We can consider now the separated form of the parametric solution

u(x, U1
g , · · · , U

Su
g ) ≈

N
∑

i=1

Xi(x) ·

Su
∏

j=1

F
j
i (U

j
g ) (38)

that will be constructed using some standard procedure (alternated directions fixed

point or residual minimization) from the extended weak form:

∫

Ω×I1

U
×···×I

Su
U

∇u
∗ · (K · ∇v) dx · dU1

g · · · dUSu
g =

= −

∫

Ω×I1

U
×···×I

Su
U

∇u
∗ ·

(

Su
∑

i=1

U
k
g · (K · ∇ϕk)

)

dx · dU1
g · · · dUSu

g +

+

∫

Ω×I1

U
×···×I

Su
U

u
∗ ·f(x) dx ·dU1

g · · · dUSu
g −

∫

Γn×I1

U
×···×I

Su
U

u
∗ ·qg dx ·dU1

g · · · dUSu
g

−

∫

Γn×I1

U
×···×I

Su
U

u
∗ ·

(

Su
∑

i=1

U
k
g · (K · ∇ϕk) · n

)

dx · dU1
g · · · dUSu

g (39)

3.3 Initial conditions as extra-coordinates

We consider in this section the transient heat equation in a homogeneous and isotropic

medium

ρ · Cp ·
∂u

∂t
= k ·Δu+ f (40)

t ∈ It = (0, Θ] ⊂ R, x ∈ Ω ⊂ R3 and f = cte. The initial and boundary conditions

read:
⎧

⎨

⎩

u(x ∈ Γd) = ug
(−k · ∇u) |

x∈Γn
· n = qg

u(x, t = 0) = u0(x)

(41)

The associated weak form reads:
∫

Ω

u
∗ · ρ ·Cp ·

∂u

∂t
dx+

∫

Ω

∇u
∗ · k · ∇u dx = −

∫

Γn

u
∗ · qg dx+

∫

Ω

u
∗ · f(x) dx (42)

that includes explicitly the natural (Neumann) boundary conditions. To prescribe both

the initial and the essential (Dirichlet) boundary conditions we proceed to define the

following functions:

û
0(x) =

{

u0(x), x ∈ Ω

0, x ∈ Γ
(43)

Υ (t) =

{

1, t > 0

0, t = 0
(44)

and ϕ(x) continuous in Ω, verifying Δϕ ∈ L2(Ω) and the essential boundary conditions

ϕ(x ∈ Γd) = ug (45)
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We could define the function Σ(x, t) expressed in the separated form

Σ(x, t) = û
0(x) + ϕ(x) · Υ (t) (46)

that verifies the initial and essential boundary conditions. However, functions û0 and

Υ (t) are not regular enough to be employed in the weak form of the problem. A direct

regularization consists in defining these functions at the nodal positions and then define

interpolations with the required regularity. Thus, the discrete counterpart of functions

û0 and Υ (t) are given by:

û
0(xk) =

{

u0(xk), xk ∈ Ω

0, xk ∈ Γ
(47)

and

Υ (tl) =

{

1, tl > 0

0, tl = 0
(48)

with k = 1, · · · 1, · · · ,Mx; l = 1, · · · ,Mt. Now, standard interpolation is applied to

the define functions û0(x) and Υ (t) everywhere from theirs nodal values expressed by

Eqs. (47) and (48).

By applying now the change of variable:

u(x, t) = v(x, t) +Σ(x, t) = v(x, t) + û
0(x) + ϕ(x) · Υ (t) (49)

the weak form (57) results:

∫

Ω

v
∗ · ρ · Cp ·

∂v

∂t
dx+

∫

Ω

∇v
∗ · k · ∇v dx =

= −

∫

Ω

v
∗ · ρ · Cp · ϕ ·

∂Υ

∂t
dx−

−

∫

Ω

∇v
∗ · k · ∇û

0
dx−

−

∫

Γn

v
∗ · k · ∇û

0 · n dx−

−

∫

Γn

v
∗ · qg dx−

∫

Ω

∇v
∗ · k · Υ · ∇ϕ dx−

−

∫

Γn

v
∗ · k · Υ · ∇ϕ · n dx+

∫

Ω

v
∗ · f(x) dx (50)

If the initial condition is approximated by

û
0(x) ≈

S0
∑

k=1

U
k
0 · ηk(x) (51)

after introducing it into the weak form (50) we obtain:

∫

Ω

v
∗ · ρ · Cp ·

∂v

∂t
dx+

∫

Ω

∇v
∗ · k · ∇v dx =

= −

∫

Ω

v
∗ · ρ · Cp · ϕ ·

∂Υ

∂t
dx−
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−

∫

Ω

∇v
∗ · k ·

(

S0
∑

k=1

U
k
0 · ∇ηk(x)

)

dx−

−

∫

Γn

v
∗ · k ·

(

S0
∑

k=1

U
k
0 · ηk(x) · n

)

dx−

−

∫

Γn

v
∗ · qg dx−

∫

Ω

∇v
∗ · k · Υ · ∇ϕ dx−

−

∫

Γn

v
∗ · k · Υ · ∇ϕ · n dx+

∫

Ω

v
∗ · f(x) dx (52)

that allows us looking for a parametric solution v(x, U1
0 , · · · , U

S0

0 ), with U
j
0 ∈ Ij

0 =

[(Uj
0 )

−, (Uj
0 )

+]

u(x, U1
0 , · · · , U

S0

0 ) ≈

N
∑

i=1

Xi(x) ·

S0
∏

j=1

Uj
i (U

j
0 ) (53)

from the extended weak form

∫

Ω×I1

0
×···×I

S0

0

v
∗ · ρ · Cp ·

∂v

∂t
dx · dU1

0 · · · dUS0

0 +

+

∫

Ω×I1

0
×···×I

S0

0

∇v
∗ · k · ∇v dx · dU1

0 · · · dUS0

0 =

= −

∫

Ω×I1

0
×···×I

S0

0

v
∗ · ρ · Cp · ϕ ·

∂Υ

∂t
dx · dU1

0 · · · dUS0

0 −

−

∫

Ω×I1

0
×···×I

S0

0

∇v
∗ · k ·

(

S0
∑

k=1

U
k
0 · ∇ηk(x)

)

dx · dU1
0 · · · dUS0

0 −

−

∫

Γn×I1

0
×···×I

S0

0

v
∗ · k ·

(

S0
∑

k=1

U
k
0 · ηk(x) · n

)

dx · dU1
0 · · · dUS0

0 −

−

∫

Γn×I1

0
×···×I

S0

0

v
∗ · qg dx · dU1

0 · · · dUS0

0 −

∫

Ω×I1

0
×···×I

S0

0

∇v
∗ · k · Υ · ∇ϕ dx · dU1

0 · · · dUS0

0 −

−

∫

Γn×I1

0
×···×I

S0

0

v
∗ · k · Υ · ∇ϕ · n dx · dU1

0 · · · dUS0

0 +

+

∫

Ω×I1

0
×···×I

S0

0

v
∗ · f(x) dx · dU1

0 · · · dUS0

0 (54)
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3.4 Geometrical parameters as extra-coordinates

For the sake of clarity and without loss of generality we are addressing in this section

the transient one-dimensional heat equation

∂u

∂t
= α ·

∂2u

∂x2
+ f (55)

with t ∈ It = (0, Θ] ⊂ R, x ∈ Ω = (0, L) ⊂ R, f = cte and u(x = 0, t) = u(x = L, t) =

u(x, t = 0) = 0.

The associated space-time weak form reads:

∫

Ω×It

u
∗ ·

∂u

∂t
dx · dt = −α ·

∫

Ω×It

∂u∗

∂x
·
∂u

∂x
dx · dt+

∫

Ω×It

u
∗ · f dx · dt (56)

If we are interested in computing the solution u(x, t) in many domains of length

L ∈ [L−, L+] and for many time intervals of length Θ = [Θ−, Θ+], more than solving

the model for many possible choices in order to define a metamodel, it is preferable to

compute the parametric solution u(x, t, L,Θ).

This parametric solution is sought in the separated form

u(x, t, L,Θ) ≈

N
∑

i=1

Xi(x) · Ti(t) · Li(L) · Ti(Θ) (57)

However, Eq. (56) does not involve an explicit dependence on the extra-coordinates

L and Θ, both defining the domain of integration. In order to explicit this dependence,

we consider the coordinates transformation

{

t = τ ·Θ, τ ∈ [0, 1]

x = λ · L, λ ∈ [0, 1]
(58)

In this case the weak form (56) reads:

∫

[0,1]2
u
∗ ·

∂u

∂τ
·L dλ·dτ = −α·

∫

[0,1]2

∂u∗

∂λ
·
∂u

∂λ
·
Θ

L
dλ·dτ+

∫

[0,1]2
u
∗ ·f ·L·Θ dλ·dτ (59)

that allows calculating the parametric solution derived from (57) after applying the

change of coordinates

u(λ, τ, L,Θ) ≈

N
∑

i=1

X̃i(λ) · T̃i(τ) · Li(L) · Ti(Θ) (60)

4 Virtual charts for industrial applications

As just illustrated usual computational mechanics models could be enriched by in-

troducing several extra-coordinates. Thus, adding some new coordinates to models

initially non high-dimensional, could lead to new, never before explored insights in the

physics as previously illustrated in the context of a parametric thermal models.

Next, we review some of the most representative examples explored so far.

a p
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4.1 Geometrical and material parameters

Classical design strategies consider given parameters and then solve the mechanical

problem. A cost function is evaluated as soon as the solution is available. If the solution

is not good enough, parameters are updated by using an appropriate optimization

strategy and then the model is solved again, and the process continues until reaching

converence. The main drawback lies in the fact that numerous resolutions are generally

needed with the consequent impact in terms of the computing time.

As explained before, if all the parameters involved in the design process are con-

sidered as extra-coordinates (just like space and time in standard models) a unique

solution of the resulting multidimensional model allows knowing the solution for any

choice of the parameters considered as extra-coordinates. The price to pay is the so-

lution of a multidimensional model. However, this solution is feasible by invoking the

PGD solver and its inherent separated representation. This allows circumventing the

curse of dimensionality.

This kind of parametric modelling was addressed in [15] [66] [17] [28] where mate-

rial parameters were introduced as extra-coordinates. In [47], thermal conductivities,

macroscopic temperature and its time evolution were introduced as extra-coordinates

for computing linear and non-linear homogenization.

In [21] we proved that the PGD method with separated space coordinates is a very

efficient way to compute 3D elastic problems defined in degenerated domains (plate or

shells) with a numerical cost that scales like 2D. The key point for such an approach is

to use a separated representation for each quantity of the model as a sum of products of

functions of each coordinate or group of coordinates. In he case of a plate the retained

separated representation of a generic function u(x, y, z) reads:

u(x, y, z) ≈

i=N
∑

i=1

Xi(x, y) · Zi(z) (61)

In this work, we consider additional model parameters as extra-coordnates. In addi-

tion to the 3 dimensions describing the physical space, we add new coordinates related

to the Young’s modulus E, to the Poisson’s coefficient ν and to the geometrical pa-

rameter e depicted in Fig. 1. Thus separated representations write:

u(x, y, z, E, ν, e) ≈

i=N
∑

i=1

Xi(x, y) · Zi(z) · Fi(E) ·Hi(ν) ·Gi(e) (62)

For and efficient solution of the mechanical model making use of a separated rep-

resentation we must ensure a separated representation of all the fields involved in the

model. However, there is a technical difficulty because the coordinates e and z are not

independent. In order to perform a fully separated representation we could consider

the following transformation z → z′:
⎧

⎨

⎩

z′ = z
e z ∈ [0, e]

z′ = 1 + z−e
h

z ∈ [e, e+ h]

z′ = 2 + z−h−e
e z ∈ [e+ h, e+ h+ e]

(63)

Thus, finally z′ ∈ [0, 3] and e ∈ Ωe, both being independents, lead to a fully

separated representation. The components of the Jacobian matrix are 1
e or 1

h
that

facilitates the change of variable in the resulting weak form related to the elastic model.
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Fig. 1 Parametrized part.

Fig. 2 Parts related to different choices of the model parameter e.

In the numerical example here addressed we considered ν ∈ [0, 0.5], E ∈ [5, 500](GPa)

and e ∈ [5, 20](mm) that allow to describe a large variety of isotropic material: plastics,

metals, alloys, ...

As soon the parametric solution is computed by solving only once the resulting

multidimensional model (defined in this case in a space of dimension 6) we can par-

ticularize it for different materials (by choosing appropriate values of E or ν) or for

different geometries (by choosing e). Fig. 2 illustrates the same part for two values of

the parameter e.

In [21], the anisotropy directions of plies involved in a composite laminate were

considered as extra-coordinates. As soon as the separated representation of the para-

metric solution was computed off-line, its on-line use only needs to particularize such

solution for a desired set of parameters. Obviously, this task can be performed very

fast, many times in real time, and by using light computing platforms, as smartphones

or tablets. Fig. 3 illustrates a smartphone application [21] in which the elastic solution

of a two-plies composite laminate was computed by introducing the orientation of fiber

in each ply, θ1 and θ2, as extra-coordinates

uj(x, y, z, θ1, θ2) ≈

N
∑

i=1

X
j
i (x, y) · Z

j
i (z) ·Θ

j,1
i (θ1) ·Θ

j,2
i (θ2) (64)

Then one can visualize each component of the displacement field, by particularizing

the z-coordinate from the horizontal slider as well as the orientation of the reinforce-

ment in both plies from both vertical sliders. Obviously when the laminate is equili-

brated there is no noticeable deformations and the plate remains plane, but as soon as

orientation of fiber
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Fig. 3 Composite laminate analysis on a smartphone

Fig. 4 Deformation envelope generated by all combinations of the reinforcement orientations
of the top and bottom plies

we simulate an unbalanced laminate by acting on both vertical sliders, the plate de-

forms. By assuming a certain uncertainty in the real orientation of such plies, one can

evaluate the envelope of the resulting distorted structures due to the thermomechanical

coupling as depicted in Fig. 4.

4.2 Inverse identification and optimization

It is easy to understand that after performing this type of calculations, in which parame-

ters are considered advantageously as new coordinates of the model, a posteriori inverse

identification or optimization can be easily handled. This new PGD framework allows

us to perform this type of calculations very efficiently, because in fact all possible solu-

tions have been previously computed in the form of a separated, high-dimensional so-

simulate de-

forms.
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lution so that they constitute a simple post-processing of this general solution. Process

optimization was considered in [34], for instance. Shape optimization was performed

in [50] by considering all the geometrical parameters as extra-coordinates, leading to

the model solution in any of the geometries generated by the parameters considered as

extra-coordinates.

We consider the Laplace equation defined in the parametrized domain Ωr described

from 12 control points Pr
i , i = 1, · · · , 12, with coordinates

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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Pr
1 = (0, 0)

Pr
2 = (1, 0)

Pr
3 = (2, 0)

Pr
4 = (3, 0)

Pr
5 = (4, 0)

Pr
6 = (5, 0)

Pr
7 = (5, 1)

Pr
8 = (4, 1)

Pr
9 = (3, 1)

Pr
10 = (2, 1)

Pr
11 = (1, 1)

Pr
12 = (0, 1)

(65)

Different polygonal domains Ω are obtained by moving vertically points Pr
i , i =

7, · · · , 12, being defined by:

⎧

⎪

⎪

⎪

⎪

⎪
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⎪
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P1 = (0, 0)

P2 = (1, 0)

P3 = (2, 0)

P4 = (3, 0)

P5 = (4, 0)

P6 = (5, 0)

P7 = (5, 1 + θ1)

P8 = (4, 1 + θ2)

P9 = (3, 1 + θ3)

P10 = (2, 1 + θ4)

P11 = (1, 1 + θ5)

P12 = (0, 1 + θ6)

(66)

with θi ∈ [−0.3, 0.3], i = 1, · · · , 6.

The resulting separated representation of the solution involves 70 terms

u(x, θ1, θ2, θ3, θ4, θ5, θ6) ≈

≈

70
∑

i=1

Fi(x) ·Θ1i(θ1) ·Θ2i(θ2) ·Θ3i(θ3) ·Θ4i(θ4) ·Θ5i(θ5) ·Θ6i(θ6) (67)

Figure 5 compares the particularization of the general solution (67) when con-

sidering the geometry defined by (θ1, · · · , θ6) = (−0.3, 0.3, 0.3,−0.3, 0.3, 0.3), that is

u(x, θ1 = −0.3, θ2 = 0.3, θ3 = 0.3, θ4 = −0.3, θ5 = 0.3, θ6 = 0.3) with the finite

element solution in such a domain. We can conclude that both solutions are in per-

fect agreement. It is important to notice that as the interval in which coordinates

θi (i = 1, · · · , 6) are defined [−0.3, 0.3] were discretized by suing 13 nodes uniformly
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distributed, the separated representation (67) represents the solution for 136 different

geometries, that is, for 4.826.809 possible domain geometries. Again, the analysis can

be performed in deployed devices like smartphones or tablets, in real time.
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Fig. 5 Comparing u(x, θ1 = −0.3, θ2 = 0.3, θ3 = 0.3, θ4 = −0.3, θ5 = 0.3, θ6 = 0.3) with the
finite element solution u(x), x ∈ Ω, with Ω defined by θ1 = −0.3, θ2 = 0.3, θ3 = 0.3, θ4 =
−0.3, θ5 = 0.3, θ6 = 0.3.

4.3 PGD based Dynamic Data Driven Application Systems

Inverse methods in the context of real-time simulations were addressed in [38] and were

coupled with control strategies in [35] as a first step towards DDDAS (dynamic data-

driven application systems). Moreover, because the general parametric solution was

pre-computed off-line, it can be used on-line under real time constraints and using light

computing platforms like smartphones [21] [35], that constitutes a first step towards

the use of this kind of representation in augmented reality platforms.
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Fig. 6 Thermal process consisting of two heating devices located on the die walls where the
temperature is enforced to the values θ1 and θ2 respectively.

Traditionally, Simulation-based Engineering Sciences (SBES) relied on the use of

static data inputs to perform the simulations. These data could be parameters of the

model(s) or boundary conditions, outputs at different time instants, etc., traditionally

obtained through experiments. The word static is intended here to mean that these

data could not be modified during the simulation.

A new paradigm in the field of Applied Sciences and Engineering has emerged

in the last decade. Dynamic Data-Driven Application Systems (DDDAS) constitute

nowadays one of the most challenging applications of SBES. By DDDAS we mean a

set of techniques that allow the linkage of simulation tools with measurement devices

for real-time control of simulations and applications. As defined by the U.S. National

Science Foundation, “DDDAS entails the ability to dynamically incorporate additional

data into an executing application, and in reverse, the ability of an application to

dynamically steer the measurement process” [71].

An important issue encountered in DDDAS, related to process control and opti-

mization, inverse analysis, etc., lies in the necessity of solving many direct problems.

Thus, for example, process optimization implies the definition of a cost function and

the search of optimum process parameters, which minimize the cost function. In most

engineering optimization problems the solution of the model is the most expensive

step. Real-time computations with zero-order optimization techniques can not be en-

visioned except for very particular cases. The computation of sensitivity matrices and

adjoint approaches also hampers fast computations. Moreover, global minima are only

ensured under severe conditions, which are not (or cannot be) verified in problems of

engineering interest.

Multidimensionality offers an alternative getaway to avoid too many direct solu-

tions. In this section the main ideas related to casting the model into a multidimensional

framework, followed by process optimization, are introduced. For the sake of clarity in

what follows we consider the thermal model related to a material flowing into a heated

die. Despite the apparent simplicity, the strategy here described can be extended to

address more complex scenarios.

The 2D thermal process is sketched in Figure 6. The material flows with a velocity

v inside a die Ω of length L and width H. The temperature of the material at the

die entrance is u0. The die is equipped with two heating devices of lengths L1 and L2

respectively, whose temperatures θ1 and θ2 respectively, can range within an interval

[θmin, θmax].

The is
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The die is equipped with two heating devices as depicted in Figure 6 whose temper-

atures constitute the process parameters to be optimized and, eventually, controlled.

For the sake of simplicity the internal heat generation Q is assumed constant, as well

as the velocity v and the inlet temperature u0.

Different values of prescribed temperatures at both heating devices can be consid-

ered. The resulting 2D heat transfer equation can be then solved. As noted earlier,

optimization or inverse identification will require many direct solutions or, as named in

the introduction, static data computations. Obviously, when the number of the process

parameters involved in the model is increased, standard approaches fail to compute op-

timal solutions in a reasonable time. Thus, for a large number of process parameters,

real-time computations are precluded and, moreover, performing “on-line” optimiza-

tion or inverse analysis is a challenging issue.

The method proposed in [35] consists on introducing both process parameters, i.e.

temperatures of the heating devices, θ1 and θ2, as extra coordinates.

To circumvent the curse of dimensionality related to the high dimensional space

in which the temperature field u(x, y, θ1, θ2) is defined —which we retain to be four-

dimensional for the ease of exposition— we consider a separated representation of that

field:

u(x, y, θ1, θ2) ≈

N
∑

i=1

Fi(x, y) Θ
1
i (θ1) Θ

2
i (θ2) (68)

where all the functions involved in such separated representation are computed by

applying the Proper Generalized Decomposition technique, described previously.

Optimization procedures look for optimal parameters minimizing an appropriate

single or multi objective cost function (sometimes subjected to many constraints).

In this work we consider a simple scenario, in which the cost function only involves

the coldest thermal history of an imaginary material particle traversing the die, it is

expressed as:

C(θ1, θ2) =
1

2

(

∫ L

0

u
(

x, H2 , θ1, θ2
)

dx− β
)2

, (69)

where β denotes the optimal value of the thermal history able to ensure a certain

material transformation. Values lower than β imply that the material has not received

the necessary amount of heat, whereas values higher than β imply an unnecessary

extra-heating.

Now, optimal process parameters θopt1 and θ
opt
2 must be calculated by minimizing

the cost function. There exist many techniques for such minimization. The interested

reader can refer to any book on optimization. Many of them proceed by evaluating

the gradient of the cost function and then moving on that direction. The gradient

computation involves the necessity of performing first derivatives of the cost function

with respect to the process parameters. Other techniques involve the calculation of

second derivatives. To this end, one should calculate the derivatives of the problem

solution with respect to the optimization parameters.

It is important to note that separated representations of the process parameters

drastically simplifies this task because as the solution depends explicitly on the param-

eters its derivation is straightforward, namely,

∂u

∂θ1
(x, y, θ1, θ2) ≈

N
∑

i=1

Fi(x, y)
∂Θ1

i

∂θ1
(θ1)Θ

2
i (θ2),
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and

∂u

∂θ2
(x, y, θ1, θ2) ≈

N
∑

i=1

Fi(x, y)Θ
1
i (θ1)

∂Θ2
i

∂θ2
(θ2).

Note that second derivatives are also similarly obtained. The calculation of the solution

derivatives is a tricky point when proceeding from standard discretization techniques

because the parametric dependency of the solution is, in general, not explicit.

In the simulations carried out in what follows, the minimization of the cost function

was performed by using a Levenberg-Marquardt algorithm, see [33] for further details.

By performing an inverse analysis it is also possible to determine a hypothetical

malfunctioning of the system, along with the determination of the broken heater. This

inverse identification can easily be done in real-time by minimizing a new cost function

involving the distance of the measurements to the optimal solution obtained before.

The last step consists in the reconfiguration of the system, assuming that the broken

heater cannot be replaced for a while. Again, a minimization procedure of the cost

function, Eq. (69), this time with one fixed temperature (that of the broken heater)

serves to this purpose. An implementation of this procedure on a smartphone can be

done easily, see Fig. 7.

4.4 Surgery simulators

As mentioned before, surgical simulators must provide feedback response frequencies

higher than 500 Hz. This means that we must solve problems involving material and

geometrical nonlinearities close to one thousand times per second. It is now clear that

the use of model reduction seems to be an appealing alternative for reaching such

performances. However, techniques based on the use of POD, POD with interpolation

(PODI), even combined with asymptotic numerical methods to avoid the computa-

tion of the tangent stiffness matrix [31] [50], exhibit serious difficulties to fulfil such

requirements as discussed in [56] [57] [58] [59].

Here, parametric solutions are envisaged in which the applied load p and its point

of application y are considered as extra-coordinates, allowing the off-line calculation

of the parametric solution:

uj(x,p,y) ≈

N
∑

i=1

X
j
i (x) · P

j
i (p) · Y

j
i (y) (70)

Again, the obtained, off-line, solution is exploited in real time even on smartphones

and tablets, see Fig. 8 for an Android implementation.

For a liver palpation simulation, for instance, model’s solution was composed by a

total of N = 167 functional pairs. The third component (thus j = 3) of the first six

spatial modes X(x) is depicted in Fig. 9. The same is done in Fig. 10 for functions

Y, although in this case they are defined only on the boundary of the domain, i.e.,

Γ̄ = ∂Ω.

In this case, an explicit linearization of the resulting system of equations was em-

ployed, although other more sophisticated techniques could equally be employed.

Noteworthy, both X and Y sets of functions present a structure similar to that

generated by Proper Orthogonal Decompositions methods, despite the fact that they

are not, in general, optimal. Note how the frequency content of each pair of functions

increases as we increase the number of the function, k.

in what follows,
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Fig. 7 Implementation of the technique described before on an iPhone. Simple formats such
as the epub open format, that enables javascript, suffices implement this technique.

The solution provided by the method agrees well with reference FE solutions ob-

tained employing full-Newton-Raphson iterative schemes (following the same tendency

than that shown for the beam bending problem). But, notably, the computed solution

can be stored in a so compact form that an implementation of the method is possible

on handheld devices such as smartphones and tablets. For more sophisticated require-

ments, such as those dictated by haptic peripherals, a simple laptop (in our case a

MacBook pro running MAC OSX 10.7.4, equipped with 4 Gb RAM and an Intel core

i7 processor at 2.66 GHz) is enough to achieve this performance, see Fig. 11.

4.5 Other industrial applications

In [30] [65] authors addressed an industrial application for on-line simulation and ma-

terial and process characterization of automated tape placement for composite forming

processes. This application is at present running at the industrial level in different plat-

forms: laptop, tablets and smartphones. Its application for training purposes is being

explored, and the first accomplishments were reported in [22].



30

Fig. 8 Towards real time surgical simulations based on parametric PGD-based virtual charts

5 Conclusions

In this paper we proved that models can be enriched by introducing model parameters

as extra-coordinates. Thus, one can introduce boundary conditions, material or process

parameters, initial conditions, geometrical parameters, ... as extra-coordinates in order

to compute general parametric solutions that define a sort of virtual charts or meta-

models, much more rich that the ones obtained by sampling the parametric space.

The price to be paid is the increase of the model dimensionality, but the separated

representations involved in the so called PGD method allows circumventing efficiently

this numerical illness. Moreover, the parametric solution is calculated in a sort of com-

pressed format allowing for cheap storage and post-treatment. Thus, only one off-line

heavy solution is needed for computing the parametric solution that constitutes the

virtual chart that is then used on-line, sometimes in real time, in deployed devices as

tablets or smartphones.

This off-lie/on-line approach opens numerous possibilities in the context of simu-

lation based engineering for simulating, optimizing or controlling materials, processes

and systems.

Until now, the results obtained are very encouraging, however a major difficulty

persists, the one related to the solution of parametric non-linear models involving multi-

scale and multi-physics complex couplings. Different possibilities are being explored, as

the one of combining PGD with a POD based treatment of the strong non-linearities,

the use of empirical interpolations of non-linear terms, the use of advanced non-linear

solvers like the LATIN method proposed many years ago by P. Ladeveze or the one

based on the use of asymptotic expansions [51]...

If the next future non-linear parametric models can be addressed with the same

simplicity than the linear ones, parametric PGD based virtual charts could open a new

age for the XXI century design, optimization and control of materials, processes and

systems, revolutioning the ICTs technologies.
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Fig. 9 Six first functions X(x), k = 1, . . . 6, for the simulation of the liver.
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Fig. 10 Six first functions Y(y), k = 1, . . . 6, for the simulation of the liver. Note that, in this
case, functions Y(y) are defined on the boundary of the liver only.
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Fig. 11 Implementation of the proposed technique on a PC.

A Alternating directions separated representation constructor

A.1 Computing R (x) from S (t) and W (k)

We consider the extended weighted residual form of equation (8):

∫

Ω×It×Ik

u∗

(

∂u

∂t
− k ·∆u− f

)

dx · dt · dk = 0 (71)

where the trial and test functions write respectively:

un (x, t, k) =

n−1
∑

i=1

Xi (x) · Ti (t) ·Ki (k) +R (x) · S (t) ·W (k) (72)

and, assuming S and W known from the previous iteration,

u∗ (x, t, k) = R∗ (x) · S (t) ·W (k) (73)

Introducing (72) and (73) into (71) it results:

∫

Ω×It×Ik

R∗ · S ·W ·
(

R · ∂S

∂t
·W − k ·∆R · S ·W

)

dx · dt · dk =

= −
∫

Ω×It×Ik

R∗ · S ·W ·Rn−1 dx · dt · dk
(74)

where Rn−1 defines the residual related to un−1(x, t, k):

Rn−1 =

n−1
∑

i=1

Xi·
∂Ti

∂t
·Ki −

n−1
∑

i=1

k ·∆Xi · Ti ·Ki − f (75)

Once all functions involving time and conductivity have been determined, we can inte-
grate Eq. (74) along its respective domains It × Ik, and by taking into account the following
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notations:
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

w1 =
∫

Ik

W 2dk s1 =
∫

It

S2dt r1 =
∫

Ω

R2dx

w2 =
∫

Ik

kW 2dk s2 =
∫

It

S · dS

dt
dt r2 =

∫

Ω

R ·∆R dx

w3 =
∫

Ik

W dk s3 =
∫

It

S dt r3 =
∫

Ω

R dx

wi
4
=

∫

Ik

W ·Ki dk si
4
=

∫

It

S · dTi
dt

dt ri
4
=

∫

Ω

R ·∆Xi dx

wi
5
=

∫

Ik

kW ·Ki dk si
5
=

∫

It

S · Ti dt ri
5
=

∫

Ω

R ·Xi dx

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(76)

Eq. (74) is reduced to:

∫

Ω

R∗· (w1 · s2 ·R− w2 · s1 ·∆R) dx =

= −
∫

Ω

R∗·

(

n
∑

i=1

wi
4
· si

4
·Xi −

n
∑

i=1

wi
5
· si

5
·∆Xi − w3 · s3 · f

)

dx
(77)

Eq. (77) defines an elliptic steady-state boundary value problem that can be solved by using
any discretization technique operating on the weak form of the problem (finite elements, finite
volumes, . . . ). Another possibility consists in coming back to the strong form of Eq. (77):

w1 · s2 ·R− w2 · s1 ·∆R =

= −

(

n
∑

i=1

wi
4 · si4 ·Xi −

n
∑

i=1

wi
5 · si5 ·∆Xi − w3 · s3 · f

)

(78)

that could be solved by using any classical collocation technique (finite differences, SPH, . . . ).

A.2 Computing S (t) from R (x) and W (k):

In the present case the test function is written as:

u∗ (x, t, k) = S∗ (t) ·R (x) ·W (k) (79)

Now, the weighted residual form becomes:

∫

Ω×It×Ik

S∗ ·R ·W ·
(

R · ∂S

∂t
·W − k ·∆R · S ·W

)

dx · dt · dk =

= −
∫

Ω×It×Ik

S∗ ·R ·W ·Rn−1 dx · dt · dk
(80)

that integrating in the space Ω × Ik and by taking into account the notation (76) results:

∫

It

S∗·
(

w1 · r1 · dS

dt
− w2 · r2 · S

)

dt =

= −
∫

It

S∗·

(

n
∑

i=1

wi
4
· ri

5
· dTi

dt
−

n
∑

i=1

wi
5
· ri

4
· Ti − w3 · r3 · f

)

dt
(81)

Eq. (81) represents the weak form of the ODE defining the time evolution of the field S that
can be solved by using any stabilized discretization technique (SU, Discontinuous Galerkin,
. . . ). The strong form of Eq. (81) reads:

w1 · r1 ·
dS

dt
− w2 · r2 · S =

= −

(

i=n
∑

i=1

wi
4 · ri5 ·

dTi

dt
−

i=n
∑

i=1

wi
5 · ri4 · Ti − w3 · r3 · f

)

(82)

Eq. (82) can be solved by using backward finite differences, or higher order Runge-Kutta
schemes, among many other possibilities.
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Computing W (k) from R (x)and S (t):

In this part of the algorithm, the test function is written as:

u∗ (x, t, k) = W ∗ (k) ·R (x) · S (t) (83)

Now, the weighted residual form becomes:

∫

Ω×It×Ik

W ∗ ·R · S·
(

R · ∂S

∂t
·W − k ·∆R · S ·W

)

dx · dt · dk =

= −
∫

Ω×It×Ik

W ∗ ·R · S·Rn−1 dx · dt · dk
(84)

Integrating Eq. (84) in Ω × It and considering the notations given by Eq. (76) leads to:

∫

Ik

W ∗· (r1 · s2 ·W − r2 · s1 · k ·W ) dk =

= −
∫

Ik

W ∗·

(

n
∑

i=1

ri
5
· si

4
·Ki −

n
∑

i=1

ri
4
· si

5
· k ·Ki − r3 · s3 · f

)

dk
(85)

Equation (85) does not involve any differential operator. The strong form of Eq. (85) is:

(r1 · s2 − r2 · s1 · k) ·W = −

(

i=n
∑

i=1

(

ri5 · si4 − ri4 · si5 · k
)

·Ki − r3 · s3 · f

)

(86)

Eq. (86) represents an algebraic equation because the original model does not involve deriva-
tives with respect to the conductivity. Thus, despite the introduction of parameters as addi-
tional model coordinates, the computational complexity remains essentially the same, however,
the introduction of extra-coordinates implies in general the increase of the number of modes
involved by the separated representation, and consequently the computing time.
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distributed parameter systems. Chem. Engineer. Science, 51, 81-98, 1996.
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