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PGM5-AS1 impairs miR-587-mediated 
GDF10 inhibition and abrogates progression 
of prostate cancer
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Abstract 

Background: Prostate cancer (PCa) is a leading cause of cancer-related death in males. Aberrant expression of long 

non-coding RNAs (lncRNAs) has been implicated in various human malignancies, including PCa. This study aims to 

clarify the inhibitory role of human PGM5 antisense RNA 1 (PGM5-AS1) in the proliferation and apoptosis of PCa cells.

Methods: The regulatory network of PGM5-AS1/microRNA-587 (miR-587)/growth and differentiation factor 10 

(GDF10) axis was examined by dual-luciferase reporter gene assay, RNA-binding protein immunoprecipitation, and 

RNA pull down assay. We manipulated the expression of PGM5-AS1, miR-587 and GDF10 by transducing expression 

vectors, mimic, inhibitor, or short hairpin RNA into PCa cells, thus establishing their functions in cell proliferation and 

apoptosis. Additionally, we measured the tumorigenicity of PCa cells xenografted in nude mice.

Results: PGM5-AS1 is expressed at low levels in PCa cell lines. Forced overexpression of PGM5-AS1 restricted prolifer-

ation and facilitated apoptosis of PCa cells, manifesting in suppressed xenograft tumor growth in nude mice. Notably, 

PGM5-AS1 competitively bound to miR-587, which directly targets GDF10. We further validated that the anti-cancer 

role of PGM5-AS1 in PCa cells was achieved by binding to miR-587 to promote the expression of GDF10.

Conclusion: PGM5-AS1 upregulates GDF10 gene expression by competitively binding to miR-587, thus inhibiting 

proliferation and accelerating apoptosis of PCa cells.
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Background
Prostate cancer (PCa) is one of the most common causes 

of cancer death in males across the world [1]. Based on 

an Annual Report to the Nation on the Status of Cancer 

by Negoita et  al., new PCa cases identified by prostate-

specific antigen testing underwent a decrease from 2008 

onwards, whereas the incidence of late stage diagno-

sis rose from 2010 onwards [2]. �e importance of PSA 

screening is a matter of debate, given that current PCa 

screening and treatment protocols can lead to clinical 

harm, such as infection and urogenital side effects due 

to overdiagnosis and overtreatment [3, 4]. However, the 

5-year survival rate approaches 100% for patients with 

localized PCa, but is only 28% for those with distant 

metastasis [5]. �e obstacles due to current standards of 

PCa detection and therapy motivate researchers to probe 

the molecular mechanism underlying the pathophysiol-

ogy of prostate carcinoma so as to identify better non-

invasive biomarkers for early diagnosis and treatment.

�ere is a paucity of evidence demonstrating the 

involvement of long non-coding RNAs (lncRNAs) in 

pathogenesis and metastasis of PCa, despite indications 

that lncRNA dysregulation has a link with PCa progres-

sion [6]. LncRNAs represent a distinctly heterogene-

ous family of RNA transcripts with a length over 200 

nucleotides exhibiting little or no coding potential; the 
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expression patterns and mechanisms of lncRNAs in 

PCa are a subject of active investigation to identify pos-

sible diagnostic and therapeutic strategies [7]. Interest-

ingly, identification of regulatory network of interrelated 

lncRNAs, microRNAs (miRNAs) and messenger RNAs 

(mRNAs) provides new insight into the molecular mech-

anisms underlying tumorigenesis of PCa and its develop-

ment [8]. In this study, our preliminary bioinformatics 

analysis first identified the involvement of the human 

PGM5 antisense RNA 1 (PGM5-AS1)/miR-587/growth 

and differentiation factor 10 (GDF10) axis in the malig-

nant phenotypes of PCa.

Prior evidence has proposed a tumor suppressive 

role of PGM5-AS1 in colorectal cancer, and its ectopic 

expression induces cell apoptosis and cell cycle arrest in 

colorectal cancer [9]. Furthermore, the lncRNA-miRNA-

mRNA co-expression network has been suggested to 

explain the function of PGM5-AS1 through its sequestra-

tion of miR-466 to elevate gene expression of the phos-

phate and tension homology deleted on chromosome 

ten (PTEN), thereby inhibiting esophageal squamous cell 

carcinoma progression [10]. In terms of the predicted 

binding between site miR-587 and PGM5-AS1, its over-

expression was documented to abrogate 5-fluorouracil-

induced apoptosis of colorectal cancer cells and impede 

the inhibition of tumor growth, which was realized 

by inversely regulating the target gene PPP2R1B [11]. 

Moreover, the predicted target of miR-587 in this study, 

GDF10, also known as BMP3B, belongs to the transform-

ing growth factor-β (TGF-β) family [12], which has been 

indicated as a tumor suppressor in lung cancer and also 

a factor in the progression of PCa [13]. Accordingly, we 

tested in the study functional relevance of PGM5-AS1/

miR-587/GDF10 axis in PCa cells and xenografts tumor.

Methods and materials
Ethics statement

�e study protocols were approved by the Institutional 

Animal Care and Use Committee of Linyi People’s Hos-

pital. �e animal experiments were performed in strict 

accordance with the recommendations in the Guide for 

the Care and Use of Laboratory Animals of the National 

Institutes of Health.

Microarray-based gene expression pro�ling

�e PCa-related microarray datasets (GSE3325 and 

GSE30994) and probe annotation files were downloaded 

from the Gene Expression Omnibus database. We con-

ducted differential expression analysis to retrieve differ-

entially expressed genes (DEGs) with the assistance of 

Limma package of R software. |logFoldChange|> 2 and p 

value < 0.05 were set as the thresholds and a heat map for 

DEGs was plotted by pheatmap package.

Cell treatment

�e human PCa cell lines (PC-3, LNCap, 22RV1 and 

DU145) and normal prostatic epithelial cell line RWPE-1 

were obtained from American Type Culture Collection 

(Manassas, VA, USA). BPH1 cells were purchased from 

Cell Bank of the Chinese Academy of Sciences (Shanghai, 

China). Following rapid recovery, these cells were incu-

bated in Roswell Park Memorial Institute (RPMI) 1640 

medium (11875119, Gibco Life Technologies, Grand 

Island, NY, USA) containing 10% fetal bovine serum 

(10099141, Gibco Life Technologies). �en, cells were 

further cultured in medium supplemented with 100 U/

mL penicillin and 100 U/mL streptomycin at 37  °C in a 

5%  CO2 incubator. When cells achieved 80% confluence, 

they were trypsinized.

�e cells were assigned to ten treatment groups as fol-

lows: (1) blank (cells without any treatment), (2) nega-

tive control for overexpression plasmid (oe-NC) (cells 

transduced with NC of overexpression plasmid), (3) 

oe-PGM5-AS1 (cells transduced with plasmid overex-

pressing PGM5-AS1), (4) inhibitor-NC + sh-NC (cells 

transduced with NC of miR-587 inhibitor and NC of 

short hairpin RNA [shRNA] against GDF10), (5) miR-

587 inhibitor + sh-NC (cells transduced with miR-587 

inhibitor and NC of shRNA against GDF10), (6) miR-587 

inhibitor + sh-GDF10 (cells transduced with miR-587 

inhibitor and shRNA against GDF10), (7) oe-PGM5-

AS1 + mimic-NC (cells transduced with plasmid over-

expressing PGM5-AS1 and NC of miR-587 mimic), (8) 

oe-PGM5-AS1 + miR-587 mimic (cells transduced with 

plasmid overexpressing PGM5-AS1 and miR-587 mimic), 

(9) oe-PGM5-AS1 + sh-NC (cells transduced with plas-

mid overexpressing PGM5-AS1 and sh-NC), and (10) 

oe-PGM5-AS1 + sh-GDF10 (cells transduced with plas-

mid overexpressing PGM5-AS1 plasmid overexpressing 

PGM5-AS1 and sh-GDF10). All plasmids were purchased 

from Guangzhou RiboBio Co., Ltd. (Guangzhou, China). 

Cells were seeded into the 6-well plate in RPMI 1640 

medium 24 h prior to transfection. When cell confluence 

reached about 80%, cells were resuspended in serum-

free RPMI 1640 medium and then were seeded into the 

6-well plate. �en, PCa cells were transfected using lipo-

fectamine 2000 kit (Invitrogen, Carlsbad, CA, USA) for 

6 h. Cells were cultured for 48 h in the renewed medium 

and collected for later use.

RNA isolation and quantitation

Total RNA was extracted from tissues and cells using 

Trizol (Tel-Test. Austin, Texas, USA). RNA was reversely 

transcribed into cDNA and subjected to reverse tran-

scription quantitative polymerase chain reaction (RT-

qPCR) assay on the ABI7500 equipment (Applied 

Biosystems Inc., Foster City, CA, USA) using SYBR® 
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Premix Ex Taq™ (Tli RNaseH Plus) kit (TaKaRa, Shiga, 

Japan). �e expression of miR-587 was determined by 

means of TaqMan miRNA assay (Ambion, Austin, TX, 

USA) with U6 as the loading control. �e expression of 

PGM5-AS1 and GDF10 were measured using Prime-

Script RT-PCR kit (TaKaRa) with β-actin served as the 

internal reference of mRNAs. �e primer sequences are 

shown in Table 1. Expression ratio of experimental gene 

to internal control was calculated based on the  2−ΔΔCt 

method.

Western blot analysis

�e total protein was extracted from tissues after treat-

ment of Radio Immunoprecipitation Assay lysis buffer 

(R0010, Solarbio, Shanghai, China) containing phenyl-

methylsulfonyl fluoride. �e supernatant was collected 

following incubation for 30  min on ice and 4  min of 

centrifugation at 12,000 r/min. �e protein concentra-

tion was quantified according to instructions in the 

bicinchoninic acid protein assay kit (23225, Pierce Bio-

technology, IL, USA). Next, proteins were resolved on 

10% sodium dodecyl sulfate polyacrylamide gel electro-

phoresis, electro-transferred to polyvinylidene fluoride 

membrane (blocked with 5% skim milk), and probed with 

rabbit antibodies to Ki67 (1:1000, ab16667, Abcam, Cam-

bridge, UK), proliferating cell nuclear antigen (PCNA) 

(1:1000, ab18197, Abcam), cleaved caspase-3 (1:500, 

ab49822, Abcam), B-cell lymphoma-2 (Bcl-2) (1:1000, 

ab32124, Abcam), Bcl-2 associated protein X (Bax) 

(1:1000, ab32503, Abcam), receptor-interacting protein 

kinase3 (RIP3) (1:1000, ab222320, Abcam), cyclophilinA 

(1:1000, ab126738, Abcam), GDF10 (1:1000, ab235005, 

Abcam), and β-actin (1:1000, ab8224, Abcam). �e 

membranes were incubated with secondary antibody 

of horseradish peroxidase-conjugated goat anti-rabbit 

immunoglobulin G (IgG) (1:5000, ab205718, Abcam) for 

1 h and washed with Tris Buffered saline/Tween. Proteins 

were visualized with enhanced chemiluminescence and 

quantified with Quantity One software.

Enzyme linked immunosorbent assay (ELISA)

A lactic acid dehydrogenase (LDH) ELISA kit (Nanjing 

Jiancheng Bioengineering Institute, Nanjing, Jiangsu, 

China) was used to detect cell necrosis with reference to 

the manual.

5-Ethynyl-2′-deoxyuridine (EdU) assay

After 48-h of transfection, PCa cells were incubated for 

2  h in EdU medium with 100 μL per well, followed by 

incubation with 2 mg/mL glycine for 5 min. After treat-

ment of phosphate buffer saline (PBS) containing 0.5% 

Triton X-100 as permeating agent for 10 min, cells were 

incubated in the 1 × Apollo staining solution in the dark 

for 30  min. �en, cells were immersed in 1 × Hoechst 

33,342 reaction fluid for 30 min in the dark at room tem-

perature. After staining, anti-fluorescence quenching 

agent was added to each well. Six to ten fields of view 

were randomly selected for each well for observation 

under a fluorescence microscope.

Clonogenic assay

Cells were seeded onto a six-well plate (500 cells/well) 

and cultured for 14 days. �e colonies were fixed in 10% 

methanol for 15  min and stained with 0.5% crystal vio-

let for 30  min. �en the cells were photographed and 

counted.

Flow cytometric analysis of apoptosis

Cells apoptosis was examined by flow cytometry with 

fluorescein isothiocyanate (FITC)-labeled Annexin V 

(Annexin V-FITC) and propidium iodide (PI) double 

staining (Sigma-Aldrich, St Louis, MO, USA). �e cells 

were trypsinized and the number of sample cells was 

adjusted to 1 × 106 cells/mL. Afterwards, cells were cen-

trifuged to remove supernatant and fixed with 70% etha-

nol at 4  °C overnight. After another centrifugation, cells 

were resuspended in 200 μL binding buffer, and incu-

bated with 10 μL Annexin V-FITC and 5 μL PI for 15 min 

at room temperature in the dark. Next, 300 μL binding 

buffer was added and cell apoptosis was examined using 

Table 1 Primer sequences for RT-qPCR

RT-qPCR reverse transcription quantitative polymerase chain reaction, PGM5-AS1 homo sapiens PGM5 antisense RNA 1, miR microRNA, GDF10 growth and 

di�erentiation factor 10

Gene Forward sequence Reverse sequence

PGM5-AS1 5′-GAC TAT GTT GTG AGC CTG CG-3′ 5′-AAA AGG GGA GGG GCA ATA CA-3′

miR-587 5′-CCA GGC AAG AGA GAG TTG CTG-3′ 5′-AGT CAC AGG TGC AGA CAC ATT-3′

GDF10 5′-GGA CTT TGA CGA GAA GAC GATG-3′ 5′-TCT TAG GCA TGG GGA ACT CAC-3′

U6 5′-CTC GCT TCG GCA GCACA-3′ 5′-AAC GCT TCA CGA ATT TGC GT-3′

β-actin 5′-CCT GGC ACC CAG CAC AAT -3′ 5′-GCC GAT CCA CAC GGA GTA CT-3′
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a FACS Calibur flow cytometer (Becton Dickinson, San 

Jose, CA, USA).

Fluorescence in situ hybridization (FISH) assay

�e subcellular localization of PGM5-AS1 in PCa cells 

was identified using FISH assay according to the proto-

cols of lncRNA FISH Probe Mix (Red) (Guangzhou Ribo-

Bio Co., Ltd., Guangzhou, China). Cells were seeded into 

the 24-well plate (6 × 104 cells/well). Cells at 80% conflu-

ence were fixed with 4% polyformaldehyde at room tem-

perature and treated with protease K (2 μg/mL), glycine 

and ethylphthalide reagent. Subsequently, cells were cul-

tured in 250 μL pre-hybridization solution at 42  °C for 

1 h. Next, with pre-hybridization solution removed, cells 

were hybridized overnight at 42 °C in 250 μL hybridiza-

tion solution supplemented with biotin-labeled antisense 

PGM5-AS1 probe (300 ng/mL, Shanghai Genechem Co., 

Ltd., China). �en cells were stained with 4′,6-diamid-

ino-2-phenylindole diluted by PBS Tween-20 (1:800) for 

5  min in a 24-well plate. Finally, cells sealed in antifade 

mounting medium were observed under a fluorescence 

microscope (Olympus, Tokyo, Japan) with five fields of 

vision randomly selected.

Nude mice xenografted with PCa cells

Nude mice (4—6 weeks old, weight: 16–20 g, Laboratory 

Animal Center of Chinese Academy of Medical Sciences, 

Beijing, China) were assigned to five treatment groups: 

(1) blank (mice without any treatment), (2) oe-NC (mice 

injected with cells transfected with oe-NC), and (3) oe-

PGM5-AS1 (mice injected with cells overexpressing 

PGM5-AS1), with 5 mice in each group. After 48-h of 

transfection, the concentration of PCa cells was adjusted 

to 4 × 105 cells/mL. �en, a 0.5  mL volume of cell sus-

pension was injected subcutaneously into the back of 

each nude mouse in accordance to establish PCa models 

in the nude mice. Tumor volume of was measured every 

7 days and calculated according to the following formula: 

tumor volume = 0.5 × a × b2, where a represents the long-

est diameter and b represents the shortest diameter. �e 

mice were euthanized at 28  day after xenografting, and 

the tumor tissues were removed and weighed. Half por-

tions of each tumor were fixed with 4% methanol for 

immunohistochemical analysis and terminal deoxynucle-

otidyl transferase mediated 2′-deoxyuridine 5′-triphos-

phate nick-end labeling (TUNEL) assays, and the other 

half was stored at − 80 °C for molecular experiments.

Immunohistochemistry

�e removed tumor tissues of nude mice were embedded 

in paraffin, which were baked in a 60 °C oven for 1 h, sec-

tioned, deparaffinized, and rehydrated in gradient etha-

nol. �e activity of endogenous peroxidase was blocked 

by distilled water containing 0.3% hydrogen peroxide. 

�en, the sections were washed with TBS buffer saline 

(Dako, Glostrup, Denmark) and incubated overnight 

with primary anti-rabbit polyclonal antibody to Ki67 

(ab16667, 1:1000, Abcam) at 4 °C. Next, the sections were 

incubated with horseradish peroxidase-labeled goat anti-

rabbit IgG (1:1000, ab6721, Abcam) in a 37 °C water bath 

for 30 min. �en, sections were re-stained with hematox-

ylin for 2 min. Finally, a negative control was set for each 

antibody and each specimen.

TUNEL assay

First, 4% methanol-fixed tumor tissues were sliced into 

4  μm thick sections. A TUNEL kit (Boster Biological 

Technology Co., Ltd., Wuhan, Hubei, China) was utilized 

to evaluate the apoptosis of tumor tissues in accordance 

with the manufacturer’s protocols.

Dual-luciferase reporter gene assay

Target genes of miR-587 were predicted using the publicly 

available microRNA.org website for biological prediction. 

Artificially synthesized GDF10 3′untranslated region 

(3′UTR) gene fragments were introduced into pMIR-

reporter (Huayueyang Biotechnology Co., Ltd., Beijing, 

China) using endonuclease sites SpeI and Hind III. Com-

plementary sequence mutation sites of seed sequences 

were designed on the wild type (WT) of GDF10. �e 

target fragments were inserted into the pMIR-reporter 

plasmid after restriction endonuclease digestion by T4 

DNA ligase. �e correctly sequenced luciferase reporter 

plasmids WT and mutant (MUT) were co-transfected 

into HEK-293 T cells (Shanghai Beino Biotechnology Co., 

Ltd., China) with miR-587 mimic, respectively. Cells were 

collected and lysed 48  h after transfection. Luciferase 

activity was examined using Glomax 20/20 Luminometer 

(Promega Corp., WI, USA) and a dual Luciferase detec-

tion kit (K801-200, BioVision, Palo Alto, USA). �e bind-

ing relationship between PGM5-AS1 and miR-587 was 

examined by the same method.

RNA-binding protein immunoprecipitation (RIP)

PCa cells were washed with precooled PBS and trypsi-

nized. �en, the cells were lysed in a buffer containing 

RNase (Gibco Life Technologies) and protease inhibitor 

cocktail (Roche, Basel, Switzerland). �e lysate was cen-

trifuged (1200×g) for 30 min to obtain the supernatant. 

Next, the protein G agarose beads, Argonaute 2 (Ago2) 

antibody (P10502500, Otwo Biotech Inc., Shenzhen, 

China) and IgG (Sigma-Aldrich) were incubated at 4  °C 

for 2 h and then were added into the supernatant for fur-

ther incubation overnight at 4 °C. �e beads were eluted 

three times, and RNA was extracted from magnetic beads 
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by addition of Trizol Reagent (Invitrogen). Expression of 

PGM5-AS1 and miR-587 was examined by RT-qPCR.

RNA pull-down

PCa cells were transfected with 50  nM biotin-labeled 

bio-miR-587, bio-miR-587-mut and corresponding NC-

bio for 48  h. Cells were then incubated in specific lysis 

buffer (Ambion, Austin, Texas, USA) for 10 min and then 

the mixture were centrifuged (14,000×g) to obtain the 

supernatant. Protein lysate was incubated with M-280 

streptavidin beads (S3762, Sigma-Aldrich) which were 

pre-coated with RNase-free bovine serum albumin and 

yeast tRNA (TRNABAK-RO, Sigma-Aldrich). Next, the 

beads were incubated at 4  °C for 3 h. �e binding RNA 

was purified by the Trizol method, and the PGM5-AS1 

expression was examined by RT-qPCR.

Statistical analysis

Statistical analyses were conducted by SPSS 21.0 (IBM-

SPSS Inc., Armonk, NY, USA). Measurement data are 

summarized as mean ± standard deviation. �e data were 

confirmed with normal distribution and homogeneity 

of variance after tests. Comparison between two groups 

was conducted by independent sample t-test. Compari-

sons among multiple groups were conducted by one-way 

analysis of variance (ANOVA) with Tukey’s post hoc test. 

Statistical analysis in relation to time-based measure-

ments within each group was realized using repeated 

measures ANOVA, followed by a Bonferroni’s post-hoc 

test. A value of p < 0.05 indicates significant difference.

Results
PGM5-AS1 is poorly expressed in PCa cell line

Based on the analysis of GSE3325 microarray dataset 

(Fig.  1a), 11 genes including UBE2C, NUF2, CENPF, 
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Fig. 1 Poorly expressed PGM5-AS1 is observed in PCa cell lines. a The graphical heatmap (GSE3325) for differentially expressed lncRNAs. The X axis 
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AURKA, CCDC102B, TGM3, LOC102724927, INHBE, 

LYPD1, LHFPL4, TNNI3, were highly expressed in 

PCa samples, whereas 20 genes (SYNM, PGM5-AS1, 

IGF1, WFDC1, TENM2, MME, LEPREL1, ZNF385B, 

KRT23, APOBEC3G, SFRP2, ATP1A2, MAOB, CLIP4, 

LOC101928386, PXDNL, BC021061, GCG, NRG4, 

RANBP3L) were poorly expressed in PCa samples 

compared with normal samples. Combined with the 

screening through MiTranscriptome database (https ://

mitra nscri ptome .org) (Fig.  1b), we find that the expres-

sion of PGM5-AS1 in patients with PCa is downregu-

lated. Consistently, RT-qPCR assays indicated that the 

four PCa cell lines (PC-3, 22RV1, DU145 and LNCap) 

showed lower PGM5-AS1 expression than the two nor-

mal prostate epithelial cell lines (BPH1 and RWPE-1) 

(p < 0.05). �e expression level of PGM5-AS1 in each 

cell line was ranked in ascending order as follows: PC-3 

< 22RV1 < DU145 < LNCap < BPH1 < RWPE-1 (Fig.  1c). 

In addition, PC-3 cells are capable of growing andro-

gen-independently, proliferating and forming distant 

metastatic lesions in animals, thus modelling closely the 

clinical pathophysiology of castration resistant PCa [14]. 

�erefore, we selected the PC-3 cell line for subsequent 

experiments.

PGM5-AS1 overexpression suppresses proliferation, colony 

formation and enhances apoptosis of PCa cells

After transfection, the PGM5-AS1 expression was further 

determined in PC-3 and DU-145 cells. No obvious differ-

ence was observed in PGM5-AS1 expression between 

untreated cells and those treated with oe-NC (p > 0.05), 

but the expression of PGM5-AS1 was increased in the 

cells transduced with PGM5-AS1 overexpression plasmid 

versus those treated with oe-NC (p < 0.05) (Fig. 2a). �ese 

results confirmed successful transfection of PGM5-AS1 

in PCa cells. EdU proliferation assays identified reduced 

proliferation ability in the cells overexpressing PGM5-

AS1 versus those treated with oe-NC (p < 0.05), and no 

significant difference between untreated cells and those 

treated with oe-NC (p > 0.05) (Fig.  2b, c). Western blot 

analysis showed significantly lower expression of Ki67 

and PCNA in the cells overexpressing PGM5-AS1 versus 
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those treated with oe-NC (p < 0.05), and no obvious dif-

ference between the untreated cells and those treated 

with oe-NC (p > 0.05) (Fig.  2d, e). Moreover, based on 

experimental data from the clonogenic assay (Fig.  2f, 

g) and flow cytometry (Fig.  2h, i), cells overexpressing 

PGM5-AS1 exhibited diminished cell colony forma-

tion and elevated cell apoptosis rate as compared with 

untreated cells (p < 0.05). Consistent with this, Western 

blot analysis also revealed elevated expression of pro-

apoptotic proteins (cleaved caspase-3, Bax, RIP3 and 

cyclophilinA) and reduced anti-apoptotic Bcl-2 (p < 0.05) 

(Fig. 2j). Further ELISA analysis showed that LDH release 

was promoted by oe-PGM5-AS1 (p < 0.05) (Fig. 2k). Also, 

we observed no appreciable difference in LDH release 

between untreated cells and those treated with oe-NC 

(p > 0.05). All these results indicate that PGM5-AS1 over-

expression attenuated proliferation, colony formation 

and enhanced apoptosis of PCa cells.

PGM5-AS1 competitively binds to miR-587

RNA-FISH analysis showed that PGM5-AS1 expression 

was mainly localized in cytoplasm (Fig.  3a). With the 

assistance of the DIANA Tools database (Tools https 

://diana .imis.athen a-innov ation .gr/Diana Tools /index 

.php?R=site/page&view=softw are), we screened out 

miR-587 (score = 0.875) as the mRNA with the great-

est likelihood of binding to PGM5-AS1 (Fig. 3b). Dual-

luciferase assay demonstrated that, relative to cells 

transfected with miR-587 mimic-NC + PGM5-AS1-

WT, the luciferase activity was lower in cells trans-

fected with miR-587 mimic + PGM5-AS1-WT 

(p < 0.05), while no obvious difference was observed 

in the cells transfected with miR-587 mimic + PGM5-

AS1-MUT (p > 0.05), thus suggesting a binding rela-

tionship between PGM5-AS1 and miR-587 (Fig.  3c). 

In addition, in the RIP assay, expression of PGM5-AS1 

and miR-587 was diminished in the presence of Ago2/

IgG relative to the input (p < 0.05) (Fig. 3d). In the RNA 

pull-down experiment, PGM5-AS1 expression was 

significantly elevated in the miR-587-bio group when 

compared with that in the NC-bio group, suggesting 

that PGM5-AS1 was indeed enriched in samples pulled 

down by miR-587 probes (Fig.  3e). RT-qPCR assay 

(Fig. 3f ) identified elevated PGM5-AS1 expression and 

reduced miR-587 and GDF10 expression in cells over-

expressing PGM5-AS1 versus those treated with oe-NC 

(p < 0.05). No significant difference was witnessed in 

miR-587, PGM5-AS1 or GDF10 expression between 
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untreated cells and those treated with oe-NC (p > 0.05). 

�ese findings indicate that PGM5-AS1 binds to 

miR-587.

miR-587 upregulation enhances proliferation, colony 

formation and represses apoptosis of PC-3 cell line 

by targeting GDF10

�e target gene GDF10 of miR-587 was screened out by 

intersecting the microSearch V3.0 (https ://www.exiqo 

n.com/miRSe arch), microDB (https ://www.mirdb .org/) 

and mirDIP (https ://ophid .utoro nto.ca/mirDI P/) data-

bases with the poorly-expressed genes in the GSE30994 
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dataset (Fig. 4a, b). Predictive analysis of the TargetScan 

database (https ://www.Targe tScan .org/) suggested bind-

ing sites between miR-587 and GDF10 3′UTR (Fig.  4c). 

Moreover, data obtained from dual-luciferase assays veri-

fied that, compared with mimic-NC group, the luciferase 

activity was decreased in the miR-587 mimic and GDF10-

WT group (p < 0.05), while no obvious difference was 

observed in the miR-587 mimic group and GDF10-MUT 

group (p > 0.05) (Fig.  4d). Subsequent RT-qPCR and 

Western blot assays confirmed that the treatment with 

miR-587 mimic led to a decline in GDF10 expression 

versus cells treated with mimic-NC (p < 0.05) (Fig. 4e–g). 

�e transfection efficiency was evaluated as shown in 

Fig. 4h, which suggested that the transfected cells could 

be used for subsequent experiments. EdU proliferation 

assay indicated suppressed cell proliferation ability in 

the presence of miR-587 inhibitor + sh-NC versus the 

treatment of inhibitor-NC + sh-NC (p < 0.05) (Fig.  4i), 

which was consistent with diminished expression of 

Ki67 and PCNA as measured by Western blot assay 

(p < 0.05) (Fig.  4j). Additionally, cell proliferation ability 

and expression of Ki67 and PCNA were both elevated in 

response to miR-587 inhibitor + sh-GDF10 versus miR-

587 inhibitor + sh-NC group (p < 0.05). Moreover, based 

on experimental data from the clonogenic assay (Fig. 4k), 

cell colonies were diminished upon treatment of miR-587 

inhibitor + sh-NC versus the treatment with inhibitor-

NC + sh-NC (p < 0.05), but were elevated in response 

to miR-587 inhibitor + sh-GDF10 relative to miR-587 

inhibitor + sh-NC (p < 0.05). In addition, cell apoptosis 

as evaluated by flow cytometry (Fig.  4l) was enhanced 

upon treatment with miR-587 inhibitor + sh-NC versus 

inhibitor-NC + sh-NC (p < 0.05), which concurred with 

findings of increased pro-apoptotic proteins (cleaved 

caspase-3, Bax, RIP3 and cyclophilinA) and reduced anti-

apoptotic Bcl-2 (p < 0.05) (Fig.  4m). �e cell apoptosis 

was repressed upon treatment of miR-587 inhibitor + sh-

GDF10 versus treatment of miR-587 inhibitor + sh-NC 

(p < 0.05), concurring with diminished pro-apoptotic 

proteins (cleaved caspase-3, Bax, RIP3 and cyclophilinA) 

and elevated anti-apoptotic Bcl-2 protein levels (p < 0.05). 

ELISA revealed significantly increased LDH release in 

cells treated with miR-587-inhibitor + sh-NC, while 

further addition of sh-GDF10 decreased LDH release 

(p < 0.05) (Fig.  4n). All these results indicated that miR-

587 upregulation facilitated proliferation, colony forma-

tion and impeded apoptosis of PC-3 cell line by targeting 

GDF10.
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PGM5-AS1 inhibits malignant progression of PCa cells via 

upregulation of GDF10 by binding to miR-587

�e transfection efficiency of PCa cells was evaluated 

by RT-qPCR (Fig.  5a) to validate subsequent experi-

ments. EdU proliferation assay showed enhanced cell 

proliferation ability in the presence of miR-587 mimic 

in cells overexpressing PGM5-AS1 versus the treatment 

with mimic-NC (p < 0.05) (Fig.  5b), which was consist-

ent with elevated expression of Ki67 and PCNA as meas-

ured by Western blot assay (p < 0.05) (Fig. 5c). Moreover, 

in response to sh-GDF10, cell proliferation ability and 

expression of Ki67 and PCNA were both repressed in 

cells overexpressing PGM5-AS1 versus the treatment 

with sh-NC (p < 0.05). Moreover, based on experimental 

data of clonogenic assays (Fig. 5d), cell colonies numbers 

were elevated upon treatment of miR-587 mimic in cells 

overexpressing PGM5-AS1 versus the treatment with 

mimic-NC (p < 0.05), but colony numbers were dimin-

ished in response to sh-GDF10, relative to sh-NC treat-

ment (p < 0.05). In addition, cell apoptosis as evaluated by 

flow cytometry (Fig. 5e) was suppressed upon treatment 

of miR-587 mimic in cells overexpressing PGM5-AS1 

versus the treatment with mimic-NC (p < 0.05), corre-

sponding to diminished pro-apoptotic proteins (cleaved 

caspase-3, Bax, RIP3 and cyclophilinA) and elevated anti-

apoptotic Bcl-2 protein (p < 0.05) (Fig. 5f ). �e cell apop-

tosis was facilitated upon treatment of sh-GDF10 in cells 

overexpressing PGM5-AS1 versus treatment with sh-NC 

(p < 0.05), corresponding to upregulated pro-apoptotic 

proteins (cleaved caspase-3, Bax, RIP3 and cyclophilinA) 

and decreased anti-apoptotic Bcl-2 protein (p < 0.05). 

ELISA showed that, compared with oe-PGM5-AS1 

treatment alone, LDH release was increased in response 

to treatment of oe-PGM5-AS1 + miR-587 mimic yet 

decreased in response to treatment with oe-PGM5-

AS1 + sh-GDF10 (p < 0.05) (Fig.  5g). In addition, similar 

results were observed in another PCa cell line DU-145 

(Supplementary Fig. 1). �e above results indicated that 

PGM5-AS1 upregulated GDF10 gene expression by bind-

ing to miR-587, resulting in inhibited PCa cell prolifera-

tion and colony formation, as well as promoted PCa cell 

apoptosis.

PGM5-AS1 overexpression impedes tumor growth in nude 

mice

Next, we proceeded to examine the expression and effect 

of PGM5-AS1 in  vivo. PGM5-AS1 overexpression was 

successfully transduced into the tumors of nude mice, 

according to the downregulated miR-587 expression and 

upregulated PGM5-AS1 and GDF10 expression observed 

in tumor tissues from nude mice injected with cells trans-

duced with PGM5-AS1 overexpression plasmid (Fig. 6a). 

In addition, we saw no obvious difference in PGM5-AS1, 

miR-587 or GDF10 expression in tumor tissues from 

untreated mice compared with those treated with oe-NC 

(p > 0.05) (Fig. 6a), and likewise no appreciable difference 

in tumor size and weight (p > 0.05) (Fig. 6b–d). However, 

we saw a significant reduction in size of the tumors over-

expressing PGM5-AS1 versus those treated with oe-NC 

(p < 0.05) (Fig.  6b–d). Based on the obtained data of 

immunohistochemical (Fig.  6e, f ) and TUNEL (Fig.  6g, 

h) assay, the tumors overexpressing PGM5-AS1 exhib-

ited diminished Ki67 expression and enhanced apopto-

sis compared to those treated with oe-NC (p < 0.05). In 

addition, untreated mice and those treated with oe-NC 

also showed no remarkable differences in these markers 

(p > 0.05). Furthermore, Western blot analysis revealed 

elevated expression of pro-apoptotic proteins (cleaved 

caspase-3 and Bax) and reduced anti-apoptotic Bcl-2 

protein (p < 0.05) (Fig. 6i, j). Also, there was no appreci-

able difference in these markers between untreated cells 

and those treated with oe-NC (p > 0.05). ELISA revealed 

significantly elevated LDH release in the presence of 

oe-PGM5-AS1 (Fig.  6k). All these results indicated that 

PGM5-AS1 overexpression suppressed the growth of 

xenograft prostatic tumor via the miR-587/GDF10 axis.

Discussion
PCa is widely recognized as a significant health prob-

lem affecting aging men [15]. Interestingly, the molecu-

lar mechanisms of PCa are related to the dysregulation 

of mRNAs, miRNAs or lncRNAs, which exert impor-

tant effects on different biological processes related to 

cancer pathogenesis [8]. Aberrantly expressed lncRNAs 

may result in antineoplastic or tumorigenic functions by 

mediating carcinogenesis-related miRNAs or mRNAs 

[16]. In the current study, we found that PGM5-AS1 

upregulated the GDF10 expression by sequestering miR-

587, thus restricting proliferation and facilitating apopto-

sis of PCa cells (Fig. 7).

Present experimental data revealed low expression 

of PGM5-AS1 in PCa cell lines. Moreover, in  vitro and 

in  vivo experiments indicated that the ectopic expres-

sion of PGM5-AS1 could enhance PCa cell apoptosis 

and lower the proliferation and colony formation of PCa 

cells, as well as reducing prostatic tumorigenesis in xeno-

grafted nude mice. Extensive studies have documented 

the diagnostic and prognostic functions of lncRNAs in 

PCa, which may be abnormally upregulated as oncogenes 

(SNHG12) [17], or downregulated as tumor suppressors 

(BRE-AS1) [18]. A previously reported study highlighted 

the aberrantly low expression of PGM5-AS1 in colorec-

tal cancer tissues and cells, and the anti-cancer potential 

of PGM5-AS1 overexpression in colorectal cancer [9]. In 

addition, results of functional assays in esophageal squa-

mous cell carcinoma showed that ectopic expression of 
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PGM5-AS1 restricted the malignant phenotype pro-

gression through impairment of the miR-466-mediated 

PTEN inhibition [10]. �e tumor suppressive role of 

PGM5-AS1 having been revealed in PCa, we proceeded 

to seek the underlying functional mechanisms.

Recent evidence has deciphered that lncRNAs can bind 

to and sequester miRNAs as competitive endogenous 

RNAs, thereby curbing the direct effects of miRNA on 

downstream mRNAs [19]. After verification with dual-

luciferase reporter, RIP and RNA pull down assays, we 

confirmed that PGM5-AS1 competitively bound to and 

inversely regulated miR-587. miR-587 has been previ-

ously elucidated to be a regulator of cell cycle progres-

sion via the TGF-β-SMAD signaling pathway [20]. �e 
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oncomiR property of miR-587 has been documented in 

the study of Zhang et al., which demonstrated that inhibi-

tion of miR-587 could restore the 5-fluorouracil-induced 

cell apoptosis in colorectal cancer and even cause sig-

nificant declines in drug resistance [11]. Largely in agree-

ment with our present findings, upregulation of miR-587 

has been identified in cervical cancer and specific inhibi-

tor-induced miR-587 knockdown exerts inhibitory effects 

on tumor growth [21]. �e rescue experiments in this 

study unearthed that miR-587 upregulation-induced 

by mimics could reverse the suppressed cell prolif-

eration and colony formation triggered by PGM5-AS1 

overexpression.

Next, we went on to seek the downstream target gene 

of miR-587 and to validate the above-mentioned find-

ings. Results suggested that miR-587 targeted and nega-

tively regulated the GDF10 gene, and more importantly, 

that miR-587 upregulation accelerated proliferatio and, 

colony formation, and diminished apoptosis of PCa cells 

by targeting GDF10. �e function of miR-587 in cancer 

is presumably mediated by its regulation of target genes. 

For instance, a prior study has demonstrated that miR-

587 could target and negatively regulate the target gene 

PTEN, by which mechanism miR-587 present a promis-

ing diagnostic marker and risk factor for metabolic syn-

drome [22]. Multiple studies have suggested that GDF10, 

a member of the TGF-β family, was downregulated 

in various tumors. For example, the study of Dai et  al. 

delineated that GDF10 expression is suppressed in lung 

cancer, and that the aberrant downregulation of GDF10 

contributes to the tumor growth in the lung [23]. GDF10 

was also reported to function as a tumor suppressor in 

epithelial cells of breast cancer and to restrict their pro-

liferation and epithelial-mesenchymal transition [24]. 

Molina et al. focused on breast cancer, finding consistent 

results that GDF10 hypermethylation is a common epi-

genetic event in breast cancer, which leads to aberrant 

repression of GDF10 expression. Functional experiments 

in oral squamous cell carcinoma unraveled that overex-

pression of GDF10, triggered by type III TGF-β receptor 

via the TGF-β-SMAD2/3 signaling pathway, resulted in 

appreciable inhibition in cell proliferation, migration and 

invasion [25]. Additionally, a previous study deciphered 

that PGM5-AS1, which is downregulated in colorec-

tal cancer, functioned as a molecular sponge to medi-

ate SMAD4 expression by sponging miR-100-5p [26]. In 

our study, PGM5-AS1 abrogated malignant progression 

of PCa Cells via upregulation of GDF10 by sequestering 

miR-587 (Additional file 1: Fig. S1).

Conclusions
We conclude that the PGM5-AS1/miR-587/GDF10 axis 

shed new light for understanding the aggressive poten-

tial of PCa, and for the development of better diagnostic 

methods and therapies. PGM5-AS1 upregulates GDF10 

expression by binding to miR-587, which leads to sup-

pressed PCa cell proliferation, and promoted PCa cell 

apoptosis. However, we need to confirm the present pre-

clinical results in larger patient cohorts and identify the 

best strategy to upregulate or downregulate PGM5-AS1 

so as to limit any adverse effects. Most importantly, we 

need to obtain a sufficient number of clinical samples to 

support a receiver operator characteristic curve for fur-

ther application of present findings in the clinic.

Supplementary information
Supplementary information accompanies this paper at https ://doi.

org/10.1186/s1296 7-020-02572 -w.

Additional �le 1: Fig. S1. PGM5-AS1 inhibits malignant progression of 

PCa cells via upregulation of GDF10 by binding to miR-587. A The relative 

expression of PGM5-AS1, miR-587 and GDF10 in transfected DU-145 cells 

as evaluated by RT-qPCR. B The representative images of EDU staining 

of transfected DU-145 cells. C The quantitative analysis of cell prolifera-

tion in transfected DU-145 cells as measured by EdU assay. D The protein 
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Fig. 7 A graphic abstract showing PGM5-AS1 upregulates GDF10 

expression by binding to miR-587, which leads to inhibited PCa cell 

proliferation, and promoted PCa cell apoptosis
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expression of Ki67 and PCNA in transfected DU-145 cells through Western 

blot analysis. E The representative images of cell colony formation in trans-

fected DU-145 cells. F The quantitative analysisof cell colony formation in 

transfected DU-145 cells. G The representative images of cell apoptosis 

in transfected DU-145 cells detected by flow cytometric analysis. H 

The quantitative analysis of cell apoptosis in transfected DU-145 cells 

detected by flow cytometric analysis. I The protein expression of cleaved 

caspase-3, Bax, RIP3, cyclophilinA and Bcl-2 in transfected DU-145 cells 

through Western blot analysis. JLDH release in transfected DU-145 cells 

determined by ELISA. * p < 0.05 vs. the oe-PGM5-AS1 + mimic-NC group 

(DU-145 cells overexpressing PGM5-AS1 treated with mimic-NC). # p < 

0.05 vs. the oe-PGM5-AS1 + sh-NC group (DU-145 cells overexpressing 

PGM5-AS1 treated with sh-NC). The measurement data are summarized as 

mean ± standard error. Comparison between two groups was conducted 

by independent sample t-test. The experiment was repeated three times 

independently.
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