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We study φ photoproduction with various hadronic rescattering contributions included, in addi-

tion to the Pomeron and pseudoscalar meson-exchange diagrams. We find that the hadronic

rescattering diagrams can explain the recent experimental data in the vicinity of the threshold. In

particular, the bump-like structure at the photon energy Eγ ≈ 2.3 GeV is well explained by the

K�(1520) rescattering amplitude in the intermediate state, which is the dominant contribution

among other hadronic contributions. We also find that the hadronic rescattering diagrams are

consistent with the observed spin-density matrix elements near the threshold region.
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1. Introduction

The φ(1020) meson is distinguished from other vector mesons, since it contains mainly strange

quarks. Because of its dominant strange quark content, its decays to lighter mesons and coupling to

the nucleon are known to be suppressed by the Okubo–Zweig–Iizuka (OZI) rule. In fact, the strange

vector form factors of the nucleon, which is implicitly related to the φ meson via vector meson

dominance, is reported to be rather small [1]. This large ss̄ content of the φ meson makes the meson

exchange picture unfavorable in describing photoproduction of the φ meson. Thus, the Pomeron [2,3]

is believed to be the main contribution to φ photoproduction, since it explains the slow rise of the

differential cross sections of φ photoproduction as the energy increases. However, while it is true

in the higher energy regime, a recent measurement reported by the LEPS collaboration [4] shows a

bump-like structure around the photon energy Eγ ≈ 2.3 GeV. It seems that the Pomeron alone cannot

account for this bump-like structure, and that one should consider other production mechanisms of

φ photoproduction near the threshold energy.

So far, the theoretical understanding of the production mechanism for φ photoproduction can be

summarized as follows:

◦ General energy dependence of the cross sections is mainly explained by Pomeron exchange that

can be taken as either a scalar meson or a vector meson with charge conjugation C = +1. While

the Pomeron explains the increase of the differential cross section dσ/dt in the forward direction,

it cannot describe the behavior of dσ/dt near the threshold.

© The Author(s) 2014. Published by Oxford University Press on behalf of the Physical Society of Japan.
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◦ The exchange of neutral pseudoscalar mesons (π0, η) provides a certain contribution to dσ/dt

near the threshold but it is not enough to explain the threshold behavior of dσ/dt [5]. More-

over, π0 and η exchanges taken alone, being their unnatural parity nature, wrongly predict the

spin-density observables and, in particular, the ρ1
1−1 matrix element [6] (see Appendix A for its

definition).

◦ Usual vector meson exchanges such as ρ and ω are forbidden due to their negative charge

conjugations (C = −1). Otherwise, the charge conjugation symmetry will be broken.

◦ Vector meson exchanges with exotic quantum number such as I (J PC ) = 1(1−+) are allowed,

but these vector mesons, possibly hybrid exotic mesons, are not much known experimentally [7].

Understanding this present theoretical and experimental situation in φ photoproduction, Ozaki

et al. [8] proposed a coupled-channel effect based on the K -matrix formalism. They considered the

γ N → K�∗(1520) and K�∗ → φN kernels [9] in the coupled-channel formalism in addition to

γ N → φN and φN → φN . It is a very plausible idea: since the threshold energy for the K�∗ is quite

close to that for the bump-like structure (Eγ ≈ 2.3 GeV), the �∗(1520) resonance may influence φ

photoproduction. Moreover, the γ p → K�∗(1520) reaction can be regarded as a subreaction for

the γ p → K K p process together with the γ p → φp one in Ref. [9]. In addition, a possible nucleon

resonance (J P = 1/2−) with large ss̄ content was also taken into account. Interestingly, the coupled-

channel effects were shown to be not enough to explain the bump-like structure Eγ ≈ 2.3 GeV. On the

other hand, the bump-like structure was described by their possible N∗ resonance and was interpreted

as a destructive interference arising from the N∗ resonance [10,11].

In the present work, we want to scrutinize in detail the nontrivial hadronic contributions arising

from hadronic rescattering amplitudes in addition to Pomeron and pseudoscalar meson exchanges,

by reexamining the previous work of Ref. [8]. We postulate that the Pomeron amplitude near the

threshold region is suppressed, while the production mechanism there is explained by hadrons. We

believe that such an attempt is legitimate because we do not know much about the Pomeron at low

energies, while it is well established that it plays the dominant role at high energies. Thus we deter-

mine the threshold parameter in such a way that the Pomeron exchange becomes ineffective in the

threshold energy region.

For hadronic processes, we take into account seven possible rescattering amplitudes with intermdi-

ate ρN , ωN , σ N , π N , K�(1116), K ∗�(1116), and K�(1520) states. However, it is quite involved

to compute these rescattering equations explicitly, so we use the Landau–Cutkosky rule [12,13],

which yields the imaginary part of the rescattering amplitudes by its discontinuity across the branch

cut. Though their real part will surely contribute to the transition amplitude, we will show that the

imaginary part already illuminates the coupled-channel effects on the production mechanism of

γ p → φp near the threshold. The parameters such as the coupling constants and cut-off masses of

the form factors will be fixed by describing the corresponding processes and by using experimental

and empirical data. Yet unknown parameters are varied as compared to the present experimental data.

In the present work, we do not consider s-channel N∗ resonances, since we do not have much

information on them above the φN threshold [7]. Moreover, it is not necessary to introduce the N∗

with large hidden strangeness, which was considered in Refs. [10,11] in an attempt to describe the

LEPS data.

We will show that the hadronic mechanism with coupled-channel effects are indeed essential

in explaining the recent LEPS data, which is a different conclusion from Ref. [8]. Therefore,

we assert in this work that the main contribution in the vicinity of the threshold comes from
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the hadronic coupled-channel effects, in particular, the K�(1520) rescattering effects, while the

Pomeron becomes important only at higher energies.

The present paper is organized as follows. In Sect. 2, we explain the basic formalism. We show how

to compute the rescattering effects mentioned above. In Sect. 3, we present the numerical results such

as the energy dependence of the forward cross sections, the angular distributions, and the spin observ-

ables. We also discuss how the K�∗(1520) channel can explain the bump-like structure together

with the tuned Pomeron exchange. We discuss in detail the spin-density matrix elements for φ pho-

toproduction. The final section is devoted to summary and outlook. In Appendix A, we present the

definition of the spin-density matrix elements for reference.

2. General formalism

In the present work, we will employ the effective Lagrangian approach in addition to Pomeron

exchange. In Fig. 1, we draw the relevant Feynman diagrams involved in describing φ photopro-

duction. The first diagram corresponds to the Pomeron exchange, and the second one depicts π0 and

η exchanges. The last diagram represents generically all the contributions from various rescattering

amplitudes with intermediate hadron states, i.e. ρN , ωN , σ N , π N , K�(1116), K ∗�(1116), and

K�(1520), among which the last one was already considered in Ref. [8]. From now on, we will

simply define the ρN rescattering amplitude as that with intermediate ρ and N states, and so on.

We also define the four-momenta of the incoming photon, outgoing φ, the initial (target) proton, and

the final (recoil) proton as k1 and k2, p1 and p2, respectively. In the center of mass (CM) frame,

these variables are written as k1 = (k, k), k2 = (Eφ, p), p1 = (E p, −k), and p2 = (E p′, −p), where

k = |k|, Eφ =
√

m2
φ + |p|2, E p =

√

m2
p + |k|2, and E p′ =

√

m2
p′ + |p|2, respectively.

The invariant amplitude related to the diagrams in Fig. 1 can be expressed as the Blankenbecler–

Sugar (BbS) equation [14]

Mγ N→φN (p, p′; s) = M
Born
γ N→φN (p, p′; s) +

∑

i

∫

d3q
EMi

+ EBi

(2π)32EMi
EBi

Mγ N→Mi Bi
(p, q; s)

1

s2 − (EMi
+ EBi

)2 + iε
MMi Bi →φN (q, p′; s), (1)

which was derived from the three-dimensional reduction of the Bethe–Salpeter equation. The ampli-

tude MBorn
γ N→φN includes all the diagrams at the tree level. On the other hand, Mγ N→Mi Bi

(p, k; s)

and MMi Bi →φN (k, p′; s) are the off-mass-shell extended diagrams for the γ p → Mi Bi and

Fig. 1. Relevant Feynman diagrams for φ photoproduction: We draw, from the left, the diffractive Pomeron

exchange, the pseudoscalar meson exchanges, and the generic rescattering diagram that includes intermediate

meson Mi and baryon Bi states.
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Mi Bi → φp, respectively. EMi
and EBi

designate the off-mass-shell energies in the intermedi-

ate meson and baryon states as shown in the third diagram of Fig. 1: EMi
=

√

m2
Mi

+ |q|2 and

EBi
=

√

m2
Bi

+ |q|2, with the off-mass-shell three-momentum q. s denotes a Mandelstam variable,

i.e. the square of the total energy, s = (Eγ + E p)
2. The second term of Eq. (1) corresponds to the

third diagram of Fig. 1. In fact, it is quite involved to solve Eq. (1) in a full coupled-channel for-

malism. Instead, we will concentrate on the imaginary part of Eq. (1), which can be obtained by

using the two-body unitarity relation. It is much simpler than solving Eq. (1) directly, since we only

need the on-shell amplitudes Mγ N→Mi Bi
and MMi Bi →φN . Of course, the price we have to pay is

to ignore the real contributions, which may be equally as important as the imaginary ones. However,

as will be shown soon, this approximation already conveys significant information on how these

coupled-channel effects are essential.

2.1. Pomeron exchange

The amplitude of the Pomeron exchange [15–17] corresponding to the first diagram of Fig. 1 is

given by

M = −ū(p2)Mμνu(p1)ǫ
∗μ
φ ǫν

γ , (2)

where ǫφ and ǫγ are the polarization vectors of the φ meson and photon, respectively. Mμν is

M
μν = M(s, t)Ŵμν, (3)

where the transition operator Ŵμν is defined as

Ŵμν =� kγ

(

gμν −
p

μ
3 pν

3

p2
3

)

− γ ν

(

kμ
γ − p

μ
3

k1 · p3

p2
3

)

−
(

pν
3 − p̄ν kγ · p3

p̄ · k1

)

(

γ μ −
� p3 p

μ
3

p2
3

)

, (4)

with p̄ = (p1 + p2)/2. Note that the Pomeron amplitude preserves gauge invariance kν
1Mμν = 0.

The corresponding invariant amplitude M(s, t) in Eq. (3) is written as

M(s, t) = C p FN (t)Fφ(t)

(

s

sp

)αp(t)−1

exp

(

−
iπ

2
αp(t)

)

R(E), (5)

where s = (k1 + p1)
2 and t = (k1 − k2)

2. FN (t) is the isoscalar form factor of the nucleon,

whereas Fφ(t) is the form factor for the photon–φ meson–Pomeron vertex. They are parameterized,

respectively, as

FN (t) =
4M2

N − a2
N t

(4M2
N − t)(1 − t/t0)2

,

Fφ(t) =
2μ2

0

(1 − t/M2
φ)(2μ2

0 + M2
φ − t)

. (6)

The Pomeron trajectory αp(p) = 1.08 + 0.25 t in Eq. (5) is determined from hadron elastic scatter-

ing in the high-energy regime, and sp = 4 GeV2. The prefactor C p in Eq. (5) governs the overall

strength of the amplitude and is given by C p = 0.7566, as in Ref. [8]. Since the Pomeron exchange

is in fact the main contribution in the high-energy regime, while the production mechanism at low

energies should be explained by hadronic degrees of freedom, we introduce a phenomenological

factor R(E) to suppress the Pomeron effects. It is plausible, because it still keeps all the important
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high-energy behavior of the Pomeron exchage. The factor R(E) is given as

R(E) = 1 − exp[−(E − Eth)
3], (7)

where Eth is the threshold energy of φ photoproduction.

2.2. π and η exchanges

To calculate pseudoscalar meson (ϕ = π0, η) exchange in the t channel (the second diagram of

Fig. 1), we introduce the following effective Lagrangians:

Lφγϕ =
e

mφ

gφγϕǫμναβ∂μφν∂α Aβϕ,

LϕN N =
gϕN N

2MN

N̄γμγ5 N∂μϕ, (8)

where φν , Aβ , and N denote the φ vector meson, photon, and nucleon fields, respectively. mφ and

MN stand for the φ meson and nucleon masses respectively. e represents the electric charge. The

t-channel amplitude then takes the following form:

M =
egϕN N gφγϕ

mφ

iFϕN N (t)Fφγϕ

t − M2
ϕ

ū(p2)(� k1− � k2)γ5u(p1)ǫ
μναβk2μǫ∗

φνk1αǫγβ, (9)

where r is the four-momentum of an exchanged pseudoscalar meson. We introduce the monopole-

type form factors for each vertex FϕN N (t) and Fφγϕ , defined as

FϕN N (t) =
�2

ϕN N − M2
ϕ

�2
ϕN N − t

, Fφγϕ(t) =
�2

φγϕ − M2
ϕ

�2
φγϕ − t

. (10)

For the coupling constants and the cut-off masses for the pseudoscalar exchange, we follow Ref. [5]:

gπ N N = 13.26, gηN N = 3.527 for the π N N and ηN N coupling constants, respectively. The cut-off

masses are taken to be �π N N = 0.7 GeV and �ηN N = 1 GeV. Though these values are somewhat

different from the phenomenological nucleon–nucleon potentials [18,19], the effects of the pseu-

doscalar meson exchanges on φ photoproduction are rather small. Thus, we will take the values

given above typically used in φ photoproduction. Those of the coupling constants for the φγϕ ver-

tices are determined by using the radiative decays of the φ meson to π and η. Using the data from

the Particle Data Group (PDG) [7], one can find gφγπ = −0.141 and gφγ η = −0.707. The negative

signs of these coupling constants were determined by the phase conventions in SU(3) symmetry as

well as by π photoproduction [5]. We choose the cut-off masses for the φγπ and φγ η form factors

as follows: �φγπ = 0.77 GeV and �φγ η = 0.9 GeV, respectively.

2.3. K +�(1520) rescattering effects

In addition to the Pomeron and pseudoscalar meson exchanges, we need to consider the seven dif-

ferent rescattering amplitudes. However, the corresponding transition processes Mi Bi → φp are not

well known phenomenologically. Thus, we construct the seven different rescattering amplitudes with

the Born approximation for simplicity: ρN , ωN , σ N , π N , K�(1116), K ∗�(1116), and K�(1520),

based on the effective Lagrangians. Since the K�(1520) rescattering amplitude is the most signifi-

cant among several possiblities in describing φ photoproduction, we first discuss the K +�(1520) one

and then deal with all the other rescattering ones in the next subsection. The γ N → K +�(1520)

process was investigated within an effective Lagrangian method in Ref. [9], with results in good
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Table 1. The strong coupling constants and anomalous

magnetic moments used in the present work.

gK N�∗ 11 Ref. [9]

gφK K 4.7 Ref. [7]

gφN N 0.25 Ref. [21]

κp 1.79 Ref. [7]

κφ 0.2 Ref. [21]

agreement with the experimental data. Thus, we will employ the formalism developed in Ref. [9] so

that we may take into account the K�(1116) coupled-channel effects more realistically.

The effective Lagrangians for γ N → K +�(1520) are written as

LK N�∗ =
gK N�∗

MK

N̄γ5∂μK +�∗μ,

LφK N�∗ = −i
gK N�∗

MK

gφK K N̄γ5φμK +�∗μ,

LφK K = −igφK K (∂μK −K + − ∂μK +K −)φμ,

LφN N = −gφN N N̄

[

γμφμ −
κφ

2MN

σμν∂νφμ

]

N ,

Lγ K K = −ie(∂μK −K + − ∂μK +K −)Aμ,

Lγ N N = −eN̄

[

γ μ −
κN

2MN

σμν∂ν

]

AμN ,

Lγ K N�∗ = −i
egK N�∗

MK

N̄γ5 AμK +�∗μ, (11)

where K and �∗μ denote the K meson and �(1520) fields, respectively. For �(1520), we utilize

the Rarita–Schwinger formalism. MK is the kaon mass. The K N�∗ coupling constant is taken

from Ref. [9], since we use the amplitude derived there. The φK K coupling constant can be deter-

mined from the experimental data for the decay width Ŵφ→K K . On the other hand, gφN N is not well

known experimentally. Recent experiments measuring the strange vector form factors imply that the

strange quark gives almost no contribution to the nucleon electromagnetic (EM) form factors [1].

One can deduce from this experimental fact that the φN N coupling constant should be very small.

In Ref. [21], the φN N was estimated by using a microscopic hadronic model with πρ continuum:

gφN N = ±0.25 and κφ = 0.2, which are compatible with the recent data for the strange vector form

factors. Thus, we will take these values in the present work. However, note that the s-channel contri-

bution with the φN N vertex is almost negligible. In Table 1, the relevant strong coupling constants

and anomalous magnetic moments are listed.

Based on the effective Lagrangians given in Eq. (11), we can write down the amplitude for the

K +�∗(1520) rescattering equation, Eq. (1). As mentioned previously, it is rather complicated to

solve the BbS equation (1). Thus, instead of dealing with Eq. (1) directly, we will use the two-body

unitarity relation to further select the imaginary part of Eq. (1). This is in fact identical to using the

Landau–Cutkosky rule [12,13]. Knowing the singularities and the cuts of the invariant amplitudes,

and utilizing the two-body unitarity, we can easily obtain the imaginary part of the invariant ampli-

tudes. Having computed the Lorentz-invariant phase space volume factors, we obtain the imaginary
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Fig. 2. Feynman diagrams for the K +�(1520) rescattering. The form factors are introduced in a gauge-in-

variant way.

part of the amplitude as

ImMK +�∗rescatt. = −
1

8π

r
√

s

∫

d�

4π
ML(γ p → K +�∗)M

†
R(K +�∗ → φp), (12)

where r is the magnitude of the K + on-mass-shell three-momentum. This imaginary part of the

amplitude is schematically drawn in Fig. 2. The shaded ellipse on the left-hand side represents the

invariant amplitude for γ p → K +�∗, which is basically the same as that of Ref. [9] except for dif-

ferent form factors, as will be explained later. It consists of three different types of the Feynman

diagrams as shown below the left dashed arrow. On the other hand, the right ellipse stands for the

K +�∗ → φp process that contains the diagrams below the right arrow, generically. Note that we

use a similar method as in Ref. [8] but we choose different form factors and parameters. The corre-

sponding invariant amplitudes ML(γ p → K +�∗) and MR(K +�∗ → φp) with the form factors

are defined as follows:

ML(γ p → K +�∗) = (ML ,s + ML ,t + ML ,c)FL(s, t),

MR(K +�∗ → φp) = (MR,s + MR,t + MR,c)FR(s, t), (13)

where ML ,s (MR,s), ML ,t (MR,t ), and ML ,c (MR,c) represent the s-channel, the t-channel, and

the contact-term contributions to the γ p → K +�∗ (K +�∗ → φp) process, respectively:

ML ,s =
egK N�∗

MK

ūμk2μγ5
� k1+ �q + MN

q2 − M2
N

�ǫu(p1)

+
eκpgK N�∗

2MN MK

ūμk2μγ5
�q + MN

q2 − M2
p

�ǫ� k1u(p1),

7/21
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Table 2. Cut-off parameters used in

Eq. (13)

n1 6

n2 2

n3 1

n4 1

�1 1.59 GeV

�2 0.65 GeV

�3 1.5 GeV

�4 1.5 GeV

ML ,t = −
2egK N�∗

MK

ūμγ5u(p1)
q

μ
K

tK − M2
K

,

ML ,c =
egK N�∗

MK

ūμǫμγ5u(p1),

MR,s = −i
gK N�∗gφN N

MK

ū(p2) �ǫ∗
φ

�q + Mp

q2 − M2
p

γ5kα
1 uα(p1)

+ i
gK N�∗gφN N

MK

κφ

2Mp

ū(p2) � k2 �ǫ∗
φ

�q + Mp

q2 − M2
p

γ5kα
1 uα(p1),

MR,t = −
igK N�∗gφK K

MK

2k1 · ǫ∗
φ

q2
K − M2

K

ū(p2)γ5qα
t uα(p1),

MR,c = −
igK N�∗gK N N

MK

ū(p2)γ5ǫ
∗μ
φ uμ(p1). (14)

We introduce the form factors FR(s, t) and FL(s, t) for MR and ML , respectively, in particular, in

a gauge-invariant manner for the γ p → K +�∗ rescattering:

FR(s, t) =

[

n1�
4
1

n1�
4
1 + (s − M2

p)
2

]n1
[

n2�
4
2

n2�
4
2 + t2

]n2

,

FL(s, t) =

[

n3�
4
3

n3�
4
3 + (s − M2

p)
2

]n3
[

n4�
4
4

n4�
4
4 + t2

]n4

, (15)

where the cut-off masses �i and powers ni are fitted to the experimental data for γ p → K +�∗ and

γ p → φp, which are listed in Table 2. In Fig. 3, we draw the numerical result of the total cross

section for γ p → K +�∗ in comparison with the experimental data taken from Ref. [23]. It is in

good agreement with the data.

2.4. All other rescattering amplitudes

In the same manner as done for the K +�∗ rescattering amplitude, we consider the six different

amplitudes, i.e. ρN , ωN , σ N , π N , K�(1116), and K ∗�(1116). ρ photoproduction has been stud-

ied theoretically in Refs. [11,24–26], in which the contributions of the t-channel π and σ exchanges

were considered and σ exchange was found to be the dominant one, since it selects the isovector

part of the EM current. Thus, we compute Mγ p→ρp and Mρp→φp with the σ and π exchanges in

the t-channel, respectively. We will show later, in Fig. 5, that indeed the σ exchange describes well,

qualitatively, the γ p → ρp reaction. In Ref. [24], ω photoproduction was also discussed within the

same framework. In contrast to the γ p → ρp reaction, the π exchange appeared to be dominant,
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Fig. 3. Total cross section of the γ p → K�(1520) reaction as compared to the experimental data [23].

since it picks up the isoscalar part of the EM current. Correspondingly, we consider the ωp rescat-

tering contribution, where ω is produced by the one pion exchange. The σ p and πp rescattering

amplitudes are obtained by reversing the ρp and ωp rescattering diagrams. The γ p → K�(1116)

and γ p → K ∗�(1116) reactions were measured by several experimental collaborations [27–32]

and were investigated theoretically [33–37]. While we consider all the relevant diagrams for the

K�∗(1520) rescattering contribution because of its significance, we will take into account only the

K -exchange diagrams in the t-channel for the K� and K ∗� rescattering diagrams, since these two

rescattering diagrams turn out to have tiny effects on φ photoproduction.

The relevant effective Lagrangians for these rescattering diagrams are given as follows:

Lγρσ =
gγρσ

mρ

[∂μ Aν∂
μρν − ∂μ Aν∂

νρμ]σ,

Lσ N N = gσ N N N̄ Nσ,

Lπ0 N N = −igπ N N N̄γ5τ3 Nπ0,

Lπρφ =
gπρφ

mφ

ǫμναβ∂νφμ∂βραπ0,

Lωφσ =
gωφσ

mφ

(∂μων∂
μφν − ∂μων∂

νφμ),

Lγωπ =
gγωπ

mω

ǫμναβ∂ν Aμ∂βωαπ0,

LV N N = −gV N N N̄

(

γμV μ −
κV

2MN

σμν∂νVμ

)

N , (V = ω, ρ),

Lγ K K = −ie
[

(∂μK +)K − − (∂μK −)K +]

Aμ,

LφK K = igφK K

[

(∂μK +)K − − (∂μK −)K +]

φμ,

LK N� = −igK P��̄γ5 N K −,

Lγ K K ∗ =
gγ K K ∗

mK ∗
ǫμναβ∂ν Aμ∂β K ∗α K ,

LφK K ∗ =
gφK K ∗

mφ

ǫμναβ∂νφμ∂β K ∗α K , (16)
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Table 3. Coupling constants and cut-off masses used in rescattering

amplitudes

gγρσ 0.82 Ref. [24]

gσ N N 10.026 Ref. [24]

gπ N N 13.26 Ref. [24]

gπρφ −1.258 Ref. [7]

gφωσ −0.45 Ref. [7]

gγωπ 0.557 Ref. [7]

gωN N 10.35 Ref. [20]

gρN N 3.72 Ref. [20]

gφK K 4.48 Ref. [7]

gK N� −13.26 Ref. [38]

gγ K K ∗ 0.254 GeV−1 Ref. [7]

gφK K ∗ 10.74 Refs. [7,39]

κω 0 Ref. [20]

κρ 6.1 Ref. [40]

�πρφ 1.05 GeV Ref. [17]

�π N N 1.05 GeV Ref. [17]

�γρσ 1.05 GeV Ref. [24]

�σ N N 1.1 GeV Ref. [24]

�σ 1 GeV Ref. [24]

�σρρ 0.9 GeV Ref. [24]

�σωφ 0.9 GeV Ref. [7]

�πγω 0.6 GeV Ref. [20]

�V 1.227 GeV Ref. [41]

�K 1 GeV

where the coupling constants and the cut-off masses are listed in Table 3. The invariant amplitudes

for these diagrams are derived as follows:

M1,L =
gγρσ gσ N N

Mρ(tσ − M2
σ )

[

(k1 · r)(ǫγ · ǫ∗
ρ) − (k1 · ǫ∗

ρ)(ǫγ · r)
]

ū(q)u(p1)

{

�2
γρσ − M2

σ

tσ − M2
σ

·
�2

σ N N − M2
σ

tσ − M2
σ

}

,

M1,R =
−igφρπ gπ N N

Mφ(tπ − M2
π )

ǫμναβǫ
∗μ
φ kν

2ǫα
ρ rβ ū(p2)γ5u(q) ×

{

�2
φρπ − M2

π

tπ − M2
π

·
�2

π N N − M2
σ

tπ − M2
π

}

,

M2,L =
−igγωπ gπ N N

Mω(tπ − M2
π )

ǫμναβǫμ
γ kν

1ǫ∗α
ω rβ ū(q)γ5u(p1) ×

{

�2
γωπ − M2

π

tπ − M2
π

·
�2

π N N − M2
π

tπ − M2
π

}

,

M2,R =
−igφωσ gσ N N

Mφ(tσ − M2
σ )

ū(p2)u(q)
[

(r · k2)(ǫω · ǫ∗
φ) − (r · ǫ∗

φ)(k2 · ǫω)
]

×

{

�2
φωσ − M2

σ

tσ − M2
σ

·
�2

σ N N − M2
σ

tσ − M2
σ

}

,

M3,L =
gρN N gγρσ

Mρ(tρ − M2
ρ)

[

kα
1 (ǫγ · r) − ǫα

γ (k1 · r)

]

ū(p2)

[

γα(1 + κρ) −
κρ

Mp

qα

]

u(p1)

×

⎧

⎨

⎩

(

�2
ρ

�2
ρ − (k1 − r)2

)2
⎫

⎬

⎭

,
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PTEP 2014, 023D03 H.-Y. Ryu et al.

M3,R =
gωN N gφωσ

Mφ(tω − M2
ω)

[

(r · ǫ∗
φ)k

μ
2 − (r · k2 − M2

φ)ǫ
∗μ
φ

]

× ū(p1)

[

γμ(1 + κω) −
κω

2Mp

qμ

]

u(q)

{

(

�2
ω

�2
ω − (r − k2)2

)2
}

,

M4,L =
−gωN N gγωπ

Mω(tω − M2
ω)

ǫμναβǫμ
γ kν

1rβ ū(q)

[

γ α(1 + κω) −
κω

MP

qα

]

u(p1)

×

{

(

�2
ω

�2
ω − (r − k2)2

)2
}

,

M4,R =
−gρN N gφρπ

Mφ(tρ − M2
ρ)

ǫμναβǫ
∗μ
φ kν

2rβ ū(p2)

[

γ α(1 + κρ) −
κρ

MN

qlα
]

u(q),

×

⎧

⎨

⎩

(

�2
ρ

�2
ρ − (k1 − r)2

)2
⎫

⎬

⎭

,

M5,L =
−2iegK P�

(tL − M2
K )

(r · ǫγ )ū(q)γ5u(p1) ×

⎧

⎨

⎩

(

�2
K − M2

K

tK − M2
K

)2
⎫

⎬

⎭

,

M5,R =
2igφK K gK P�

(t2
R − M2

K )
(r · ǫ∗

φ)ū(p2)γ5u(q) ×

⎧

⎨

⎩

(

�2
K − M2

K

tK − M2
K

)2
⎫

⎬

⎭

,

M6,L =
−igγ K K ∗ gK P�

MK ∗(tL − M2
K )

ǫμναβǫγμkν
1ǫα

K ∗rβ ū(q)γ5u(p1) ×

⎧

⎨

⎩

(

�2
K − M2

K

�2
K − tK

)2
⎫

⎬

⎭

,

M6,R =
igφK K ∗ gK P�

Mφ(tR − M2
K )

ǫμναβǫ
∗μ
φ kν

2ǫα
K ∗rβ ū(p2)γ5u(q) ×

⎧

⎨

⎩

(

�2
K − M2

K

�2
K − tK

)2
⎫

⎬

⎭

, (17)

where the subscripts 1, . . . , 6 correspond to the rescattering amplitudes. The other subscripts L and

R denote the γ p → M B and M B → φp parts, respectively. In Figs. 4 and 5 we draw the results

of the total cross sections for the γ p → ρp and γ p → ωp reactions, respectively. The results are

qualitatively in agreement with the experimental data.

3. Numerical results and discussion

We are now in a position to discuss the numerical results for φ photoproduction. We start with the

differential cross section at the forward angle dσ/dt (θ = 0) as a function of the photon energy Eγ

in the laboratory frame. The parameters are determined in the following manner. We fix the cut-off

parameters for the K�∗(1520) box diagrams to describe the Eγ dependence of dσ/dt in the lower

energy region, in particular, to explain the well-known bump-like structure around Eγ ≈ 2.3 GeV.

The parameters of all other hadronic diagrams are taken from existing references as explained in the

previous section.

Figure 6 illustrates various contributions to dσ/dt (θ = 0) as a function of the photon energy Eγ

from the Pomeron exchange, the t-channel π and η exchanges, and seven rescattering diagrams.

The solid curve with symbol P draws the contribution of the Pomeron exchange to dσ/dt . As

expected, it governs Eγ dependence in the higher energy region (Eγ ≥ 3 GeV). Note, however, that

the Pomeron does not contribute to dσ/dt below around Eγ = 2.3 GeV in the present work. The π
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Fig. 4. Total cross section of the γ p → ρ0 p reaction. The solid curve depicts the present result obtained from

the t-channel σ exchange diagram. The closed circles and the open squares are taken from Ref. [42], whereas

the open triangles are taken from Ref. [43].

Fig. 5. Total cross section of the γ p → ωp reaction. The solid curve depicts the present result obtained from

the t-channel π exchange diagram. The closed squares denote the experimental data from Ref. [46], whereas

the open circles represent those from Ref. [44].

and η exchanges provide a certain amount of effect on the differential cross section (solid curve with

symbol T ). The contribution of the π and η exchanges starts to increase from the threshold energy

and then it decreases very slowly when it reaches approximately 3 GeV. Thus, the effects of the π

and η exchanges are quite important in the lower Eγ energy region up to 3 GeV, where the Pomeron

exchange overtakes the π and η exchanges.

Except for the K�∗(1520) rescattering diagram, all other rescattering contributions turn out to be

negligibly small. However, the K�∗(1520) rescattering diagram plays an essential role in describ-

ing the experimental data for dσ/dt in the lower Eγ region, in particular, explaining the bump-like

structure near 2.3 GeV. In Fig. 7, we enlarge the results of Fig. 6 in the threshold region. This is

very different from the conclusion of Ref. [8], where the K�∗(1520) seems to be suppressed in the

K -matrix formalism. The reason lies in the fact that we have considered the imaginary contribution

of the coupled-channel effects through the unitarized rescattering equation (1) and have introduced

different form factors for the γ p → K�∗ and K�∗ → φp reactions. In general, form factors are
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Fig. 6. Differential cross section as a function of the photon energy Eγ on a log scale. The thick solid curve

depicts the result with all contributions included. The solid curves with the symbols P , T , B, and H represent

the Pomeron contribution, those of π and η exchanges, those of all the box diagrams, and the total contribution

of hadronic diagrams (T + B), respectively. The dashed curves with numbers in order denote the effects of the

seven rescattering diagrams separately.

Fig. 7. The differential cross section as a function of the photon energy Eγ near the threshold on a linear scale.

given as functions of two Mandelstam variables for the rescattering diagrams, i.e. F(s, t), since we

have two off-shell particles in the s-channel and another two off-shell particles in the t-channel. How-

ever, it is very difficult to preserve the gauge invariance in the presence of the form factors. Thus, we

have introduced a type of overall form factor to keep the gauge invariance in the γ p → K�∗ part, as

written in Eq. (13). To maintain consistency, we have also included a similar type of form factor in

the K�∗ → φp part. With these form factors considered, we find that the K�∗ rescattering diagram

is indeed enhanced as shown in Fig. 6 in comparison with Ref. [8]. The contribution of the K�∗

rescattering diagram increases sharply up to Eγ ≈ 2 GeV and then falls off linearly. The result of

the K�∗ rescattering diagram indicates that the off-shell effects, which arise from the form factors

and the rescattering equation, may come into play. Moreover, the form factors given in Eq. (13) are

crucial in explaining the differential cross section as a function of θ which will be shown in Fig. 8.
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Fig. 8. The differential cross section as a function of the scattering angle θ with the photon energy at

Eγ = 2 GeV. The thick solid curve depicts the result with all hadronic contributions included. The solid curves

with the symbols T and B represent the contribution of the π and η exchanges and those of all the box dia-

grams, respectively. The dashed curves with numbers in order denote the effects of the seven rescattering

channels separately.

Another reason for the discrepancy may be due to fact that there is some inconsistency in Ref. [8]:

the K -matrix formalism that was employed in Ref. [8] is only valid for real K , by definition. On the

other hand, the Pomeron exchange provides only the imaginary amplitude. That is the reason why

the sign had to be modified as mentioned in the erratum given in Ref. [8]. Moreover, the present way

of treating the coupled-channel effects is rather different from Ref. [8].

Considering the fact that the K ∗� threshold energy (Eth ≈ 2 GeV) is very close to that of φ photo-

production (Eth ≈ 1.96 GeV), one might ask why the contribution of the K ∗� is suppressed. While

the K�∗(1520) channel (Eth ≈ 2 GeV) is directly related to φp, since both are subreactions of the

γ p → K K̄ p process, the γ p → K ∗� reaction is distinguished from those two reactions, because

the K ∗� channel is related to the γ p → π K� reaction. Thus, one can qualitatively understand why

the contribution of the K ∗� rescattering diagrams is suppressed.

In Fig. 8, the differential cross section as a function of the scattering angle is depicted at Eγ =
2 GeV. Since the Pomeron exchange is suppressed at this photon energy because of sth = 2.3 GeV,

we can examine each hadronic contribution to the differential cross section in more detail. Figure 8

clearly shows that the K�(1520) rescattering diagram is the most dominant among the hadronic

contributions. Adding all the effects of the rescattering diagrams, we find that the rescattering con-

tributions almost describe the θ dependence. Together with the π and η exchanges, the result of the

differential cross section is in good agreement with the experimental data [4,45].

The differential cross section as a function the scattering angle is drawn in Fig. 9. The left and right

panels correspond to the photon energies Eγ = 3 GeV and 3.7 GeV, respectively. As expected, the

hadronic contribution is dominant over the Pomeron exchange at the lower photon energy, while at

Eγ = 3.7 GeV the Pomeron governs the γ p → φp process. Interestingly, the effects of the rescat-

tering diagrams, in particular the K�∗(1520) one, turn out to be larger than those of the π and η

exchanges, whereas the rescattering diagrams seem to be suppressed at higher photon energies. This

implies that the K�∗(1520) rescattering diagram influences φ photoproduction only in the vicinity

of the threshold energy. Figure 10 depicts the results of the differential cross section as a function of

t + |t |min with eight different photon energies, where |t |min is the minimum four-momentum transfer
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Fig. 9. The differential cross section as a function of the scattering angle θ with two different photon energies

Eγ = 3 GeV and 3.7 GeV. The thick solid curve depicts the result with all contributions included. The solid

curves with the symbols P , T , B, and H represent the Pomeron contribution, those of the π and η exchanges,

those of all the rescattering diagrams, and the total contribution of hadronic diagrams (T + B), respectively.

Fig. 10. Differential cross sections of the γ p → φp reaction as a function of t + |t |min with eight different

photon energies. The experimental data are taken from Ref. [4].

from the incident photon to the φ meson. The results are in good agreement with the experimental

data taken from the measurement of the LEPS collaboration [4].

It is of great importance to examine the angular distribution of the φ → K +K − decay in the φ

rest frame or in the Gottfried–Jackson (GJ) frame, since it makes the helicity amplitudes accessible

to experimental investigation [47,48]. The detailed formalism for the angular distribution of the φ

meson decay can be found in Refs. [5,48]. The decay angular distribution of φ photoproduction

was measured at SAPHIR/ELSA [49], but the range of the photon energy is too wide. On the other

hand, the LEPS collaboration measured the decay angular distribution at forward angles (−0.2 <

t + |t |min) in two different energy regions: 1.97 < Eγ < 2.17 GeV and 2.17 < Eγ < 2.37 GeV [4],

which are related to the energy around the local maximum of the cross section and that above the
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(a) (b) (c)

Fig. 11. The decay angular distributions for −0.2 < t + |t |min in the Gottfried–Jackson frame. We take

the center values of the energy ranges measured by the LEPS collaboration [4], i.e. Eγ = 2.07 GeV and

Eγ = 2.27 GeV. The experimental data are taken from Ref. [4].

local maximum, respectively. Therefore, we have computed the decay angular distributions at two

photon energies, i.e. Eγ = 2.07 GeV and Eγ = 2.27 GeV, which correspond to the center values of

the given ranges of Eγ in the LEPS experiment.

The one-dimensional decay angular distributions W (cos θ), W (φ − �), W (φ) are presented in

Fig. 11, and are expressed respectively as

W (cos θ) =
1

2
(1 − ρ0

00) +
1

2

(

3ρ0
00 − 1

)

cos2 θ,

2πW (φ − �) = 1 + 2pγ ρ1
1−1 cos 2(φ − �),

2πW (φ) = 1 − 2Re ρ0
1−1 cos 2φ,

2πW (φ + �) = 1 + 2pγ �1−1 cos 2(φ + �),

2πW (�) = 1 + 2pγ ρ′ cos 2�, (18)

where θ and φ denote the polar and azimuthal angles of the decay particle K + in the GJ frame. �

represents the azimuthal angle of the photon polarization in the center-of-mass frame. Pγ stands for

the degree of polarization of the photon beam. ρ1
1−1, �1−1, and ρ′ are defined as

ρ1
1−1 =

1

2
(ρ1

1−1 − Im ρ2
1−1),

�1−1 =
1

2
(ρ1

1−1 + Im ρ2
1−1),

ρ′ = 2ρ1
11 + ρ1

00. (19)

The expressions for the spin-density matrix elements ρα
λλ′ with the helicities λ and λ′ for the φ meson

can be found in Appendix A.

Panel (a) of Fig. 11 draws the one-dimensional decay polar-angle distributions W (cos θ). As

pointed out by Refs. [4,6], the decay distribution behaves approximately as ∼ (3/4) sin2 �, which
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Table 4. φ density matrix in the forward scattering at Eγ = 2 GeV

ρ0
00 ρ1

1−1 Re ρ0
1−1 �1−1 ρ ′

t-channel π0 + η 0 −0.5 0 0 0

ρN 0.651 −0.175 2.97 × 10−4 −8.94 × 10−6 1.37 × 10−2

ωN 0.035 −0.48 9.26 × 10−4 −8.72 × 10−7 −1.05 × 10−3

σ N 0.254 −0.066 −8.85 × 10−3 2.03 × 10−4 −7.93 × 10−4

π N 0.061 0.448 5.57 × 10−4 1.79 × 10−4 1.15 × 10−3

K�(1116) 0.025 0.488 −1.08 × 10−2 7.85 × 10−5 −2.21 × 10−2

K ∗�(1116) 0.030 0.485 1.39 × 10−3 1.10 × 10−6 2.06 × 10−3

K +�(1520) 3.1 × 10−4 0.499 −2.95 × 10−3 5.131 × 10−6 −6.02 × 10−3

rescattering 6.62 × 10−2 0.455 2.46 × 10−4 1.74 × 10−4 5.69 × 10−4

hadrons 5.13 × 10−2 0.24 5.64 × 10−4 1.34 × 10−4 −1.99 × 10−4

indicates that the helicity-conserving processes are dominant as shown in Eq. (18). This means that

t-exchange particles with unnatural parity at the tree level do not contribute to W (cos θ). As will be

discussed later, ρ0
00 from the π and η exchanges, which is related to the single spin-flip amplitude in

the GJ frame, exactly vanishes. On the other hand, all hadronic rescattering diagrams contribute to

it. Though the Pomeron exchange might contribute to this spin-density matrix element, it does not

play any role below 2.3 GeV. Panel (b) of Fig. 11 shows the results of W (φ − �), which are in good

agreement with the LEPS data, whereas Panel (c) depicts those of W (φ), W (φ + �), and W (�),

respectively, which deviate from the data. In fact, the data show somewhat irregular behavior which

does not seem to be easily reproduced.

As shown in Fig. 11, the decay angular distributions shed light on the production mechanism of the

φ meson, since they make it possible to get access experimentally to the spin-density matrix elements,

or the helicity amplitudes of φ photoproduction. It has important physical implications, because even

though some diagrams seem to contribute negligibly to the cross sections, they might have definite

effects on the decay angular distributions. In Table 4, the contributions of each rescattering diagram

to the various spin-density matrix elements at Eγ = 2 GeV are listed. As expected, the π and η

exchanges contribute only to ρ1
1−1. The hadronic rescattering diagrams mainly contribute to ρ0

00 and

ρ1
1−1, and are almost negligible to other components. Interestingly, the ρp rescattering diagram is the

dominant one for ρ0
00, even though it provides much smaller effects on the differential cross section

than the K�∗(1520) one.

Recently, the LEPS experiment measured the spin-density matrix elements for γ p → φp [6] in the

range of Eγ = 1.6–2.4 GeV in which the Pomeron exchange does not play a particularly important

role in the present approach. Thus, we can examine the hadronic contributions to each spin-density

matrix element. Figure 12 illustrates the various spin-density matrix elements, compared with the

LEPS data. Since the experimental data are given in the finite range of Eγ , we just take the three

center values corresponding to the ranges, i.e. Eγ = 1.87, 2.07, 2.27 GeV. The hadronic diagrams

considered in the present work describe quantitatively Re ρ0
10, ρ0

1−1, and ρ1
11. However, the deviations

are found in other spin-density matrix elements as t − |t |min increases.

4. Summary and outlook

In the present work, we aimed at investigating the coupled-channel effects arising from the hadronic

intermediate rescattering diagrams to φ photoproduction near the threshold region in addition to

the conventional approach of Pomeron, π , and η exchanges. In particular, the bump-like structure
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Fig. 12. The density matrix elements as a function of |t − tmin| for three different photon energies, i.e. 1.87 GeV,

2.07 GeV, and 2.27 GeV, to which the solid, dotted, and dot-solid curves correspond. The experimental data with

three different ranges of the photon energy are taken from Ref. [6].

near Eγ ≈ 2.3 GeV, which was reported by the LEPS experiment [4], sheds light on the produc-

tion mechanism of the φ meson in the vicinity of the threshold, since the Pomeron exchange could

not explain this peculiar structure of φ photoproduction. Thus, we studied in detail the effects of

the seven different rescattering diagrams such as ρN , ωN , σ N , π N , K�(1116), K ∗�(1116), and

K�(1520) with the Pomeron exchange mechanism suppressed near the threshold region. In order

to take into account the rescattering terms, we employed the Landau–Cutkosky rule in dealing with

these rescattering diagrams.

Since it turned out that the K�∗(1520) rescattering diagram played a dominant role among

hadronic contributions in the lower-energy region, we scrutinized its contribution to φ photopro-

duction. We introduced form factors depending on both the s and t Mandelstam variables in such

a way that the total cross section of the γ p → K�∗(1520) reaction was reproduced well. All other

rescattering diagrams were constructed by utilizing the previous theoretical works and by reproduc-

ing the corresponding experimental data when they were available. We examined each contribution

carefully by computing the differential cross section of φ photoproduction. While the K�∗ rescat-

tering diagram was found to be the most dominant near 2 GeV, all other rescattering diagrams turned

out to be very small. The results were in good agreement with the LEPS data, including the bump-

like structure. We also computed the differential cross section as a function of t + |t |min and found

it to be in good agreement with the experimental data.

We investigated the contributions of hadronic rescattering diagrams to the decay angular distri-

butions. While the one-dimensional angular distributions W (cos θ) and W (φ − �) were in good

agreement with the experimental data, the other three angular distributions seemed to deviate from

18/21

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
te

p
/a

rtic
le

/2
0
1
4
/2

/0
2
3
D

0
3
/1

5
3
3
8
0
1
 b

y
 g

u
e

s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



PTEP 2014, 023D03 H.-Y. Ryu et al.

the LEPS experimental data. We also examined the various spin-density matrix elements, which were

measured recently by the LEPS collaboration. We found that the hadronic rescattering diagrams

describe the experimental data for Re ρ0
10, ρ0

1−1, and ρ1
11 well. While the present results explain

near t − |t |min ≈ 0 relatively well for other spin-density matrix elements, they deviated from the

expeimental data as t − |t |min ≈ 0 increased. Therefore, the conclusion of the present work is that

the production mechanism of φ photoproduction near the threshold is governed by the hadronic

coupled-channel effects, whereas the Pomeron only becomes important in the higher energy region.

As shown in the present work, the intermediate rescattering amplitudes, in particular the

K�∗(1520) one, play crucial roles in explaining the cross sections of the γ p → φp reaction in

the vicinity of the threshold. Other rescattering diagrams also provided certain effects on the part

of the spin-density matrix elements. We have considered in this work only the imaginary part of the

transition amplitudes of the rescattering diagrams based on the Landau–Cutkosky rule. However, the

results of the spin-density matrix elements already indicate that we should carry out a theoretical anal-

ysis of φ photoproduction more systematically and quantitatively. Thus, we need to investigate a full

coupled-channel formalism and to solve rescattering equations (1) with the real parts of the rescat-

tering diagrams fully taken into account. Another interesting and important problem is to extend our

approach to the neutron target, since some of the considered amplitudes are isospin dependent. The

corresponding works are under way.
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Appendix A. The spin-density matrix elements

The spin-density matrix elements are expressed in terms of the helicity amplitudes [5,48]:

ρ0
λλ′ =

1

N

∑

λγ ,λi ,λ f

Tλ f ,λ;λi ,λγ
T ∗

λ f ,λ
′;λi ,λγ

,

ρ1
λλ′ =

1

N

∑

λγ ,λi ,λ f

Tλ f ,λ;λi ,−λγ
T ∗

λ f ,λ
′;λi ,λγ

,

ρ2
λλ′ =

i

N

∑

λγ ,λi ,λ f

λγ Tλ f ,λ;λi ,−λγ
T ∗

λ f ,λ
′;λi ,λγ

,

ρ3
λλ′ =

1

N

∑

λγ ,λi ,λ f

λγ Tλ f ,λ;λi ,λγ
T ∗

λ f ,λ
′;λi ,λγ

, (A1)

where λγ , λi , and λ f represent the helicities for the photon and the initial and final nucleons,

respectively, whereas λ and λ′ denote those for the φ meson. The normalization factor N is defined as

N =
∑

|Tλ f ,λ;λi ,λγ
|2. (A2)
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