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Nanomaterials integrated with different therapeutic and diagnostic functional agents have 

attracted considerable attention in recent years due to their great potential in precision 

medicine.
[1]

 To date, large quantities of theranostic agents for simultaneous use in different 

imaging and therapeutic technologies, such as magnetic resonance imaging – photothermal 

therapy (MRI-PTT),
[2]

 optical imaging – photodynamic therapy (PDT),
[3]

 MRI-

chemotherapy,
[4]

 computed tomography (CT)-PTT,
[5]

 and photoacoustic imaging (PAI)-PTT,
[6]

 

were fabricated from individual functional agents, which could be detached from each other 

during circulation and metabolism in vivo, leading to different biodistributions and 

pharmacokinetics, inaccurate diagnosis, and poor therapy efficacy. Therefore, it is important 

to develop theranostic platforms based on single material which can serve as both imaging 

agent and therapeutic agent.
[7]

 

    Near-infrared (NIR) absorbing materials have strong absorption in the region of 700-3000 

nm. An advantage of this type of material is their capability of converting the NIR light, 

which can penetrate into deep tissues, into heat for photoacoustic imaging (PAI) and thermal 

ablation of malignant tumors.
[5-6, 8]

 PAI shows distinct advantages over the traditional optical 

imaging, including low signal scattering in tissues, and high resolution and sensitivity. 

Photothermal therapy (PTT) is a promising noninvasive alternative to traditional cancer 

therapies, which has attracted considerable interest in recent years due to its highly specific 

selectivity towards the targeted sites. The combination of PTT and PAI could provide a 

perfect solution for accurate diagnosis and treatment of cancer, because they could both use 

the same NIR absorbing material as theranostic agent without any need to consider 

detachment of different functional units after intravenous administration.  

The currently available NIR-absorbing materials include NIR dyes,
[9]

 gold 

nanomaterials,
[10]

 carbon nanomaterials,
[6, 11]

 upconversion nanoparticles,
[12]

 transition-metal 

dichalcogenides,
[13]

 and some organic polymers.
[14]

 In comparison with small molecular NIR 

dyes, NIR absorbing nanomaterials with proper surface modification exhibit longer blood 
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circulation time for tumor targeting. In addition, due to the enhanced permeability and 

retention (EPR) effect, nanomaterials also have longer retention time in tumor sites than small 

molecules, and provide a much longer time window for tumor diagnosis and therapy. 

Nevertheless, most exogenous nanomaterials are easily taken up by the reticuloendothelial 

system (RES), e.g., liver and spleen, which could cause potential risks of toxicity due to long 

retention time if they are difficult to degrade and metabolize in vivo. Therefore, the 

development of nanotheranostic agents that are subject to fast metabolism in normal organs 

and tissues, but have long retention time in tumors is of great importance for their practical 

applications.  

Herein, we report a novel PAI-PTT theranostic agent based on pH-sensitive Fe(III)-gallic-

acid nanoparticles with strong NIR absorbance, which can be easily decomposed under 

neutral conditions, but remain stable under acidic conditions. Due to the weak acidic 

condition in tumors, which is different from that in normal tissue, our Fe(III)-gallic-acid 

nanoparticles could be retained in tumor sites, while being easily decomposed and 

metabolized in other organs, leading to excellent in-vivo photoacoustic imaging and a good 

photothermal therapy effect against tumors in mice.  

It is well known that transition metal ions generally have incompletely filled d orbitals. 

When ligands bond to them to form complexes, the electrons in the ligands and the electrons 

in the d orbitals of metal ions interact with each other and induce splitting of the d orbitals, 

resulting in d-d electronic transitions and subsequent absorption of light under excitation. As 

the d-d transitions of metal ions strongly depend on the ligand properties, the absorbance of 

metal ion complexes can be adjusted in the ultraviolet-visible (UV-Vis) and even the NIR 

region by manipulating the ligands and their coordination chemistry. An example is Fe(III)-

gallic-acid complex with strong NIR absorbance prepared by simply mixing FeCl3 solution 

with gallic acid solution, which features a bluish-violet color, as shown in Figure 1a, due to 

the d-d electronic transitions. The corresponding UV-Vis-NIR absorption spectra display wide 
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absorption from 400 to 900 nm, with a peak centered at 575 nm.  

The as-prepared complex solution exhibits strong pH-dependent stability. It is very stable 

when the solution pH is above 5.0, and no precipitates or particles were detected after one 

week by dynamic light scattering (DLS) measurements. When the pH is lower than 5.0, the 

complex can gradually aggregate and form nanoparticles, as shown in Figure 1b and Figure 

S1 in the Supporting Information. The hydrodynamic size reaches up to ~45 nm within 72 h at 

pH 4.5. Decreasing the solution pH from 4.5 to 3.7 leads to fast aggregation and formation of 

nanoparticles, and their hydrodynamic size reaches ~45 nm within 2 h. The strong pH-

dependent stability is closely related to the protonation/deprotonation of carboxyl groups (-

COOH) in gallic acid. As the acid dissociation constant (pKa) of -COOH in gallic acid is 

around 4.5, the electrostatic repulsion induced by deprotonation of -COOH can effectively 

prevent the aggregation of the Fe(III)-gallic-acid complex. When the pH is lower than or 

equal to the pKa, however, the electrostatic repulsion decreases significantly, and the 

hydrophobic interactions among the complex molecules lead to the formation of Fe(III)-

gallic-acid nanoparticles. It is worth noting that the aggregation and formation of Fe(III)-

gallic-acid nanoparticles is reversible. Figure 1c shows the evolution of the hydrodynamic 

size of Fe(III)-gallic-acid nanoparticles incubated in aqueous media with different pH. There 

is no obvious change in the hydrodynamic size of the Fe(III)-gallic-acid nanoparticles when 

the solution pH is changed from 3.7 to 5.0, indicating the high stability of the thus-formed 

Fe(III)-gallic-acid nanoparticles under acidic conditions. Further increasing the solution pH 

leads to a gradual decrease in the hydrodynamic size due to the disassembling of Fe(III)-

gallic-acid nanoparticles into small complex molecules again.  

The above results indicate that Fe(III)-gallic-acid nanoparticles can directly be obtained 

by mixing FeCl3 solution with gallic acid, and the size of the nanoparticles can be easily 

controlled by adjusting the solution pH and the reaction time. More importantly, the resultant 

nanoparticles can be directly used without any further purification. This environmentally 
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friendly method provides a simple way to prepare pH-responsive inorganic/organic 

nanoparticles for biomedical applications. The resultant Fe(III)-gallic-acid nanoparticles are 

stable at pH of 5.0, but unstable under neutral conditions (pH = 7). Their pH-dependent 

stability suggests that they could be stable in tumors because of the weak acidic 

microenvironment in tumors, and unstable in other normal tissues, which indicates that they 

may have a long retention time at tumor sites, but be quickly metabolized in other organs.  

In the following study, we used Fe(III)-gallic-acid nanoparticles prepared by mixing 

FeCl3 with gallic acid under pH 3.7 for 2 h to investigate their potential as a PAI-PTT 

theranostic agent. The transmission electron microscope (TEM) image shows that they have 

an average size of 42.6 nm (Figure 1d and 1e), which is consistent with their hydrodynamic 

size of 45 nm (Figure 1f). Due to the strong NIR absorption, the Fe(III)-gallic-acid 

nanoparticles show obvious photoacoustic and photothermal effects. As shown in Figure 1g, 

the photoacoustic signal increases with increasing iron concentration from 0.05 mM to 1.0 

mM, indicating that the Fe(III)-gallic-acid nanoparticles would be good candidates for PAI. 

To evaluate their photothermal performance, Fe(III)-gallic-acid nanoparticles with various 

concentrations from 0.1 mM to 1.5 mM were exposed to an 808-nm NIR laser with a power 

density of 0.5 W/cm
2
. The temperature of each solution was recorded for 10 min under 

continuous laser irradiation until the solution reached a steady temperature. As shown in 

Figure 1h and Figure S2, the temperature difference (T) drastically increases with the 

increasing particle concentration. The temperature of the Fe(III)-gallic-acid nanoparticle 

solution with a concentration of 1.5 mM can increase by 53 C after irradiation for 10 min. 

The temperature of pure water was only increased by 2 C under the same conditions. In 

addition, their photothermal performance remains rather stable after five cycles of NIR laser 

irradiation (808-nm laser at 0.5 W/cm
2
, 10 min for each cycle) as shown in Figure 1i. 

Furthermore, the photothermal conversion efficiency of Fe(III)-gallic-acid nanoparticles was 
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calculated to be 66.8% (Figure S3), which is relatively high compared with those reported for 

NIR dyes,
[16]

 gold nanomaterials,
[7b, 15]

 carbon nanomaterials,
[17]

 transition-metal 

dichalcogenides,
[2c, 8d, 18]

 and polymer nanoparticles.
[14a, 19]

 These results suggest that Fe(III)-

gallic-acid nanoparticles would be an effective photothermal agent for cancer therapy, as 

cancer cells can be killed by being kept at 50 C for several minutes.   

Considering the excellent photothermal performance of Fe(III)-gallic-acid nanoparticles 

for potential cancer treatment, we further investigated their in-vitro cytotoxicity and PTT 

efficacy. The cytotoxicity was evaluated through methyl thiazolyl tetrazolium (MTT) assays 

on the proliferation of 4T1 cells (murine breast cancer cells). As shown in Figure 2a, the cell 

viability remained above 80% after incubation with 100 M nanoparticles for 24 h, and 50% 

of the cells survived at 200 M. To verify their photothermal ablation of cancer cells, 4T1 

cells were incubated with Fe(III)-gallic-acid nanoparticles at various concentrations for 24 h 

and then exposed to an irradiation (808 nm) with a power density of 0.5 W/cm
2
 for 10 min. 

After the irradiation, an MTT assay was performed to quantitatively determine the cell 

viability (Figure 2b). The results clearly show that the cell viability decreased drastically with 

increasing nanoparticle concentration, in comparison with the control groups without NIR 

laser irradiation (Figure 2a). With a concentration of 100 M, more than 80% of the cells 

were dead after laser irradiation, suggesting the excellent anticancer performance of these 

nanoparticles, which was further demonstrated by staining the cells with a Live-Dead Cell 

Staining Kit after laser irradiation to differentiate the live and dead cells. Most cells were 

destroyed after incubation with 100 M Fe(III)-gallic-acid nanoparticles and exposure to 

irradiation with a 808-nm laser (Figure 2c). In contrast, only few cells died if they were not 

incubated with Fe(III)-gallic-acid nanoparticles and/or not exposed to laser irradiation. These 

results demonstrate that Fe(III)-gallic-acid nanoparticles could serve as a potential PTT agent 

for photothermal ablation of cancer cells. 
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As mentioned previously, PTT agents could also serve as contrast agents for 

photoacoustic imaging. To further demonstrate the potential of Fe(III)-gallic-acid 

nanoparticles in tumor imaging, a subcutaneously transplanted 4T1 tumor model was adopted. 

BALB/c nude mice with different tumor sizes of 5-10 mm were selected to evaluate the 

photoacoustic (PA) imaging performance of Fe(III)-gallic-acid nanoparticles (4 mM, 200 μL 

for each mouse), which were intravenously injected through the tail vein. A set of PA images 

of the tumor region acquired before and at different time points post-injection are presented in 

Figure 3a. The overall contrast of the tumor area was gradually enhanced after injection of 

Fe(III)-gallic-acid nanoparticles, indicating a continuing accumulation of nanoparticles in the 

tumor area via blood circulation. The accumulation of nanoparticles at the tumor site could be 

attributed to the enhanced permeability and retention (EPR) effect, which is a common 

mechanism for passive targeting of nanoparticles. It is reasonable to expect the accumulation 

of our nanoparticles at the tumor site because their size is suitable for the EPR effect. In 

addition, the signal enhancement is more pronounced for large tumors, demonstrating that 

nanoparticles could be more effectively taken up by large tumors than smaller ones. This is 

expected, because large tumors may have more tumor blood vessels that would give rise to a 

stronger EPR effect than in the smaller tumors. These results demonstrate that Fe(III)-gallic-

acid nanoparticles are an excellent photoacoustic imaging agent, which can significantly 

illuminate the tumor and clearly delineate the margin of the tumor.  

To further quantitatively evaluate the performance of the Fe(III)-gallic-acid nanoparticles, 

the PA signals of the region of interest (ROI) in each image were calculated and are presented 

in Figure 3b. The quantified results reveal that, for all different sized tumors, Fe(III)-gallic-

acid nanoparticles produce increased contrast at the tumor site in the first 4 h post-injection, 

so that the contrast reaches its maximum value at around 8 h, and then slightly decreases with 

the circulation time. The signal enhancement is more pronounced in large tumors than smaller 

ones, which is consistent with the images shown in Figure 3a. Furthermore, the results also 
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suggest that the optimal time for irradiation would be 8 h after injection of Fe(III)-gallic-acid 

nanoparticles, at which the maximum accumulation of nanoparticles at the tumor site and 

their best PTT efficacy could be obtained. The effects of PA enhancement on different sized 

tumors are further demonstrated by comparison of the tumor signal obtained pre-injection 

with the maximum value obtained after injection (Figure 3c). Compared with the PA signal of 

the tumor site itself, the accumulation of Fe(III)-gallic-acid nanoparticles could increase the 

signal by 61%, 235%, and 403%, respectively, for different sized tumors. Figure 3c also 

shows that a large tumor has a stronger PA signal than the smaller ones. As the PA signal of 

the tumor site obtained pre-injection is positively related to the blood content of tumor tissue, 

the above result suggests that a large tumor would have richer tumor blood vessels, which 

leads to a stronger EPR effect for the uptake of Fe(III)-gallic-acid nanoparticles.  

Encouraged by the promising in-vitro photothermal ablation effect on cancer cells and the 

in-vivo PAI imaging of tumors, we further evaluated the photothermal effect of Fe(III)-gallic-

acid nanoparticles in vivo. According to the above in-vivo PAI results, mice bearing 4T1 

tumors with different sizes were anesthetized after intravenous (IV) injection of Fe(III)-gallic-

acid nanoparticles (4 mM, 200 μL for each mouse) for 8 h, which is the optimal time for 

accumulation of nanoparticles in a tumor, and then exposed to 808-nm irradiation with a 

power density of 1.0 W/cm
2
. An infrared imaging camera was used to monitor the 

temperature changes in the tumor site under NIR irradiation. The temperature of the tumor 

area increased by 9.9, 19.8, and 24.4 C within 10 min under laser irradiation for mice with 

tumor sizes of 60, 150, and 260 mm
3
 (Figure 3d and Figure 3e), respectively. In comparison, 

the tumor temperature of mice from the control group (i.e. intravenous injection of saline and 

then the same irradiation conditions) was only increased by 5.5 C, much lower than for the 

mice injected with Fe(III)-gallic-acid nanoparticles. In addition, large tumors exhibited higher 

temperature than small ones. This should be attributed to more efficient uptake of Fe(III)-

gallic-acid nanoparticles by large tumors than smaller ones through the EPR effect. The 
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consistency between the PTT and the PAI results suggests that the PA imaging can serve as an 

effective method to guide the photothermal ablation of tumors. The results also indicate the 

difficulty in photothermal ablation of small tumors due to less accumulation of nanoparticles 

in the tumor (i.e. less passive targeting of nanoparticles through the EPR effect). Nevertheless, 

for a tumor with a size of 150 mm
3
 in the current study, the increased temperature (ΔT = 19.8 

C) would be high enough to ablate it in vivo. This size is comparable to those of tumors used 

for many PTT studies in the literature.
[8b, 20]

 

As photoacoustic imaging can also serve as a non-invasive imaging technique for semi-

quantifying the pharmacokinetics of drugs, we conducted a preliminary evaluation of the 

pharmacokinetics of Fe(III)-gallic-acid nanoparticles in mice by using the PAI method. Figure 

4a displays the PA images of major organs of nude mice before and after injection of Fe(III)-

gallic-acid nanoparticles. The PA signals of each organ were calculated and are presented in 

Figure 4b-e. The signal change in the ischiatic vein was used to demonstrate the variation in 

the content of Fe(III)-gallic-acid nanoparticles in the blood. After injection of Fe(III)-gallic-

acid nanoparticles, the PA signal in the blood increased significantly and then gradually 

decreased, indicating the clearance of Fe(III)-gallic-acid nanoparticles from the blood. The PA 

signal of blood after 8 h is higher than that pre-injection, suggesting a long blood circulation 

time of Fe(III)-gallic-acid nanoparticles. The retention time of Fe(III)-gallic-acid 

nanoparticles in blood is much longer than the decomposition time of nanoparticles under the 

neutral condition, as shown in Figure 1c. This is due to the complicated environment and the 

protection provided by proteins in blood, which is evidenced by the slow degradation of 

Fe(III)-gallic-acid nanoparticles in 10% fetal bovine serum (FBS) in Figure S4. Although the 

decomposition of Fe(III)-gallic-acid nanoparticles in FBS is slower, they can be almost 

completely decomposed within one day, indicating the fast metabolic breakdown of Fe(III)-

gallic-acid nanoparticles. The PA signal of the kidney shows a similar trend to that in the 

blood, but the signal decreased much more slowly than the decay observed for blood, 



 

10 

 

suggesting that renal excretion may be one of the metabolic pathways for Fe(III)-gallic-acid 

nanoparticles. The PA signals of the liver and spleen dramatically increased after 1 h post-

injection, indicating the fast accumulation of Fe(III)-gallic-acid nanoparticles in the liver and 

spleen. This is expected, as nanoparticles are easily captured by the reticuloendothelial system, 

leading to the strong PA signal. The PA signals of the liver and spleen reached an approximate 

plateau after 2 h, and then gradually decreased from 4 h and 6 h, respectively. After 24 h, the 

PA signal of the liver and spleen recovered to the pre-injection level, indicating that the 

Fe(III)-gallic-acid nanoparticles in these organs may be gradually decomposed into small 

molecular complexes and then easily excreted from the treated animals. In remarkable 

contrast, the Fe(III)-gallic-acid nanoparticles were still accumulating in the tumor after 24 h 

post-injection, as shown in Figure 3. The above results fully demonstrate that Fe(III)-gallic-

acid nanoparticles can be easily decomposed in the liver and spleen while remaining stable in 

the tumor with a long retention time. In addition, the clearance of Fe(III)-gallic-acid 

nanoparticles in vivo takes place more quickly than for other nanomaterials studied in the 

literature,
[8a, 21]

 demonstrating that Fe(III)-gallic-acid nanoparticles could be a safe, promising 

candidate as a PAI-PTT theranostic agent.  

To assess the in-vivo therapeutic potential of Fe(III)-gallic-acid nanoparticles, a further 

careful investigation of their photothermal therapeutic efficacy was carried out. Balb/c mice 

with subcutaneous 4T1 tumors were selected as the animal model. After the tumor sizes 

reached approximately 150 mm
3
, the mice were divided into four groups with 5 mice per 

group. For the treatment group, they were intravenously injected with Fe(III)-gallic-acid 

nanoparticles (4 mM, 200 μL for each mouse). After 8 h, their tumors were irradiated by an 

808-nm laser for 10 min with a power density of 1 W/cm
2
. The other three groups included 

the saline injection group, a group in which the mice were injected with saline and also 

exposed to the laser, and a group in which the mice were injected with Fe(III)-gallic-acid 

nanoparticles, but without laser irradiation. The tumor sizes were measured every day after 
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treatment. For the treatment group, the tumor shrank remarkably after 1 day of photothermal 

treatment, and black scars were formed, which were completely eradicated 14 days after 

treatment (Figure 5a). In contrast, for the other three control groups, neither the laser 

irradiation with the current power density nor Fe(III)-gallic-acid nanoparticles alone could 

affect the tumor growth (Figure 5b). In addition, the mice in the control groups had an 

average lifespan of 30−33 days, shorter than for the treated mice, which were tumor-free after 

treatment and sacrificed on purpose after living for 45 days (Figure 5c). The above results 

suggest that Fe(III)-gallic-acid nanoparticles could serve as a powerful PTT agent for in-vivo 

photothermal ablation of cancer. 

To further demonstrate the in-vivo toxicity of Fe(III)-gallic-acid nanoparticles, the treated 

mice were sacrificed 45 days after treatment, and the major organs were collected, sliced, and 

stained by hematoxylin and eosin (H&E) for histological analysis (Figure 5d). Compared with 

the normal mice, no noticeable inflammation or damage was observed in any of the major 

organs. The results indicate that Fe(III)-gallic-acid nanoparticles are not toxic to mice with the 

current experimental dosage. In addition, as the spread of cancer cells into the lung is the 

main metastasis of 4T1 tumors, Figure 5d also shows no appreciable signs of pulmonary 

metastasis for surviving mice with tumors that were photothermally ablated.  

In summary, a new type of PAI-PTT nanotheranostic agent based on pH-sensitive Fe(III)-

gallic-acid complex was successfully developed. The complex has a strong NIR absorbance 

and can reversibly aggregate into nanoparticles with a size that is controllable by simply 

changing the solution pH value. The resultant nanoparticles are stable under mild acidic 

conditions (pH around 5.0) and unstable under neutral pH, which is perfectly suitable for 

cancer diagnosis and treatment, because the nanoparticles would be stable in the weak acidic 

environment of a tumor, while being easily metabolized in other organs. In-vitro experiments 

show that the Fe(III)-gallic-acid nanoparticles present low toxicity and excellent photothermal 

ablation of cancer cells, so that they can serve as an efficient photothermal agent. Further in-
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vivo PAI and PTT experiments showed that Fe(III)-gallic-acid nanoparticles are accumulated 

more in large tumors than in small ones because of the stronger EPR effect in the larger 

tumors. The results also suggest that PAI can be employed to guide the photothermal ablation 

of tumors. The pharmacokinetics results show that Fe(III)-gallic-acid nanoparticles have 

longer retention times in tumors than in the liver and spleen, where they can be easily 

degraded and excreted, due to their pH-sensitivity. The in-vivo treatment results demonstrate 

that Fe(III)-gallic-acid nanoparticles are a highly effectively photothermal agent for NIR 

light-induced tumor ablation. In addition, no acute toxicity was observed for the Fe(III)-

gallic-acid nanoparticles in our experiments, demonstrating their excellent biocompatibility. 

Our research provides a new strategy for designing theranostic agents for cancer diagnosis 

and treatment through PAI/PTT． 
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Figure 1. Synthesis and characterization of Fe(III)-gallic-acid nanoparticles. (a) UV-Vis-NIR 

absorbance spectra of Fe(III)-gallic-acid solution. Inset: Photographs of Fe(III)-gallic acid 

solutions with different iron concentrations. (b) Hydrodynamic size evolution of Fe(III)-

gallic-acid nanoparticles formed under different pH. (c) Hydrodynamic size evolution of 

Fe(III)-gallic-acid nanoparticles incubated in aqueous media with different pH. (d) TEM 

image of Fe(III)-gallic-acid nanoparticles prepared by mixing FeCl3 with gallic acid under pH 

3.7 for 2 h. (e) Corresponding TEM size distribution of Fe(III)-gallic-acid nanoparticles 

displayed in (d). (f) Hydrodynamic size distribution of Fe(III)-gallic-acid nanoparticles shown 

in (d). (g) Photoacoustic signals of Fe(III)-gallic-acid nanoparticles at 680 nm as a function of 

concentration. Inset: Photoacoustic images of different concentrations of Fe(III)-gallic-acid 

nanoparticles in agar phantom. (h) Temperature elevation of different concentrations of 

Fe(III)-gallic-acid nanoparticles as a function of irradiation time. (i) Temperature variation of 

Fe(III)-gallic-acid nanoparticles (0.5 mM) under irradiation for 5 cycles.  
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Figure 2. In-vitro cell experiments. (a) Relative cell viabilities of 4T1 cells after being 

incubated with various concentration of Fe(III)-gallic-acid nanoparticles for 24 h. (b) Relative 

cell viabilities of 4T1 cells incubated with various concentration of Fe(III)-gallic-acid 

nanoparticles under 808-nm laser irradiation (0.5 W/cm
2
,10 min). (c) Live-Dead Cell Staining 

Kit stained images of 4T1 cells incubated with Fe(III)-gallic-acid nanoparticles at different 

concentrations after laser irradiation for 10 min at a power density of 0.5 W/cm
2
. 
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Figure 3. In-vivo photoacoustic imaging and photothermal effect of Fe(III)-gallic-acid 

nanoparticles. (a) Photoacoustic images of mice bearing different sized tumors before 

injection and at different time points post-injection with Fe(III)-gallic-acid nanoparticles. (b) 

Photoacoustic signal variations of tumor sites in (a) as a function of post-injection time. (c) 

Photoacoustic signals of different sized tumors before injection and 8 h post-injection of 

Fe(III)-gallic-acid nanoparticles. (d) Thermal images of mice bearing different sized tumors 

after injection of saline (column 1) or Fe(III)-gallic-acid nanoparticles (column 2-4) in 

combination with exposure to 808-nm laser irradiation (1.0 W/cm
2
, 10 min). (e) Tumor 

temperature changes in mice bearing different sized tumors during laser irradiation as 

indicated in (d).  
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Figure 4. In-vivo biodistribution and clearance of Fe(III)-gallic-acid nanoparticles. (a) In-vivo 

photoacoustic images of liver, spleen, kidney, and ischiatic vein after the intravenous injection 

of Fe(III)-gallic-acid nanoparticles at different time intervals. (b)-(e): Photoacoustic signals of 

blood, kidney, liver, and spleen, respectively, as a function of time post-injection of Fe(III)-

gallic-acid nanoparticles. MSOT: multispectal optoacoustic tomography. 
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Figure 5. In vivo photothermal therapy using Fe(III)-gallic-acid nanoparticles. (a) 

Representative photographs of mice bearing 4T1 tumors after the various different treatments 

indicated. (b) Corresponding growth curves of 4T1 tumors in different groups of mice after 

treatment. The relative tumor volumes were normalized to their initial size. (c) Survival 

curves of mice after various treatments as indicated. (d) H&E stained images of major organs 

from untreated healthy mice and treated mice with Fe(III)-gallic-acid nanoparticle injection, 

taken 45 days after photothermal therapy (with tumors eliminated).  
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pH-responsive biocompatible Fe(III)-gallic-acid nanoparticles with strong NIR 

absorbance are very stable in mild acidic conditions, but easily decomposed in neutral 

conditions, which enables the nanoparticles to be stable in a tumor and easily metabolized in 

other organs, thus providing a safe nanoplatform for in-vivo PAI/PTT theranostic application. 
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Experimental Section  

Chemicals. Gallic acid was purchased from J&K Chemical Ltd. Agar and intralipid 

were purchased from Sigma-Aldrich. Other analytical grade chemicals were purchased from 

Aladdin Industrial Corporation and used as received.  

Synthesis of Fe(III)-gallic-acid nanoparticles. Fe(III)-gallic-acid nanoparticles were 

prepared by simply mixing FeCl3 and the ligand solution. In a typical synthesis, FeCl3 (4 mL, 

10 mM) and gallic acid (4 mL, 15 mM) were mixed homogenously and adjusted to pH 3.7 by 

0.1 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer solution, and then 

incubated for 2 h to obtain the Fe(III)-gallic-acid nanoparticles used for further investigations.  

Characterization of Fe(III)-gallic-acid nanoparticles. UV-Vis absorption spectra 

were recorded at room temperature on a Shimadzu UV-VIS-NIR Spectrophotometer UV-

3600. Transmission electron microscopy (TEM) images were collected on FEI Tecnai G2 

microscopes working with an accelerating voltage of 120 kV. The hydrodynamic size was 

measured at 25 C with a Malvern Zetasizer Nano ZS90 equipped with a solid-state He-Ne 

laser (λ = 633 nm). 

In-vitro Photoacoustic Effect. The photoacoustic performance of Fe(III)-gallic-acid 

nanoparticles was determined by a commercial multispectral optoacoustic tomography system 

(MSOT, iThera Medical, inVision 256). This system is equipped with an array of 256 
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cylindrically focused transducers to detect photoacoustic signals, and a tunable laser system 

(680-980 nm, 10 Hz repetition rate, 8 ns pulse width, 120 mJ pulse peak energy) was used to 

excite the target object with optical pulses to generate the photoacoustic effect. The field of 

view is 25  25 mm
2
, and the axial and lateral resolutions are 100 and 150 μm, respectively. 

For in-vitro photoacoustic imaging of Fe(III)-gallic-acid nanoparticles in different 

concentrations, the excitation wavelength of 680 nm was adopted. Photoacoustic signal 

intensities were measured by region of interest (ROI) analysis using the MSOT imaging 

system software package. 

In-vitro Photothermal Performance. 1 mL Fe(III)-gallic-acid nanoparticles with 

different concentrations was placed in 5 mL tube and irradiated using a 808-nm laser with a 

power density of 0.5 W/cm
2
. The temperature of the solution was measured with an infrared 

imaging device (FLIR E40 of FLIR Systems, Inc., United States) at 100 ms intervals for a 

total of 10 min.  

Cytotoxicity Assessments and Photothermal Ablation of Cancer Cells. Cell 

viability of 4T1 cells incubated with Fe(III)-gallic-acid nanoparticles followed by laser 

irradiation was determined by a methyl thiazolyl tetrazolium (MTT) assay. First, 4T1 cells 

with 5  10
4
 cells per well were seeded into a 96-well culture plate with 200 μL of RPMI-

1640 supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin in each well, 

and incubated for 24 h at 37 C under a humidified atmosphere with 5% CO2. Then, the 

culture medium was replaced by a fresh culture medium containing Fe(III)-gallic-acid 

nanoparticles in a series of gradient concentrations. After 24 h of further incubation, 20 L 

MTT with a concentration of 5 mg/mL was added to each well, and the plate was incubated 

for 4 h before the addition of 150 L dimethyl sulfoxide (DMSO) for dissolving the purple 

formazan that had been formed. Finally, the absorbance of each well was measured by using a 

PerkinElmer EnSpire® Multimode Plate Reader. For the laser treatment groups, after the cells 
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were cultured with Fe(III)-gallic-acid nanoparticles for 24 h, the cells were irradiated by a 

808-nm laser with a power density of 0.5 W/cm
−2

 for 10 min. Then, the MTT assay was 

carried out by the same protocol mentioned above to determine the cell viability. 

Animal Model. The tumor models used were established by subcutaneous injection of 

50 L 4T1 cell suspension (~5  10
6
 cells) into 5 week old male Balb/c mice (for the PTT 

study) or nude mice (for the PAI investigation) into the flank region of the right back. By 

monitoring the tumor growth, mice with tumor volume of ~60 mm
3
, ~150 mm

3
, and ~260 

mm
3
, were used for in-vivo PTT and PAI studies. All animal experiments reported herein 

were carried out according to the protocols approved by the Soochow University Laboratory 

Animal Center. 

In-vivo Photoacoustic Imaging. For in-vivo photoacoustic imaging studies, nude 

mice bearing subcutaneous tumors were anesthetized by 1.5% isoflurane delivered via a nose 

cone, and then Fe(III)-gallic-acid nanoparticles (4 mmol, 200 μL, corresponding to 40 mol 

Fe/kg body weight) were injected via the tail vein. Photoacoustic images were acquired at 

different time points post-injection by the MSOT system, using a wavelength of 680 nm. For 

each position, 10 frames were obtained and averaged to minimize the influence of animal 

movement in the images.  

Photothermal Therapy. 20 tumor-bearing Balb/c mice with an average tumor volume 

of 150 mm
3
 were randomly allocated into 4 groups. Mice in the treatment group were injected 

with 200 μL of 4 mmol Fe(III)-gallic-acid nanoparticle solution. For the control groups, the 

mice were treated with the same volume of saline. The laser-treated groups were irradiated 

with an 808-nm NIR laser (Hi-Tech Optoelectronics Co., Ltd. Beijing, China) with a power 

density of 1 W/cm
-2

 for 10 min. The tumor sizes were measured every day and calculated as 

the volume equal to a × b
2
/2, where a and b represent the length and width of the tumor, 

respectively. Relative tumor volumes were obtained by dividing the initial tumor size before 



 

23 

 

laser treatment. After 45 days, the mice from the treatment group were sacrificed, and the 

major organs were harvested for histological analysis.  

Histological Analysis. For hematoxylin and eosin (H&E) staining, major organs, 

including the liver, spleen, kidney, heart, and lung, were harvested, fixed in 10% neutral 

buffered formalin, processed routinely into paraffin, sectioned into thin slices, and stained 

withH&E for histological analysis.  

 

Supplementary Results 

DLS analysis of Fe(III)-gallic-acid nanoparticles. Dynamic light scattering (DLS) 

analysis was carried out to monitor the hydrodynamic size evolution of Fe(III)-gallic-acid 

nanoparticles formed under different pH. Figure S1a and S1b show the hydrodynamic size 

profiles of nanoparticles formed at pH 3.7 and 4.5, respectively. The results suggest that 

Fe(III)-gallic-acid complexes exhibit strong pH-dependent stability, and gradually aggregate 

and form nanoparticles under pH 3.7 and 4.5. 
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Figure S1. Hydrodynamic size profiles of Fe(III)-gallic-acid nanoparticles formed at different 

time points in aqueous media with pH values of 3.7 (a) and 4.5 (b). 

 

 

 Thermal imaging of Fe(III)-gallic-acid nanoparticle solution. Water and 0.5 mM 

Fe(III)-gallic-acid nanoparticle solution were irradiated using a 808-nm laser with a power 

density of 0.5 W/cm
2
. Figure S2 presents thermal images collected by an infrared imaging 

device, which demonstrate that Fe(III)-gallic-acid nanoparticles are a rather effective 

photothermal agent.  

 
Figure S2. Thermal images of water and 0.5 mM Fe(III)-gallic-acid nanoparticles under 808-

nm laser irradiation at a power density of 0.5 W/cm
2 

for 10 min. 
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Calculation of the photothermal conversion efficiency. Under the room temperature 

of 25 C, 0.5 mM Fe(III)-gallic-acid nanoparticles solution was loaded into a cuvette and 

irradiated using a 808-nm laser, followed by natural cooling after laser light was turned off. 

The temperature profile monitored is shown in Figure S3a. The photothermal conversion 

efficiency is calculated according to the following equation.
[1]

 The photothermal  conversion 

efficiency  can be given as  

s

A

water

I

TTcm









 )101(

)( max,max
 

where m is the solution mass and equal to 1.0 g in the current study, c is the heat capacity of 

water and equal to 4.2 J/g, Tmax and Tmax,water are the maximum temperature change for 

nanopaticles solution and water, which are 21.2 C and 1.4 C, respectively,  I is the laser 

power and equal to 0.5 W in the current study, A is the absorbance of nanoparticles solution at 

808 nm and equal to 0.4294, s is the system time constant and equal to 396.4 s according to 

the linear regression of the cooling profile (Figure S3b). The photothermal conversion 

efficiency is calculated to be 66.8% by using these parameters. 

 

Figure S3. (a) The temperature profile of a 0.5 mM Fe(III)-gallic-acid nanoparticles solution 

irradiated with a 808-nm laser, followed by natural cooling after laser was turned off. (b) 

Determination of the system time constant using linear regression of the cooling profile 

shown in (a).  
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 DLS analyses of Fe(III)-gallic-acid nanoaprticles in 10% FBS. Figure S4 shows the 

hydrodynamic size evolution of Fe(III)-gallic-acid nanoparticles incubated in pH 7.0 aqueous 

medium and 10% FBS with different pH values. Fe(III)-gallic-acid nanoparticles show a 

slower degradation in 10% FBS (pH = 7) than in neutral water. If Fe(III)-gallic-acid 

nanoparticles were incubated in weak acidic 10% FBS (pH 5.0 and 5.6), they remained stable 

in 6 h but precipitated after 24 h.  

 
Figure S4. Evolution of hydrodynamic size of Fe(III)-gallic-acid nanoparticles incubated in 

pH 7.0 aqueous media and 10% FBS with different pH values. 
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