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Abstract—Probabilistic Graphical Models (PGM) is a technique of compactly

representing a joint distribution by exploiting dependencies between the random

variables. It also allows us to do inference on joint distributions in a computation-

ally cheaper way than the traditional methods. PGMs are widely used in the field

of speech recognition, information extraction, image segmentation, modelling

gene regulatory networks.

pgmpy [pgmpy] is a python library for working with graphical models. It al-

lows the user to create their own graphical models and answer inference or map

queries over them. pgmpy has implementation of many inference algorithms like

VariableElimination, Belief Propagation etc.

This paper first gives a short introduction to PGMs and various other python

packages available for working with PGMs. Then we discuss about creating and

doing inference over Bayesian Networks and Markov Networks using pgmpy.

Index Terms—Graphical Models, Bayesian Networks, Markov Networks, Vari-

able Elimination

Introduction

Probabilistic Graphical Model (PGM) is a technique of represent-

ing Joint Distributions over random variables in a compact way by

exploiting the dependencies between them. PGMs use a network

structure to encode the relationships between the random variables

and some parameters to represent the joint distribution.

There are two major types of Graphical Models: Bayesian

Networks and Markov Networks.

Bayesian Network: A Bayesian Network consists of a directed

graph and a conditional probability distribution associated with

each of the random variables. A Bayesian network is used mostly

when there is a causal relationship between the random vari-

ables. An example of a Bayesian Network representing a student

[student] taking some course is shown in Fig 1.

Markov Network: A Markov Network consists of an undi-

rected graph and a few Factors are associated with it. Unlike

Conditional Probability Distributions, a Factor does not represent

the probabilities of variables in the network; instead it represents

the compatibility between random variables that is how much

a particular state of a random variable likely to agree with the

another state of some other random variable. An example of

markov [markov] network over four friends A, B, C, D agreeing

to some concept is shown in Fig 2.

There are numerous open source packages available in Python

for working with graphical models. eBay’s bayesian-belief-
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networks [bbn] mostly focuses on Bayesian Models and has im-

plementation of a limited number of inference algorithms. Another

package pymc [pymc] focuses mainly on Markov Chain Monte

Carlo (MCMC) method. libpgm [libpgm] also mainly focuses on

Bayesian Networks.

pgmpy tries to be a complete package for working with

graphical models and gives the user full control on designing

the model. The source code is very well documented with proper

docstrings and doctests for each method so that users can quickly

get upto speed. Furthermore, pgmpy also provides easy extensi-

bility allowing users to write their own inference algorithms or

elimination order algorithms without any additional effort to get

familiar with the source code.

Getting Source Code and Installing

pgmpy is released under MIT Licence and is hosted on github. We

can simply clone the repository and install it:

git clone https://github.com/pgmpy/pgmpy

cd pgmpy

[sudo] python3 setup.py install

Dependencies: pgmpy runs only on python3 and is dependent on

networkx, numpy, pandas and scipy which can be installed using

pip or conda as:

pip install -r requirements.txt

or:

conda install --file requirements.txt

Creating Bayesian Models using pgmpy

A Bayesian Network consists of a directed graph where nodes

represents random variables and edges represent the the relation

between them. It is parameterized using Conditional Probability

Distributions(CPD). Each random variable in a Bayesian Network

has a CPD associated with it. If a random varible has parents

in the network then the CPD represents P(var|Parvar) i.e. the

probability of that variable given its parents. In the case, when

the random variable has no parents it simply represents P(var) i.e.

the probability of that variable.

For example, we can take the case of student model repre-

sented in Fig 1. A possible CPD for the random variable grade is

shown in Table 1.

We can represent the CPD shown in Table 1 in pgmpy as

follows:

from pgmpy.factors import TabularCPD

grade_cpd = TabularCPD(
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Fig. 1: Student Model: A simple Bayesian Network.

Fig. 2: A simple Markov Model
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Intelligence (I) i0 i0 i1 i1

Difficulty (D) d0 d1 d0 d1

g0 0.3 0.05 0.9 0.5

g1 0.4 0.25 0.08 0.3

g2 0.3 0.7 0.02 0.2

TABLE 1: Conditional Probability Table.

variable='G',

variable_card=3,

values=[[0.3, 0.05, 0.9, 0.5],

[0.4, 0.25, 0.08, 0.3],

[0.3, 0.7, 0.02, 0.2]],

evidence=['I', 'D'],

evidence_card=[2, 2])

Now, coming back to defining a model using pgmpy. The general

workflow for defining a model in pgmpy is to first define the

network structure and then add the parameters to it. We can create

the student model shown in Fig 1 in pgmpy as follows:

from pgmpy.models import BayesianModel

from pgmpy.factors import TabularCPD

student_model = BayesianModel([('D', 'G'),

('I', 'G'),

('G', 'L'),

('I', 'S')])

grade_cpd = TabularCPD(

variable='G',

variable_card=3,

values=[[0.3, 0.05, 0.9, 0.5],

[0.4, 0.25, 0.08, 0.3],

[0.3, 0.7, 0.02, 0.2]],

evidence=['I', 'D'],

evidence_card=[2, 2])

difficulty_cpd = TabularCPD(

variable='D',

variable_card=2,

values=[[0.6, 0.4]])

intel_cpd = TabularCPD(

variable='I',

variable_card=2,

values=[[0.7, 0.3]])

letter_cpd = TabularCPD(

variable='L',

variable_card=2,

values=[[0.1, 0.4, 0.99],

[0.9, 0.6, 0.01]],

evidence=['G'],

evidence_card=[3])

sat_cpd = TabularCPD(

variable='S',

variable_card=2,

values=[[0.95, 0.2],

[0.05, 0.8]],

evidence=['I'],

evidence_card=[2])

student_model.add_cpds(grade_cpd, difficulty_cpd,

intel_cpd, letter_cpd,

sat_cpd)

The network structure of a Graphical Model encodes the inde-

pendence conditions between the random variables. pgmpy also

has methods to determine the local independencies, D-Separation,

converting to a markov model etc. A few example are shown

below:

student_model.get_cpds()

[<TabularCPD representing P(G:3 | I:2, D:2)

at 0x7f196c0b27b8>,

<TabularCPD representing P(D:2) at 0x7f196c0b2828>,

A B φ(A,B)

a0 b0 30

a0 b1 5

a1 b0 1

a1 b1 10

TABLE 2: Factor over variables A and B.

<TabularCPD representing P(I:2) at 0x7f196c0b2908>,

<TabularCPD representing P(L:2 | G:3)

at 0x7f196c0b2978>,

<TabularCPD representing P(S:2 | I:2)

at 0x7f196c0b27f0>]

student_model.active_trail_nodes('D')

{'D', 'G', 'L'}

student_model.local_independencies('G')

(G _|_ S | D, I)

student_model.get_independencies()

(S _|_ I, G, L | D)

(S _|_ D, I | G)

(S _|_ D, I, G | L)

(D _|_ G, L | S)

(D _|_ I, S | G)

(D _|_ G, L | I)

(D _|_ G, I, S | L)

(G _|_ D, I, L | S)

(G _|_ I, L, S | D)

(G _|_ D, L | I)

(G _|_ D, I, S | L)

(I _|_ G, L | S)

(I _|_ G, S, L | D)

(I _|_ D, S | G)

(I _|_ D, G, S | L)

(L _|_ D, G, I | S)

(L _|_ G, I, S | D)

(L _|_ D, G | I)

student_model.to_markov_model()

<pgmpy.models.MarkovModel.MarkovModel

at 0x7f196c0b2470>

Creating Markov Models in pgmpy

A Markov Network consists of an undirected graph which con-

nects the random variables according to the relation between them.

A markov network is parameterized by factors which represent the

likelihood of a state of one variable to agree with some state of

other variable.

We can take the example of a Factor over variables A and B

in the network shown in Fig 2. A possible Factor over variables A

and B is shown in Table 2.

We can represent this Factor in pgmpy as follows:

from pgmpy.factors import Factor

phi_a_b = Factor(varibales=['A', 'B'],

cardinality=[2, 2],

value=[100, 5, 5, 100])

Assuming some other possible factors as in Table 3, 4 and 5,

we can define the complete markov model as:

from pgmpy.models import MarkovModel

from pgmpy.factors import Factor

model = MarkovModel([('A', 'B'), ('B', 'C'),

('C', 'D'), ('D', 'A')])

factor_a_b = Factor(variables=['A', 'B'],
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C φ(B,C)

b0 c0 100

b0 c1 1

b1 c0 1

b1 c1 100

TABLE 3: Factor over variables B and C.

C D φ(C,D)

c0 d0 1

c0 d1 100

c1 d0 100

c1 d1 1

TABLE 4: Factor over variables C and D.

cardinality=[2, 2],

value=[100, 5, 5, 100])

factor_b_c = Factor(variables=['B', 'C'],

cardinaity=[2, 2],

value=[100, 3, 2, 4])

factor_c_d = Factor(variables=['C', 'D'],

cardinality=[2, 2],

value=[3, 5, 1, 6])

factor_d_a = Factor(variables=['D', 'A'],

cardinality=[2, 2],

value=[6, 2, 56, 2])

model.add_factors(factor_a_b, factor_b_c,

factor_c_d, factor_d_a)

Similar to Bayesian Networks, pgmpy also has the feature for

computing independencies, converting to Bayesian Network etc in

the case of Markov Networks.

model.get_local_independencies()

(D _|_ B | C, A)

(C _|_ A | D, B)

(A _|_ C | D, B)

(B _|_ D | C, A)

model.to_bayesian_model()

<pgmpy.models.BayesianModel.BayesianModel

at 0x7f196c084320>

model.get_partition_function()

10000

Doing Inference over models

pgmpy support various Exact and Approximate inference algo-

rithms. Generally, to perform inference over models, we need

to first create an inference object by passing the model to the

inference class. Once an inference object is instantiated, we can

D A φ(D,A)

d0 a0 100

d0 a1 1

d1 a0 1

d1 a1 100

TABLE 5: Factor over variables D and A.

call either query method to find the probability of some variable

given evidence, or else map_query method to know the state of

the variable having maximum probability. Let’s perform inference

on the student model (Fig 1) using variable elimination :

from pgmpy.inference import VariableElimination

student_infer = VariableElimination(student_model)

prob_G = student_infer.query(variables='G')

print(prob_G['G'])

G phi(G)

G_0 0.4470

G_1 0.2714

G_2 0.2816

prob_G = student_infer.query(

variables='G',

evidence=[('I', 1), ('D', 0)])

print(prob_G['G'])

G phi(G)

G_0 0.0500

G_1 0.2500

G_2 0.7000

student_infer.map_query(variables='G')

{'G': 0}

student_infer.map_query(

variables='G',

evidence=[('I', 1), ('D', 0)])

{'G': 2}

Fit and Predict Methods

In a general machine learning task we are given some data from

which we want to compute the parameters of the model. pgmpy

simplifies working on these problems by providing fit and predict

methods in the models. fit method accepts the given data as a

pandas DataFrame object and learns all the parameters from it.

The predict method also accepts a pandas DataFrame object and

predicts values of all the missing variables using the model. An

example of fit and predict over the student model using some

randomly generated data:

from pgmpy.models import BayesianModel

import pandas as pd

import numpy as np

# Considering that each variable have only 2 states,

# we can generate some random data.

raw_data = np.random.randint(low=0,

high=2,

size=(1000, 5))

data = pd.DataFrame(raw_data,

columns=['D', 'I', 'G',

'L', 'S'])

data_train = data[: int(data.shape[0] * 0.75)]

student_model = BayesianModel([('D', 'G'),

('I', 'G'),

('I', 'S'),

('G', 'L')])

student_model.fit(data_train)

student_model.get_cpds()

[<TabularCPD representing P(C:2) at 0x7f195ee5e400>,

<TabularCPD representing P(A:2) at 0x7f195ee5e518>,

<TabularCPD representing P(D:2) at 0x7f195ee5e2b0>,

<TabularCPD representing P(F:2) at 0x7f195ee5e320>,

<TabularCPD representing P(P:2 | F:2, A:2, L:2)

at 0x7f195ed620f0>,

<TabularCPD representing P(L:2 | C:2, D:2)

at 0x7f195ed62048>]

data_test = data[0.75 * data.shape[0] : data.shape[0]]
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data_test.drop('P', axis=1, inplace=True)

student_model.predict(data_test)

P

750 0

751 0

752 1

753 0

.. ..

996 0

997 0

998 0

999 0

[250 rows x 1 columns]

Extending pgmpy

One of the main features of pgmpy is its extensibility. It has been

built in a way so that new algorithms can be directly written

without needing to get familiar with the code base.

For example, for writing any new inference algorithm we

can simply inherit the Inference class. Inheriting this base in-

ference class exposes three variables to the class: self.variables,

self.cardinalities and self.factors; using these variables we can

write our own inference algorithm. An example is shown:

from pgmpy.inference import Inference

class MyNewInferenceAlgo(Inference):

def print_variables(self):

print('variables: ', self.variables)

print('cardinality: ', self.cardinalities)

print('factors: ', self.factors)

infer = MyNewInferenceAlgo(

student_model).print_variables()

variables: ['S', 'D', 'G', 'I', 'L']

cardianlity: {'D': 2, 'G': 3, 'I': 2,

'S': 2, 'L': 2}

factors: defaultdict(<class 'list'>,

{'D': [<Factor representing phi(D:2)

at 0x7f195ed61c18>,

<Factor representing phi(G:3, D:2, I:2)

at 0x7f195ed61cf8>],

'I': [<Factor representing phi(S:2, I:2)

at 0x7f195ed61a58>,

<Factor representing phi(G:3, D:2, I:2)

at 0x7f195ed61cf8>,

<Factor representing phi(I:2)

at 0x7f195ed61e10>],

'G': [<Factor representing phi(G:3, D:2, I:2)

at 0x7f195ed61cf8>,

<Factor representing phi(L:2, G:3)

at 0x7f195ed61e48>],

'S': [<Factor representing phi(S:2, I:2)

at 0x7f195ed61a58>],

'L': [<Factor representing phi(L:2, G:3)

at 0x7f195ed61e48>]})

Similarly, for adding any new variable elimination order algorithm

we can simply inherit from BaseEliminationOrder and define

a method named cost(self, variable) which returns the cost of

eliminating that variable. Inheriting this class also exposes two

variables: self.bayesian_model and self.moralized_graph. We can

then call the get_elimination_order method to get the elimination

order. Below is an example for returning an elimination order in

which the variables are sorted alphabetically.

from pgmpy.inference import BaseEliminationOrder

class MyEliminationAlgo(EliminationOrder):

def cost(self, variable):

return variable

order = MyEliminationAlgo(

student_model).get_elimination_order()

['D', 'G', 'I', 'L', 'S']

Comparing pgmpy to other libraries

Starting with defining the model, pgmpy provides a very sim-

ple to use API. A model can be instantiated simply by using

the __init__ method and the structure can be modified using

add_node, add_edge etc methods. After the model is created, we

can simply add the CPDs using the add_cpds method. In the case

of eBay’s bayesian belief network, we have to create a separate

function for each CPD. And each of these function has a dict of

CPD values and logic to return the value when the states are passed

as arguments [example_bbn]. Similarly in case of libpgm we have

the option to read the data from files defined in a specific format

[example_libpgm] but doesn’t provide any methods for making

changes to the network. For changing the structure we will need

to modify the internal variables storing the network information.

We have tried to keep pgmpy as modular as possible. We can take

the example of creating a model. We define a network structure

and separately define different CPDs and then simply associate the

CPDs to the structure. At any time we can modify these CPDs,

unassociate or associate another CPD to the network.

Other than providing the features to easily create models,

pgmpy also supports 4 standard file formats: pomdpX [pomdpX],

ProbModelXML [ProbModel], XMLBeliefNetwork [XMLBelief]

and XMLBIF [XMLBIF]. Using pgmpy we can read as well as

write networks in these formats. Also there’s an ongoing GSoC

project for adding support for more file formats so hopefully we

will be having support for many more formats soon.

There are many more benefits of using networkx to represent

the graph structure. For example we can directly run various graph

related algorihtms implemented in networkX on our networks.

Also we can use networkX’s plotting functionality to visualize

our networks.

pgmpy also implements methods for getting independencies,

D-Separation etc which would help a lot to people who are still

new to Graphical Models. These features are not available in most

of the other libraries.

We have tried to keep pgmpy as uniform as possible. For

example we have fit and predict methods with each of the

models which can automatically learn the parameters and struc-

ture and you can control the learning by simply passing ar-

guments to these methods. Whereas in the case of libpgm, it

has multiple methods for learning like lg_mle_estimateparams,

lg_constraint_estimatesstruct, discrete_estimatebn etc. Similarly

for each inference algorithm pgmpy prodives query and

map_query methods.

Another area in which pgmpy excels is its extensibility. As we

have discussed earlier, we can easily add new algorithms to pgmpy

without even getting familiar with the code base. We have to tried

to build pgmpy in such a way that new components can be easily

added which will really help researchers working on new ideas to

quickly prototype. Also, since pgmpy is documented very well it

is very easy to understand the code base.

Performance wise pgmpy is a bit slower than a few libraries but

we are currently actively working on improving the performance

so hopefully we will be seeing a major improvement in the coming

months.
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Conclusion and future work

The pgmpy library provides an easy to use API for working with

Graphical Models. It is also modular enough to provide separate

classes for most commonly used graphical models like Naive

Bayes, Hidden Markov Model etc. so that the user can directly

use these special cases instead of contructing them from the base

models. For machine learning problems the fit method can be

used to learn parameters and predict can be used to predict values

for newer data points. pgmpy’s easy extensibility allows users to

quickly prototype and test their ideas.

pgmpy is in a state of rapid development and some soon to

come features are:

• Sampling Algorithms

• Dynamic Bayesian Networks

• Hidden Markov Models

• Support for more file formats

• Structure Learning
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