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Monoclonal antibodies (mAbs) have become one of the most important classes

of biopharmaceutical products, and they continue to dominate the universe of

biopharmaceutical markets in terms of approval and sales. They are the most profitable

single product class, where they represent six of the top ten selling drugs. At the

beginning of the 1990s, an in vitro antibody selection technology known as antibody

phage display was developed by John McCafferty and Sir. Gregory Winter that enabled

the discovery of human antibodies for diverse applications, particularly antibody-based

drugs. They created combinatorial antibody libraries on filamentous phage to be utilized

for generating antigen specific antibodies in a matter of weeks. Since then, more than 70

phage–derived antibodies entered clinical studies and 14 of them have been approved.

These antibodies are indicated for cancer, and non-cancer medical conditions, such as

inflammatory, optical, infectious, or immunological diseases. This review will illustrate the

utility of phage display as a powerful platform for therapeutic antibodies discovery and

describe in detail all the approved mAbs derived from phage display.
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MONOCLONAL ANTIBODIES (mAbs)

Monoclonal antibodies (mAbs) are versatile biomacromolecules that can bind with high specificity
to a wide range of protein and non-protein targets (1–4). These mAbs can be engineered and
produced into different formats to enhance their functionality and use (Figure 1) (5). To date,
more than 80 mAbs have been approved for clinical applications with many more under pre-
clinical and clinical development (6). They represent six of the top ten selling drugs (7) with annual
sales exceeding $120 billion in 2017 (8) and are expected to reach $130–200 billion by 2022 (9).
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FIGURE 1 | Schematic representation of different antibody formats. (A) Single chain fragment variable (scFv) composed of variable regions of the light chain (VL ) linked

to variable regions of the heavy chain (VH) by a flexible glycine-serine linker (Gly4Ser)3. (B) Nanobody fragments. (C) Fragment of antigen binding (Fab) composed of

VL and a constant domain of the light chain (CL) linked to VH and constant domain 1 of the heavy chain (CH1) by a disulphide bond between the CL and CH1

domains. (D) Diabody composed of VL linked to variable heavy VH by a pentameric (Gly4Ser). (E) F(ab)2 fragment composed of 2 × Fab fragments joined by an

Immunoglobulin G (IgG) hinge region. (F) scFv fusion with an Fc IgG. (G) IgG composed of constant fragment (Fc), which is able to bind and stimulate immune effector

cells, and Fab, which comprises the variable domains that contain the antigen binding regions. (H) Bispecific IgG antibody.

They also have a high success rate in clinical development;
for instance, it has been reported that the probability of FDA
approval for mAbs in phase I of development is∼14.1%, which is
almost twice the approval rate of small molecule drugs (∼7.6%)
(10, 11). Such factors make biopharmaceutical companies more
motivated and willing to sponsor the development of these
pharmaceutical products.

During the last 120 years, the research and development of
antibody-related technologies have been the subject of four Nobel
Prizes. In 1901, Emil von Behring won the first Nobel Prize
in Physiology or Medicine for the successful therapeutic use of
horse hyperimmune serum containing neutralizing polyclonal
antibodies against diphtheria and tetanus toxins (12). Kohler
and Milstein received the 1984 Nobel Prize in Physiology
or Medicine for developing the ground-breaking hybridoma
technology which facilitated the isolation of mAbs and their
subsequent production in laboratories (13). In 2018, George
P. Smith and Sir Gregory P. Winter were awarded with the
Nobel Prize in Chemistry for their development of phage
display of peptide and antibodies (14–16). In the same year,
James P. Allison and Tasuku Honjo were honored by the 2018
Nobel Prize in Physiology or Medicine for their discoveries
of cancer immunotherapy via the use of antibody blockade
of the T-cell inhibitory receptor (CTLA-4) and programmed
cell death protein 1 (PD1) to enhance anti-tumor immune
responses (17, 18).

OVERVIEW OF ANTIBODY PHAGE
DISPLAY LIBRARIES

Although hybridoma technology was ground-breaking at the
time and still commonly used to produce antibodies as
research reagents, murine-derivedmAbs have limited therapeutic
efficacy. Several reports have indicated that patients treated
with murine-derived mAbs will develop a human anti-
mouse antibody (HAMA) response, which accelerates mAb
clearance, and could result in undesirable allergic reactions
upon repeated administration (19, 20). Antibody engineering
techniques have been subsequently utilized to create chimeric or
humanized antibodies by utilizing the murine variable regions
or complementary determining regions (CDRs), respectively, in
conjunction with human constant regions, in order to maintain
target specificity and reduce the HAMA response (21–23).
Fully human antibodies are now generated using hybridoma
technology in transgenicmicemodels, such as HuMabMouse and
XenoMouse, whereby the mouse immunoglobulin (Ig) gene loci
have been replaced with human loci within the transgenic mouse
genome (24–26).

Development of antibody phage display libraries represents an
alternative technique to the traditional hybridoma technology.
They involve the isolation of fully human-derived mAbs
from large Ig gene repertoires displayed on the surface of
bacteriophages (16). In 1985, George P. Smith was the first
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FIGURE 2 | Strategy used for construction of naïve scFv-phage display

libraries. Total RNA is isolated from B-lymphocytes from non-immunized

healthy donors. Then cDNA is synthesized from the isolated RNA using

reverse transcriptase enzyme. Then the repertoire of the VH and VL genes is

amplified from the cDNA using forward and reverse primers hybridizing to the

variable domains. scFvs are constructed and cloned into phagemid vector and

a naïve phage library of 108-1010 is usually generated.

to describe phage display technology by demonstrating that
filamentous phages are able to display a peptide of interest on
their surfaces after inserting a foreign DNA fragment into the
filamentous phage coat protein gene (14). Subsequently, Parmley
and Smith described a selection and affinity enrichment process
known as “panning or biopanning,” that allowed for the isolation
of peptide-phage fusions from a 108-fold excess of wild type
phages based on their specific binding affinity to biotinylated

antibodies specific for the peptides (27). Later, McCafferty and
Winter were the first to utilize phage display technology in
antibody discovery by creating combinatorial antibody libraries
on filamentous phages to be utilized for generating antigen
specific mAbs (15, 16).

M13 is one of the filamentous bacteriophages (Ff) of
Escherichia coli (E. coli), and one of the most widely used phages
for antibody phage display (28, 29). Filamentous bacteriophages
only infect E. coli strains through an interaction between the
expressed F pilus on the surface of hosts, and a phage coat protein
(30). M13 is a flexible cylindrical-shaped virus particle containing
a circular single-stranded DNA genome (6,407-base) consisting
of nine genes encoding for five coat proteins (pIII, pVIII, pVI,
pVII, and pIX), and six assembly and replication proteins (31,
32).Mostmajor phage display systems are based on pIII-antibody
fusion proteins, due to pIII structural flexibility and its ability to
display large proteins without losing its function (33–36).

The discovery of smaller recombinant antibody formats,
such as variable domain [Fv; variable regions of the heavy
(VH) or light chain (VL)], single-chain variable domain (scFv),
diabodies (bivalent scFvs), heavy-domain camelid and shark
antibody fragments (VHHs, nanobodies), and fragment antigen
binding (Fab), has helped to advance antibody phage display
technology (Figure 1) (37–42). These smaller fragments are more
amenable to expression in bacteria compared to full antibodies,
which require assembly of four polypeptide chains and extensive
disulfide bond formation. For instance, creating a combinatorial
scFv library on the surface of M13 filamentous phage has
been achieved through combining populations of VH and VL-
domains, which are joined by a flexible, protease resistance
glycine-serine linker (Gly4Ser)3, into a single DNA sequence
(15). These antibody sequences are then introduced and cloned
as a gene fusion with the bacteriophage pIII gene under the
control of a weak promoter in a phagemid vector; a plasmid that
carries an antibiotic resistance gene, bacterial and phage origins
of replication (Figure 2) (43–46).

Co-infection of E. coli harboring a phagemid with a helper
phage is essential for the formation of functional phage particles
displaying pIII-antibody fusions (45). It causes E. coli to initiate
the synthesis of all wild-type coat proteins needed for phage
replication, and this is essential because the phagemid does not
have all the genes necessary to encode a full bacteriophage in E.
coli (47). The most commonly used helper phage is M13KO7,
which is a derivative of M13 containing a kanamycin resistance
gene and the P15A origin of replication that allows the genome
to replicate as a plasmid in E. coli (48). A fully assembled phage
particle contains five copies of the pIII protein, but since the
wild type pIII gene from helper phage has superior expression
levels compared to the phagemid-encoded pIII-antibody fusion
gene, the majority of the produced phage population is expressed
without a pIII-antibody fusion. However, only a portion of the
population will contain monovalent display of the pIII-antibody
fusion, with polyvalent display being much less frequent (49).
The hyperphage system, which uses a helper phage lacking the
pIII gene has been utilized for antibody pIII-antibody polyvalent
display, because only the pIII-antibody gene of the phagemid
is encoded (50). Nevertheless, monovalent display is the most
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FIGURE 3 | Schematic representation of phage biopanning. This is the basic method for sequential affinity screening of the phage display libraries for specific binding

phage from a large excess of non-binding clones is often referred to as “panning or biopanning.” The phage antibody selection involves the immobilization of the

ligand of interest on a solid support, followed by applying the phage display library (in the form of purified virions) to the immobilized ligand to allow binding of specific

variants. To eliminate the adherent non-binders, multiple rounds of washing are usually performed, and remaining bound phages are eluted and re-amplified. At least

three rounds of biopanning are usually required in order to amplify the binding variants and to exclude any non-specific binders.

popular display system because it allows for selection of higher
affinity antibodies, avoiding the avidity effect of polyvalent
display (43–46).

BIOPANNING FOR TARGET-SPECIFIC
ANTIBODIES

When purified antigens are available, they can be presented to
a phage antibody library by immobilization on solid surfaces,
such as nitrocellulose membranes, polystyrene tubes or plates,
magnetic beads or column matrices (51–53). The use of blocking
agents, such bovine serum albumin (BSA), milk or casein can
block the remaining sites present on the solid surface to prevent
non-specific phage binding to the surface (54, 55). After the
phage library is exposed to the immobilized antigens, unbound
phages are usually washed away (Figure 3). Such washing step
is critical to remove non-specific binders, and to allow for some
control over binding properties by manipulating the wash buffer
and stringency of washing. For example, long wash times can be
incorporated to ensure only clones with slow dissociation rates
are selected. Detergents are usually included in wash buffers,
but they can also be altered for factors, such as pH and salt
concentration. The washing steps are gradually increased with
every round of biopanning to increase the stringency in order to
isolate higher affinity phage clones (46, 56).

To recover high-affinity phage antibodies from immobilized
antigens, different elution conditions, including change in pH,
proteolytic cleavage or competition with free antigens have been

used. For pH elution, either acidic buffers, such as glycine or citric
acid (52, 57), or alkaline triethylamine (TEA) can be used (51).
It is crucial to neutralize the pH of eluted phage antibodies to
be around 8, to avoid degradation of the phage and maintain
infectivity. Some libraries have a cleavage site introduced between
the antibody and the pIII protein to facilitate elution by using
proteases, such as Genenase I or trypsin (58, 59).

After several rounds of biopanning, the pool of phages isolated
from each round is tested, usually by ELISA, to determine if
there is an enrichment of phage binders toward the specific
antigen within the polyclonal pool. The polyclonal ELISA
involves immobilizing antigen onto microtitre plates, followed
by addition of various dilutions of the phage pool from each
round and then detection of bound phage using an anti-M13
phage antibody. Individual clones from the round of biopanning
exhibiting the maximum enrichment level are then further
screened by ELISA to determine individual phage isolates with
high specificity toward the antigen of interest. The procedure
involves growing single colonies cell glycerol stock from the
last performed biopanning round in a 96-well plate format,
before adding the helper phage to induce production of phage
particles. The positive clones derived from this experiment can
then be analyzed by restriction fragment length polymorphism
to determine the number of unique clones, or by sequencing
which also determines the CDRs for both heavy and light chains
(60). Once positive clones are isolated, downstream applications
would determine how they are further processed. For example, a
scFv gene from a phage clone can be re-cloned into a bacterial
expression vector for large scale production or reformatted into a
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full mAb by inserting the variable regions into expression vectors
containing the antibody constant regions (61). In vitro affinity
maturation using mutated libraries of lead phage clones can also
be conducted in order to increase the affinity and the stability of
the selected antibodies (62, 63).

Although biopanning of immobilized antigen on solid
surfaces is robust, it is often limited by the availability of purified
protein and the possibility of its altered conformation when
attached to solid surfaces. Therefore, alternative methods, such as
in-solution biopanning, followed by affinity capture of antigens
tagged with biotin (64), or calmodulin binding peptide have been
used (65).

Some membrane proteins (66) are poorly soluble in an
aqueous media, and due to their complexity, they do not form
properly during recombinant expression (67). They might form
aggregates and lose their tertiary structures when coated on
immunotubes before biopanning (68–70), which as a result
might lead to generate antibody binders that recognize epitopes
that are not naturally exposed (71, 72). Thus, cell-based
biopanning is often utilized to maintain membrane proteins
native conformation (73–76). It can be applied to retrieve
antibodies that are specific for either known or unknown antigens
on cells surface, and it can be performed in case of unavailability
of the targeted antigen in pure form (77–80). Furthermore,
cell-based biopanning strategies allow for selecting binders to
a specific conformational state of a cell surface receptor (81–
85). Cell-based microselection approach, can be applied to
retrieve unique binders, and identify novel biomarkers that
are exclusively expressed on rare cells within a heterogeneous
solution (86, 87).

The latest advancements in next-generation sequencing
(NGS) technologies, bioinformatics and nanotechnology have
tremendously improved the high-throughput screening of
antibody discovery (88–91). For instance, a report from
Raftery et al. (92) described a rapid selection of scFv-phage
(PhageXpress) using electrohydrodynamic-manipulation of a
solution containing phage library particles in combined with
Oxford Nanopore Technologies’ MinION sequencer. After a
single round of biopanning and within 2 days compared to
several weeks if applying traditional biopanning, they were
able to identify 14 anti-dengue virus non-structural protein
1 scFv. Adopting similar approaches will significantly reduce
the time and amount of laborious lab work required to
discover putative antibodies, which are major obstacles in
the traditional biopanning method, and will help accelerate
developing therapeutic monoclonal antibodies during emerging
infectious outbreaks (93).

PHAGE DISPLAY LIBRARIES AS AN
ANTIBODY DISCOVERY PLATFORM

Antibody phage display is a versatile, in vitro selection technology
that can be utilized to discover high affinity antibodies specific
to a wide variety of antigens (94). However, specificity and high
affinity are not the only attributes that account for successful
therapeutic antibodies. Other antibody quality attributes, such as

solubility, viscosity, expression yield, and thermal and long-term
stability are vital to ensure the success of mAb lead candidates in
biomanufacturing and clinical trials (95, 96). These biophysical
properties of antibodies are strongly dependent on their amino
acid sequences (97). Some mAbs might have poor developability
profiles because of high immunogenicity, physicochemical
instability, self-association, high viscosity, poly-specificity, short
half-life, and poor expression (98, 99). For instance, low solubility
can lead to issues during biomanufacturing (100–102), and could
affect mAb potency, bioavailability and immunogenicity (103,
104). High thermal stability is crucial to maintain structural
and functional integrity, and intrinsic properties, under different
temperatures (105, 106). Furthermore, aggregation is one of the
main challenges that limit the advancement of therapeutic mAb
due to immunogenicity concerns (107–110).

Despite the several advantages of antibody phage display,
such as bypassing animal immunization, the ability to isolate
antibodies against toxic or non-immunogenic antigens and
the ability to generate conformation-specific antibodies, the
vast majority of the approved therapeutic antibodies are
derived from immunized mice technologies. This is because the
filtration process that imposed by the immune system enables
mammalians derived antibodies to have better biophysical
attributes compared to antibodies generated by phage display
(111). In agreement with this, Jain et al. has comprehensively
analyzed the biophysical attributes for 46 FDA approved
therapeutic antibodies and 89 in advance clinical trials (96).
They found that antibodies directly discovered by phage display
or engineered at some point by phage biopanning exhibit
significant developability risks’ properties compared to than
those derived from immunized mice. Further investigations
found that phage display derived therapeutic antibodies have
higher self-interaction and poly-reactivity due to the higher
percentage of aliphatic residues in their CDRs compared to the
non-phage derived antibodies (112).

Additionally, antibodies selected form phage display libraries
are not glycosylated, because they are produced in E. coli,
as a result, some candidates when glycosylation occur during
mammalian cells expression; their binding, biodistribution,
or pharmacokinetics might be negatively impacted (113–116).
Therefore, using eukaryotic display platforms like yeast and
mammalian display would be beneficial. For instance, in addition
to their ability to produce glycosylated proteins, yeast and
mammalian antibody libraries can be constructed to display full-
length antibodies as well as antibody fragments, such as scFvs
and fragment antigen-binding region (Fabs) (117–126), allowing
the isolation of high affinity antibodies with definitive biological
characteristics (122, 123). For example, Parthiban et al. has
developed mammalian libraries that display around 10 million
clones in IgG-format on the surface of HEK293 cells using
CRISPR/Cas9 or transcription activator-like effector nucleases
(TALENs) (127). These libraries can act as a quality filter for
different antibody developability aspects, and to provide a very
early insight into developability problems, such as aggregation
and cross-reactivity. Each display system has its advantages
and disadvantages, however, determining those are beyond the
intended scope of this review, which is about the most commonly
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used type of antibody display, the phage display. Therefore, it
is vital to generate phage libraries that allow for the isolation of
highly specific and diversemAbs with high affinity against diverse
antigens with optimal developability potential (128–130).

Currently, as a common practice in industrial pipelines,
biopharmaceutical companies are implementing extensive
developability assessments to determine the biochemical and
biophysical features of antibody candidates to help identifying
candidates with more favorable biophysical properties and to
avoid difficulties during the downstream process (131, 132). For
example, in silico platforms, such as the Therapeutic Antibody
Profiler (TAP) tool are used as a flagging system to predict
mAbs with poor developability profiles by identifying anomalous
values compared with therapeutic mAbs in clinical-stages.
Indeed, features within the variable regions of mAbs, such as the
total CDRs length, high hydrophobicity of VH and VL chains,
lack of net charge symmetry, and/or the presence of patches of
positive and negative charges were computationally predicted to
be key factors in developability profiles of mAbs (133).

The probability of isolating high affinity, and more diverse
mAbs that specifically bind random epitopes, increases
significantly when biopanning campaigns are performed using
larger antibody libraries. Library diversity is judged by how
many functional antibody fragments are able to identify as many
different antigens as possible (134). The bacterial transformation
step during library construction; however, is a main practical
bottleneck that limits the size of the library from exceeding
1011 antibody variants, even after optimization and performing
numerous electroporation steps.

Ideally, antibody phage display libraries should not only be
large and diverse, but also should display antibody variants as
functional fragments. Issues related to the nucleotide sequences,
such as the presence of stop codons, or the addition/deletion
of nucleotides can occur during the library construction (135–
137). These issues might inhibit the production of functional
pIII-antibody fusions or change the reading frame of the
antibody gene sequence, which could negatively affect their
biophysical characteristics. Some in-frame antibody genes might
also have poor expression levels from their phagemid, or produce
aggregated, misfolded, or toxic antibody fragment to E. coli
(138–141). However, such variants are usually displayed in lower
percentage compared to other variants or phages that do not
display any fusion protein.

TYPES OF ANTIBODY PHAGE DISPLAY
LIBRARIES

Phage libraries generated from human rearranged V-gene
repertoires are constructed from mRNA or RNA extracted from
B cells of immunized or naïve donors (Figure 2) (73, 142–144).
Construction of immunized or naïve libraries involves using
reverse transcription polymerase chain reaction (RT-PCR) to
prepare the cDNA template. This is followed by the amplification
of the repertoire of VL and VH genes by PCR, before cloning into
the phagemid.

Immunized libraries are constructed from lymphoid tissues
of individuals who carry a particular disease, such as metastatic

cancer or particular infection, or have been immunized with a
particular antigen (145–149). Such libraries are characterized by
a biased antibody repertoire toward specific targets. Additionally,
those antibodies tend to have much higher affinities for the
desired antigen than antibodies isolated from naïve libraries
of comparable size, because the VH and VL gene fragments
have undergone the natural in vivo affinity maturation process
(150). Naïve libraries, on the other hand, represent the germline
diversity of antibody repertoire. These libraries are generated
from healthy donor’s mRNA or RNA without bias toward a
particular disease state, and are used to yield mAbs against
unlimited range of antigens (151). To generate a highly diverse
naïve antibody phage library, it is recommended to use a large
pool of donors from diverse ethnic groups, and to maximize the
efficiency of antibody gene amplification in the process of library
construction (152–155).

The CDRs play a significant role in antigen recognition (156),
although some of the non-CDRs residues contribute to the
antibody-antigen interaction (157). Each CDR loop contributes
differently to antibody-antigen binding, and each residue within
each CDR loop plays a different role in this interaction (158, 159).
Among all the six CDR loops, the VH CDRs, especially VH’s
CDR3 (CDRH3), are more frequently involved in the antigen
binding than those in the light chain (160, 161). The CDRH3
loop, which exists in a variety of different lengths (5–30 amino
acids), is of particular importance due to its substantial impact
on the canonical conformation and antigen binding compared
to the other CDRs (156, 162–165). Noteworthy, the loop length
of CDRH3 does not only affect the specificity and affinity
of the antibody for its specific antigen, but also affects the
nature of the binding of other CDRs. Specifically, for antibodies
with long CDRH3 loops, these loops are responsible for most
of the antibody-antigen interactions, while in antibodies with
short CDRH3 loops, other CDRs loops usually assist in antigen
binding (156). Thus, CDRH3 plays a major role in recognizing
diverse targets, and generating interactions with acceptable
affinity (166, 167).

The diversity of the V-gene segments can be designed
and synthesized artificially by CDRs randomization. These
libraries can be fully synthetic or semisynthetic. Synthetic
libraries are made to maximize antibodies’ functionality by
making a large and highly diverse phage repertoire. This is
usually achieved in vitro by using PCR and oligonucleotides
to create a random integration of the CDRs as well as
introduction of different CDRH3 loop sequences and lengths
without disrupting the folding of the V regions (94, 168).
Semisynthetic libraries combine natural and synthetic antibody
diversity. They are constructed from non-rearranged V-
genes from pre-B cells, or an antibody framework with
randomization of the CDRH3 or several CDRs utilizing
degenerated oligonucleotides (128, 169, 170).

PHAGE DISPLAY-DERIVED mAbs

Data collected for this review were obtained from different
sources including PubMed, the clinical trial database (www.
clinicaltrials.gov), patents, company websites, and international
ImMunoGeneTics information system (www.imgt.org). A
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TABLE 1 | The design, construction, and features of some major company-owned antibody-phage libraries.

Library Type Source Size Note References

CAT-BMV Naïve scFv PBL, tonsils 1.4 × 1010 A total of 43 healthy donors (173)

CAT-CS Naïve scFv Spleen, fetal liver 1.29 × 1011 cDNA from 160 donors (174)

CAT-BMV Naïve scFv Spleen 1.2 × 1011 Derived from the germline VH gene DP47 from

CAT-BMV library, and B-cell-derived VL and CDRH3

from CAT-CS library

(175)

Dyax Naïve Fab PBL, spleen 3.7 × 1010 PBL from 4 healthy donors, and part of a tumor-free

spleen removed from a patient with gastric

carcinoma

(176)

Morphosys’s HuCAL® Synthetic Fab — 2.1 × 1009 CDRH3 and CDRL3 were diversified by TRIM (177)

Morphosys’s HuCAL

GOLD®

Synthetic Fab — 1.6 × 1010 All CDRs were diversified by TRIM (178)

Morphosys’s HuCAL

PLATINUM®

Synthetic Fab — 4.5 × 1010 HuCAL PLATINUM® is an advanced version of

HuCAL GOLD®. All CDRs were diversified by TRIM,

with additional sequence optimization to enhance

mammalian cells expression and avoid undesirable

motifs

(179)

CAT, Cambridge Antibody Technology human antibody phage display library; HuCAL, Human combinatorial antibody library; PBL, Bone marrow, peripheral blood lymphocytes; TRIM,

trinucleotide-directed mutagenesis method.

FIGURE 4 | Highest development phase achieved for antibodies isolated from various major company-owned libraries.

selection of phage display-derived therapeutics was described in
great detail previously (171, 172), yet we here present an updated
and comprehensive review of phage display-derived mAbs.

Two decades after McCafferty and Winter’s seminal report
in 1990, more than 70 phage–derived mAbs entered clinical
studies, and 14 of them have been approved. The majority of
these antibodies are generated by three company-owned libraries,
Cambridge Antibody Technology (CAT), Dyax and MorphoSys’s
human combinatorial antibody libraries (HuCAL R©) (Table 1,
Figure 4). MorphoSys’s HuCAL R© has the highest number of
mAbs (20mAbs), wherein 19 are under clinical development, and
one (TremfyaTM) is approved. The majority of the MorphoSys’s
HuCAL R© derived mAbs (12 mAbs) are in phase II clinical trials.
CAT (AstraZenica) has the second highest number of phage

derivedmAbs (15mAbs) in clinical trials, and the highest number
of approved mAbs including Humira R©, Benlysta R©, LumoxitiTM,
ABthrax R©, and Gamifant R©. Dyax has 13 mAbs in which
four of them have been approved; Bavencio R©, PortrazzaTM,
Cyramza R©, Takhzyro R©.

Therapeutic mAbs from phage libraries can be successfully
isolated to treat cancer, and non-cancer medical conditions, such
as inflammatory, optical, infectious, or immunological diseases
(Table 2). However, some of the aforementioned major libraries
have a favorable therapeutic area of application. More mAbs for
non-cancer indications in comparison to cancer indications (∼63
vs. ∼37%) were developed using CAT libraries. Among all the
five approved CAT derived mAbs, LumoxitiTM is the only one
that is indicated to treat cancer. Unlike CAT, Dyax libraries have
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TABLE 2 | A list of phage display-derived therapeutic antibodies that either are approved or have been investigated clinical trials.

Product name/Brand

name

Antibody format Target antigen Antibody phage display

type

Phage display

technology

Clinical domain Indication(s) Highest

development

phase

Sponsor

company

Adalimumab

(D2E7)/Humira®
IgG1-κ TNFAα Humanization by Phage

display guided selection

using a naïve scFv-phage

library (180)

CAT (51, 173–175) Immunology, and

inflammation

(181–184)

RA Approved 2002 AbbVie

PSA Approved 2005

AS Approved 2006

CD Approved 2007

Psoriasis, severe

chronic plaque

Approved 2008

JIA Approved 2008

UC Approved 2012

HS Approved 2015

Fingernail psoriasis Approved 2017

Ophthalmology

(185)

Uveitis Approved 2016

Adecatumumab

(MT201)

IgG1 EpCAM Guided selection of light

chain, naïve (IgD), Fab (186)

Micromet AG Oncology

(187–190)

Breast cancer,

prostate cancer,

colorectal cancer

Phase II Amgen

1D09C3 IgG4 HLA-DR Synthetic scFv (191) Morphosys’s

HuCAL® (177)

Oncology

(192, 193)

HL, myeloma Phase I GPC Biotech AG

Anetumab ravtansine

(unconjugated BAY

86-1903, conjugate

BAY 94-9343)

IgG1-λ conjugated to

the maytansinoid

tubulin inhibitor DM4

MSLN Synthetic Fab (194) Morphosys’s

HuCAL GOLD®

(178)

Oncology

(195, 196)

Mesothelioma,

mesothelin-

expressing ovarian

cancer, non-small

cell lung cancer

and pancreatic

cancer

Phase II Bayer

Amatuximab

(MORAb-009)

IgG1-κ MSLN Immune scFv (197, 198) NCI, US Oncology

(199, 200)

Mesothelioma,

mesothelin-

expressing

pancreatic cancer

Phase II Eisai Inc

Atezolizumab

(MPDL3280A)/TecentriqTM
IgG1-κ PD-L1 Antibody phage display

library (201, 202)

Genentech Oncology

(203–208)

Renal cancer Phase I Roche

Solid tumors Phase II

SCLC Phase III

(Continued)
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TABLE 2 | Continued

Product name/Brand

name

Antibody format Target antigen Antibody phage display

type

Phage display

technology

Clinical domain Indication(s) Highest

development

phase

Sponsor

company

Malignant

melanoma

Phase III

Mesothelioma

(PMID: 32206576)

Phase III

Bladder cancer Phase III

RCC Phase III

HCC Phase III

NSCLC Approved 2016

Urothelial

Carcinoma

Approved 2016

Urothelial bladder

cancer

Approved 2017

Breast cancer Approved 2019

Avelumab/Bavencio® IgG1-λ PD-L1 Naïve Fab (209) Dyax (176) Oncology

(210–216)

Ovarian cancer Phase III Merck

Serono/Pfizer

Gastric cancer Phase III

NSCLC Phase III

Solid tumors Phase I

mMCC, metastatic

urothelial

carcinoma

Approved 2017

RCC Approved 2019

Belimumab

(LymphoStat-

B)/Benlysta®

IgG1-λ BLyS Naïve scFv (217) CAT Immunology, and

inflammation

(218–220)

SLE Approved 2011 GSK/HGSI

Vasculitis Phase III

Bertilimumab (CAT-213) IgG4-κ CCL11, eotaxin-1 Naïve scFv (221) CAT Immunology

(222–225)

Severe ocular

allergies

Phase I Immune

Pharmaceuticals

CD Phase II

UC Phase II

Bullous

pemphigoid

Phase II

(Continued)
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TABLE 2 | Continued

Product name/Brand

name

Antibody format Target antigen Antibody phage display

type

Phage display

technology

Clinical domain Indication(s) Highest

development

phase

Sponsor

company

Bimagrumab (BYM338) IgG1-λ ActRII Synthetic human Fab (226) Morphosys’s

HuCAL GOLD®

Endocrinology,

and Immunology

(227)

Type 2 diabetes Phase II Novartis

Immunology, and

myology

(228–231)

Cachexia Phase II

Sporadic inclusion

body myositis

Phase III

Musculoskeletal

diseases

Phase II

Sarcopenia Phase II

Carlumab (CNTO 888) IgG1-κ CCL2/MCP-1 Synthetic Fab (232) Morphosys’s

HuCAL GOLD®

Oncology

(233, 234)

Solid tumors Phase I Janssen

Oncology (235) Prostate cancer Phase II

Pulmonary, and

Respiratory

diseases (236)

Pulmonary fibrosis Phase II

Cixutumumab

(IMC-A12)

IgG1-λ IGF1R Naïve Fab (237) Dyax Oncology

(238–240)

NSCLC, HCC,

solid tumors

Phase II Eli Lilly/ImClone

Foravirumab (CR4098) IgG1-κ Rabies virus

glycoprotein

Immune scFv (241, 242) Crucell Immunology, and

Infectiology (5)

Prophylaxis of

rabies

Phase III Sanofi

Fresolimumab

(GC-1008)

IgG4-κ TGFβ Naïve scFv (243) CAT Oncology, and

immunology

(244–247)

Scleroderma,

metastatic breast

cancer, NSCLC,

fibrosis, focal

segmental

glomerulosclerosis

Phase II Genzyme/Sanofi

Ixekizumab

(LY2439821)/Taltz®
IgG4-κ IL17A Immune Fab (248) Eli Lilly Immunology

(249–252)

RA Phase II Eli Lilly

Psoriasis Approved 2016

PSA Approved 2017

AS Approved 2019

Mapatumumab

(HGS-ETR1)

IgG1-λ TRAIL-1 Naïve scFv (253) CAT Oncology

(254–257)

Multiple myeloma,

colorectal cancer,

NSCLC, NHL,

cervical cancer

Phase II GSK/HGSI

Mavrilimumab

(CAM-3001)

IgG4-λ2 GM-CSFRα Naïve scFv (258) CAT Immunology

(259–261)

RA, GCA,

COVID-19

Phase II MedImmune

/AstraZeneca

(Continued)
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TABLE 2 | Continued

Product name/Brand

name

Antibody format Target antigen Antibody phage display

type

Phage display

technology

Clinical domain Indication(s) Highest

development

phase

Sponsor

company

Moxetumomab

pasudotox

(CAT-8015)/LumoxitiTM

Murine IgG1 dsFv and

a Pseudomonas

exotoxin A

CD22 Affinity maturation of BL22

by phage display (122, 262)

CAT Oncology

(263, 264)

HCL Approved 2018 MedImmune

/AstraZeneca

Namilumab (MT203) IgG1-κ GM-CSF Humanization rat scFv by

Phage display guided

selection using a naïve

human scFV-phage library

(human VH contains rat

CDR3) (265, 266)

Micromet AG/CAT Immunology

(267–269)

RA, AS, psoriasis Phase II Takeda

Necitumumab (IMC-

11F8)/PortrazzaTM
IgG1-κ EGFR Naïve Fab (270, 271) Dyax Oncology

(272–275)

NSCLC Approved 2015 Eli

Lilly/AstraZeneca

Colorectal cancer Phase II

Solid tumors Phase I

Opicinumab (BIIB-033,

Li81)

IgG1-κ LINGO 1 Naïve Fab (276) Dyax Immunology, and

inflammation

(277, 278)

MS, and Optic

neuritis

Phase II Biogen

Tanibirumab

(Olinvacimab,

TTAC-0001)

IgG1-κ-λ VEGFR2 Naïve scFv (279, 280) PharmAbcine Oncology

(281, 282)

Solid tumors Phase I PharmAbcine

Glioblastoma Phase II

Utomilumab

(PF-05082566)

IgG2-λ 4-1BB (CD137) Synthetic Fab (283) Morphosys’s

HuCAL GOLD®

Oncology

(284–288)

Solid tumors Phase I Pfizer

Breast cancer,

B-cell lymphoma,

NHL

Phase II

Ganitumab (AMG 479) IgG1-κ IGF-1R Naïve Fab (289, 290) Dyax Oncology

(291–293)

Metastatic

colorectal cancer

Phase II Amgen

Pancreatic cancer,

metastatic Ewing

Sarcoma

Phase III

AMG 780 IgG2 Ang-1 and−2 Naïve Fab (294) Dyax Oncology (295) Solid tumors Phase I Amgen

Caplacizumab

(ALX-0081)/CabliviTM
Humanized VH-VH.

Genetically linked by a

triple-alanine linker

VWF A1 domain Immune, camelidae-derived

nanobody library (296–298)

Nanobody® Cardiology, and

hematology

(299, 300)

aTTP Approve 2018 Sanofi/Ablynx

(Continued)
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TABLE 2 | Continued

Product name/Brand

name

Antibody format Target antigen Antibody phage display

type

Phage display

technology

Clinical domain Indication(s) Highest

development

phase

Sponsor

company

Ramucirumab

(IMC1121B)/Cyramza®
IgG1-κ VEGFR2 Naïve Fab (301, 302) Dyax Oncology

(303–310)

Tumors

vasculature

Phase I Eli Lilly

Solid tumors Phase II

Breast cancer,

Bladder cancer

Phase III

Gastric cancer,

NSCLC

Approved 2014

Colorectal cancer Approved 2015

HCC Approved 2019

Ranibizumab (Fab-12

variant

Y0317)/Lucentis®

Fab-IgG1-κ VEGFA Affinity maturation of

bevacizumab (311, 312) by

phage display (313)

Genentech Immunology, and

Ophthalmology

(314–319)

nAMD Approved 2006 Roche/Novartis

MEfRVO Approved 2010

DME Approved 2012

CNV Approved 2016

Diabetic

retinopathy

Approved 2017

MOR202 IgG1-λ CD38 Synthetic human Fab (320) Morphosys’s

HuCAL GOLD®

Oncology (321) MM Phase II Morphosys/I-MAB

Biopharma

Darleukin (bifikafusp

alfa, L19-IL2)

L19 scFv-IL2 fusion,

diabody

EDB-FN Semi-synthetic scFv (322) Alessandro Pini’s

library (168, 322)

Oncology

(323, 324)

Solid cancers Phase I/II Philogen

Metastatic

melanoma

Phase III

Fibromun (Onfekafusp

alfa, L19-TNF)

L19 scFv-TNFα fusion,

diabody

EDB-FN Semi-synthetic scFv (325) Alessandro Pini‘s

library

Oncology

(324, 326, 327)

Glioma Phase II Philogen

Metastatic

Melanoma, Soft

tissue sarcoma,

glioma

Phase III

Radretumab

(131 I-labeled L19SIP)

[L19 scFv-IgE-CH4-

Iodine-131

fusion]2

EDB-FN Semi-synthetic scFv (328) Alessandro Pini’s

library

Oncology

(329, 330)

Solid tumors,

lymphomas

Phase II Philogen

(Continued)
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TABLE 2 | Continued

Product name/Brand

name

Antibody format Target antigen Antibody phage display

type

Phage display

technology

Clinical domain Indication(s) Highest

development

phase

Sponsor

company

Raxibacumab/ABthrax® IgG1-λ Anthrax PA,

Bacillus anthracis

Naïve scFv (331) CAT Infectious

diseases (332)

Inhalation anthrax Approved 2012 GSK/HGSI

Otilimab (MOR04357,

GSK3196165)

IgG1-λ GM-CSF Synthetic Fab (333) Morphosys’s

HuCAL GOLD®

Immunology

(260, 334, 335)

OS Phase II GSK

RA Phase III

Seribantumab

(MM-121)

IgG2-λ HER3 Naïve Fab (336, 337) Dyax Oncology

(248, 338, 339)

Ovarian cancer,

breast cancer,

NSCLC

Phase II Sanofi/Merrimack

Tralokinumab

(CAT-354, BAK 1.1)

IgG4-λ IL13 Naïve scFv (340, 341) CAT Immunology

(342, 343)

Asthma, atopic

dermatitis

Phase III MedImmune

/AstraZeneca/LEO

pharma

Ianalumab (VAY736,

B-1239)

Defucosylated IgG1-κ BAFF-R Synthetic Fab (344, 345) Morphosys’s

HuCAL GOLD®/

POTELLIGENT®

technology

Immunology

(346–348)

CLL Phase I Novartis

pSS, MS Phase III

Teleukin (F16-IL2) F16 scFv-IL2 fusion,

diabody

A1 domain of

tenascin-C

Synthetic scFv (349, 350) ETH-2 library (351) Oncology

(352–354)

AML Phase I Philogen

MCC, breast

cancer

Phase II

Xentuzumab (BI

836845)

IgG1-λ IGF-I, IGF-II Synthetic Fab (355) Morphosys’s

HuCAL GOLD®

Oncology

(356–359)

NSCLC, solid

tumors

Phase I Boehringer

Ingelheim

Breast cancer Phase II

Setrusumab (BPS-804,

MOR05813)

IgG2-λ SOST Synthetic Fab (178, 360) Morphosys’s

HuCAL GOLD®

Supportive

therapy (361–363)

OI, HPP,

post-menopausal

women with low

BMD

Phase II Mereo

BioPharma/Novartis

IMC-3C5 (hF4–3C5,

LY3022856)

IgG1 VEGFR-3 Naïve Fab (364) Dyax Oncology (365) Solid tumors Phase I Eli Lilly/ImClone

Aprutumab (BAY

1179470)

IgG1-λ FGFR2 Semisynthetic scFv (366) BioInvent’s

n-CoDeRTM library

(367)

Oncology (368) Solid tumors Phase I Bayer HealthCare

BAY 1093884 IgG2 TFPI Synthetic Fab (369–371) Morphosys’s

HuCAL GOLD®

Hematology (372) Hemophilia A and

B

Phase II Bayer HealthCare

BAY 1213790 IgG1 FXI Naïve Fab (373, 374) Dyax Hematology (375) VTE Phase II Bayer

HealthCare/XOMA

(Continued)
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TABLE 2 | Continued

Product name/Brand

name

Antibody format Target antigen Antibody phage display

type

Phage display

technology

Clinical domain Indication(s) Highest

development

phase

Sponsor

company

CNTO-6785 IgG1-λ IL17A Synthetic Fab (376) Morphosys’s

HuCAL GOLD®

Immunology

(377, 378)

COPD, RA Phase II Janssen

CNTO-3157 IgG4-κ TLR-3 Synthetic Fab (379) Morphosys’s

HuCAL GOLD®

Immunology (380) Asthma Phase I Janssen

Briakinumab (ABT-874) IgG1-λ IL12 and IL23 Naïve scFv (381, 382) CAT Immunology

(383, 384)

MS Phase II Abbott

Psoriasis Phase III

BHQ880 IgG1-λ DKK1 Synthetic Fab (385) Morphosys’s

HuCAL GOLD®

Oncology

(386, 387)

MM Phase II Novartis

BI-1206 (6G11) IgG1 FcγRIIB (CD32B) Semisynthetic scFv (388) BioInvent’s

n-CoDeRTM library

Oncology (389) NHL, CLL Phase I/II BioInvent

Dekavil (F8-IL10) F8 scFv-Interleukin 2

(IL2) fusion, diabody

EDA-FN Synthetic scFv (390) ETH-2 library Immunology (391) RA Phase II Philogen/Pfizer

Gancotamab (MM-302,

C6.5)

scFv-λ targeted

liposomal doxorubicin

HER2 Naïve scFv (392, 393) CAT Oncology

(394, 395)

Breast cancer Phase II Merrimack

Guselkumab

(CNTO1959)/TremfyaTM
IgG1-λ IL23, subunit P19 Synthetic Fab (396, 397) Morphosys’s

HuCAL GOLD®

Immunology

(398–400)

RA, palmoplantar

pustulosis

Phase III Janssen

Psoriasis Approved 2017

Lupartumab amadotin

(BAY 1129980)

Antibody-drug

conjugate (ADC),

IgG1-λ conjugated with

auristatin W derivative

LYPD3 (C4.4A) Semisynthetic scFv (401) BioInvent’s

n-CoDeRTM library

Oncology (401) Solid tumors Phase I Bayer

Lanadelumab

(DX-2930)/Takhzyro®
IgG1-κ pKal Naïve Fab (402) Dyax Immunology

(403, 404)

HAE Approved 2018

Lexatumumab

(HGS-ETR2)

IgG1-λ TRAIL-R2 (DR5) Naïve scFv (79, 253) CAT Oncology

(405, 406)

Solid tumors Phase I HGS

Oleclumab (MEDI9447) IgG1-λ CD73 Naïve scFv (407) CAT Oncology

(408–410)

Solid tumors Phase I AstraZeneca

/MedImmune

NSCLC, breast

cancer

Phase II

Tarextumab

(OMP-59R5)

IgG2-κ Notch2/3 Synthetic Fab (411) Morphosys’s

HuCAL GOLD®

Oncology

(412–415)

Solid tumors Phase I GSK/OncoMed

Pancreatic Cancer,

SCLC

Phase II

(Continued)
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TABLE 2 | Continued

Product name/Brand

name

Antibody format Target antigen Antibody phage display

type

Phage display

technology

Clinical domain Indication(s) Highest

development

phase

Sponsor

company

Elgemtumab (LJM716) IgG1-mk HER3 Synthetic Fab (416, 417) Morphosys’s

HuCAL GOLD®

Oncology

(418–421)

Breast cancer,

gastric cancer

Phase I Novartis

Esophageal

cancer, HNSCC

Phase I/II

Gantenerumab (R1450) IgG1-κ Amyloid-β (Aβ) Synthetic Fab (422) Morphosys’s

HuCAL®-Fab1

library (170)

Neurology (423) Alzheimer’s

disease

Phase III Roche

Vantictumab

(OMP-18R5)

IgG2-λ FZD family

receptor, including

FZD1, FZD2,

FZD5, FZD7, and

FZD8

Synthetic Fab (424) Morphosys’s

HuCAL GOLD®

Oncology

(425, 426)

Breast cancer;

NSCLC,

pancreatic cancer

Phase I OncoMed/Bayer

MEDI4212 IgG1-λ IgE Naïve scFv (427) CAT Immunology (428) Asthma Phase I MedImmune/

AstraZeneca

Drozitumab (Apomab,

PRO95780)

IgG1-λ TRAIL-R2 (DR5) scFv (429) Genentech Oncology

(430–432)

Solid tumors Phase I Genentech

NHL, NSCLC Phase II

Tesidolumab (LFG316) IgG1-λ Complement 5

(C5)

Synthetic Fab (433) Morphosys’s

HuCAL GOLD®

Inflammation, and

Ophthalmology

(434, 435)

Geographic

Atrophy, uveitis,

panuveitis, PNH,

AMD

Phase II Novartis

Emapalumab

(NI-0501)/Gamifant®
IgG1-λ Interferon-gamma Naïve scFv (436) CAT Hematology (437) HLH Approved 2018 NovImmune SA

Imalumab (Anti-MIF,

BAX69)

IgG1-κ MIF Naïve Fab (438) Dyax Oncology

(439, 440)

Colorectal cancer,

malignant ascites,

ovarian cancer

Phase II Baxter/Takeda

Bersanlimab (BI-505) IgG1-λ ICAM1 Semisynthetic scFv (441) BioInvent’s

n-CoDeRTM library

Oncology (442) MM Phase II BioInvent

Orticumab

(BI-204/MLDL1278A)

IgG1-λ oxLDL Semisynthetic scFv (443) BioInvent’s

n-CoDeRTM library

Cardiology (441) Atherosclerosis Phase II BioInvent/

Genentech

PC-mAb (M99-B05) IgG1-κ ChoP Naïve human Fab (444, 445) Dyax Cardiology (446) Myocardial

infarction

Phase II Athera

Biotechnologies/

Dyax

m102.4 IgG1-κ Ephrin-B2 and -B3

receptor binding

domain of the

henipavirus G

envelope

glycoprotein

Affinity maturation of clone

m102 by phage display

(447, 448)

NCI Infectious

diseases (449)

NiV and HeV

infections

Phase I Profectus

Biosciences

(Continued)
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TABLE 2 | Continued

Product name/Brand

name

Antibody format Target antigen Antibody phage display

type

Phage display

technology

Clinical domain Indication(s) Highest

development

phase

Sponsor

company

Cusatuzumab

(ARGX-110)

Defucosylated IgG1-λ CD70 Immunized lama Fab-based

library followed by antibody

humanization using

synthetic libraries with

phage expressing germlined

Fabs (450–452)

SIMPLE

AntibodyTM/

POTELLIGENT®

technology

Oncology

(453, 454)

AML Phase II Argenx/Janssen

Solid tumors and

hematologic

malignancies

Phase I

ARGX-111 Defucosylated IgG1-λ c-MET Immunized lama Fab-based

libraries followed by

antibody humanization by

re-assembling into human

IgG1 and λ light chain

constant domains

(455–457)

SIMPLE

AntibodyTM/

POTELLIGENT®

technology/NHanceTM

technology

Oncology (458) Solid tumors Phase I Argenx

Data current as of May 20, 2020.

TNFAα, Tumor necrosis factor-alpha; RA, Rheumatoid arthritis; PSA, Psoriatic arthritis; AS, Ankylosing spondylitis; CD, Crohn’s disease; JIA, Juvenile Idiopathic Arthritis; UC, Ulcerative colitis; HS, Hidradenitis suppurativa; EpCAM,

Epithelial cell adhesion molecule; HLA-DR, Human Leukocyte Antigen–DR isotype; HL, Hodgkin’s lymphoma; HLA-DR, Human Leukocyte Antigen–DR isotype; MSLN, Mesothelin; NCI, The National Cancer Institute; PD-L1, Programmed

cell death-ligand 1; NSCLC, Non-small cell lung cancer; SCLC, Small cell lung cancers; RCC, Renal cell carcinoma; HCC, Hepatocellular carcinoma; mMCC, metastatic Merkel cell carcinoma; BLyS, B-lymphocyte stimulator; SLE,

Systemic Lupus Erythematosus; CCL11, CC chemokine ligand 11; ActRII, Myostatin/activin type II receptor; CCL2, CC chemokine ligand 2; MCP-1, Monocyte chemoattractant protein 1; IGF1R, Insulin-like growth factor 1 receptor;

TGFβ, Transforming growth factor β; IL17A, Interleukin-17A; TRAIL-1, TNF-related apoptosis- inducing ligand receptor 1; NHL, Non-Hodgkin’s lymphoma; GM-CSFRα, Granulocyte macrophage-colony stimulating factor receptor alpha;

GCA, Giant cell arteritis; COVID-19, novel coronavirus 2019; HCL, Hairy cell leukemia; GM-CSF, Granulocyte macrophage-colony stimulating factor receptor; EGFR, Epidermal Growth Factor Receptor; LINGO-1, Leucine-rich repeat

and Ig containing Nogo receptor interacting protein-1; MS, Multiple sclerosis; VEGFR2, Vascular endothelial growth factor receptor 2; Ang-1 and−2, Angiopoietin 1 and 2; VWF, von Willebrand factor; aTTP, Acquired thrombotic

thrombocytopenic purpure; VEGFR2, Vascular endothelial growth factor-receptor 2; VEGFA, Vascular endothelial growth factor A; nAMD, Neovascular age-related macular degeneration; MEfRVO, Macular edema following Retinal Vein

Occlusion; DME, Diabetic macular edema; CNV, Visual impairment due to choroidal neovascularisation; MM, Multiple myeloma; EDB-FN, Extradomain-B of fibronectin; IL2, Interleukin 2; PA, Protective antigen; OS, Osteoarthritis; HER3,

Human epidermal growth factor receptor 3; BAFF-R, B-cell-activating factor receptor; CLL, Chronic lymphocytic leukemia; ETH, Swiss Federal Institute of Technology Zürich; pSS, Primary Sjögren’s syndrome; AML, Acute myeloid

leukemia; IGF-II, Insulin-like growth factor II; SOST, Sclerostin; OI, Osteogenesis imperfecta; HPP, Hypophosphatasia; BMD, Bone mineral density; VEGFR-3, Vascular endothelial growth factor receptor-3; FGFR2, Fibroblast growth factor

receptor 2; TFPI, Tissue factor pathway inhibitor; FXI, Coagulation factor XI; VTE, Venous thromboembolism; COPD, Chronic obstructive pulmonary disease; TLR-3, Toll-Like Receptor 3; DKK1, Dickkopf 1; EDA-FN, Extra-domain A of

fibronectin; HER2, Human epidermal growth factor receptor 2; LYPD3, Ly6/PLAUR domain-containing protein 3; pKal, Plasma kallikrein; HAE, Hereditary Angioedema, TRAIL-R2, TRAIL receptor 2; DR5, death receptor 5; SCLC, Small

cell lung cancer; HER3, Human epidermal growth factor receptor 3; HNSCC, Head and neck squamous cell carcinoma; Aβ, Amyloid-β; FZD, Frizzled receptor; PNH, Paroxysmal nocturnal haemoglobinuria; AMD, Age-related macular

degeneration; HLH, Hemophagocytic lymphohistiocytosis; MIF, Macrophage migration inhibitory factor; ICAM1, Intercellular adhesion molecule 1; oxLDL, Oxidized low-density lipoprotein; ChoP, Phosphorylcholine; MI, Myocardial

infarction; NiV, Nipah virus; HeV, Hendra virus; HGFR, Hepatocyte growth factor receptor.

F
ro
n
tie
rs

in
Im

m
u
n
o
lo
g
y
|w

w
w
.fro

n
tie
rsin

.o
rg

1
6

A
u
g
u
st

2
0
2
0
|V

o
lu
m
e
1
1
|A

rtic
le
1
9
8
6

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Alfaleh et al. Phage Display Derived Monoclonal Antibodies

FIGURE 5 | Indications for antibodies isolated from various major

company-owned libraries. Clinical domains (cancer vs. non-cancer) of the

approved or in clinical trials antibody-derived phage display.

been remarkably useful in the development of therapeutic mAbs
for oncology at the expense of non-oncology indications (∼70
vs. ∼30%), in which three out of the four approved mAbs are
anti-cancer agents (Figure 5). MorphoSys’s HuCAL R© libraries
have almost equally contributed to both cancer and non-cancer
indications (Figure 5).

The most dominant antibody format of the approved or
under clinical investigations phage-derived antibodies is the
Immunoglobulin G (IgG), yet other formats, such as antibody
conjugates or nanobodies are also included (Table 2). MAbs
isolated from the CAT libraries, for instance, belong to two
IgG subclasses, IgG1 and IgG4, with the majority being IgG1-
λ. MorphoSys’s HuCAL R© platforms show similar trend to CAT
in addition to large number of mAbs from IgG2 subclass. MAbs
from Dyax libraries, on the other hand, belong to IgG1 and IgG2
with the majority being IgG1-κ.

Having more than one mAb against a specific target or
condition is essential especially that patients might acquire
resistance against a prescribed therapeutic mAb, because of the
possible immunogenicity and induction of anti-drug antibodies
(ADAs) (459, 460). As a result, their pharmacokinetic, safety,
and efficacy can be negatively impacted by the presence of
ADAs (459–461). From this perspective, antibody phage display
technology has enabled receptors like mesothelin (MSLN),
human epidermal growth factor receptor 3 (HER3) and
programmed cell death-ligand 1 (PD-L1) to have more than one
specific therapeutic mAb (Table 2).

PHAGE DISPLAY-DERIVED mAbs

As discussed earlier, phage display technology demonstrated its
robustness and reproducibility as a human antibodies discovery
platform. To date, 14 approved mAbs and many others in pre-
clinical development or in clinical trials have been derived using

this technology. These antibodies and antibody fragments are
indicated to treat several disease conditions (Table 2). In this
section, we will discuss in detail all the approved phage display-
derived antibodies to highlight the utility of antibody phage
display technology in the universe of biopharmaceutical industry.

ATEZOLIZUMAB (TECENTRIQTM)

Atezolizumab is a humanized IgG1-κ immune checkpoint
inhibitor targets PD-L1 that commonly expressed on the surface
of antigen presenting cells and tumor cells, and prevents its
binding to the programmed cell death protein 1 (PD-1) receptor
on T cells. PD-L1 is usually released by tumor cells and results in
cancer immune evasion and decreases antitumor T-cell responses
which are usually associated with poor clinical outcomes. Thus,
utilizing atezolizumab could disrupt such T cell suppression
by blocking PD-L1 binding to PD-1 and restore tumor-specific
T-cell immunity in several cancer types (462–473).

In 2016, atezolizumab was approved by the US FDA for
the treatment of urothelial carcinoma (UC) and metastatic lung
cancer. Subsequently, it was granted accelerated approval for the
treatment of advanced bladder cancer in 2017, and metastatic
non-small-cell lung carcinoma (NSCLC) in combination with
bevacizumab and chemotherapy in 2018. More recently,
atezolizumab was approved for several indications, such as in
combination with abraxane for patients with PD-L1-positive
metastatic triple-negative breast cancer (PD-L1–positive TNBC),
in combination with chemotherapy for the initial treatment of
adults with extensive-stage small-cell lung carcinoma (SCLC),
and in combination with abraxane and carboplatin for the initial
treatment of metastatic non-squamous NSCLC (Table 2).

Clinical trials with atezolizumab are currently ongoing for
multiple forms of solid tumors and hematologic malignancies.
As of 2019, there are 249 ongoing trials with atezolizumab
either as monotherapy or in combination with other anti-cancer
agents. Ongoing clinical studies include several indications, such
as NSCLC, UC, renal cell carcinoma (RCC), hepatocellular
carcinoma, TNBC, colorectal cancer, and hematologic
malignancies among other tumor types. Atezolizumab as a
single treatment has shown a significant anti-tumor response in
NSCLC (469, 474–476), UC (466, 477), glioblastoma multiforme
(478), and RCC (479). In a randomized Phase II clinical trial
for NSCLC, atezolizumab single treatment has shown an overall
survival benefit compared to docetaxel (469).

AVELUMAB (BAVENCIO®)

Avelumab is a fully human IgG1-λ immune checkpoint inhibitor
that targets PD-L1 protein and blocks its interaction with PD-1.
Additionally, avelumab is thought to engage the innate immune
system and elicits an antibody-dependent cellular cytotoxic
(ADCC) response against PD-L1-expressing tumors (480).While
ADCC has not been indicated to contribute to the clinical activity
of avelumab (472), preclinical studies suggest a possible role of
ADCC in the activity of avelumab (481, 482).
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In early 2017, Avelumab was approved for metastatic Merkel
cell carcinoma (mMCC) in adults and pediatric patients aged
>12 years as the first approved medication for this indication in
the USA (483). In Europe, the application of avelumabmarketing
authorization for the treatment of mMCC is under regulatory
review, while in Australia, Japan, and Switzerland phase II trial
has been initiated for mMCC (483).

In 2017, the US FDA approved avelumab in the treatment of
locally advanced or metastatic urothelial carcinoma metastatic
urothelial carcinoma based on the phase III JAVELIN Bladder
100 trial (NCT02603432). Additionally, in 2019 the US FDA
approved avelumab for the treatment of advanced RCC in
combination with the tyrosine kinase inhibitor, axitinib. The
approval was based on the phase III JAVELIN Renal 101
trial (NCT02684006).

Avelumab is under phase III trial in several countries for
breast cancer, head and neck cancer, NSCLC, ovarian cancer, B
cell lymphoma, and gastric cancer. There are many other phase
II clinical trials underway globally for glioblastoma, intestinal
cancer, nasopharyngeal cancer, endometrial cancer, recurrent
respiratory papillomatosis, and thymoma (483).

MOXETUMOMAB PASUDOTOX-TDFK
(LUMOXITITM)

Moxetumomab pasudotox-tdfk (CAT-8015) is a novel
recombinant immunotoxin that consists of a recombinant
murine scFv genetically fused to a truncated pseudomonas
exotoxin (PE38), which targets CD22 antigen that is expressed on
the surface of many types of malignant B cells including hairy cell
leukemia (HCL) (263, 484). This mAb is the second generation
of BL22/CAT-3888, whereby the CDRH3 has been affinity
matured by phage display to increase the affinity by 14-fold
toward CD22 (485, 486). After binding to CD22, moxetumomab
pasudotox-tdfk is internalized, and the Pseudomonas exotoxin
catalyzes inhibition of protein synthesis by ADP-ribosylation of
elongation factor 2, resulting in apoptotic cell death (263).

HCL is a rare chronic disease that accounts for 2% of all
leukemias with a 4:1 male-to-female predominance (487, 488).
Outcomes with standard treatment are usually positive in 78%
of patients however, relapses occur in ∼50% of the patients
(489). In 2018, the US FDA approved moxetumomab pasudotox-
tdfk under the trade name of LumoxitiTM (AstraZeneca
Pharmaceuticals LP) to be utilized therapeutically for adult
patients with relapsed or refractory HCL (R/R HCL) that no
longer responding to other therapies, including purine analog
(263, 490). Lumoxiti received US Orphan Drug designation and
the FDA granted the application Fast Track and Priority Review
designations because of the severity and rarity of the disease
and was the first new therapy granted approval for HCL since
cladribine in 1993.

Currently, the national cancer institute is sponsoring a phase
I clinical trial to assess the safety of moxetumomab Pasudotox-
tdfk in combination with rituximab in subjects with HCL or HCL
variant (NCT03805932). Furthermore, an active phase III clinical
trial (NCT04125290) aims to evaluate the post-marketing safety

of moxetumomab pasudotox-tdfk for old patients (≥65 years),
and/or patients with moderate renal impairment.

NECITUMUMAB (PORTRAZZATM)

Necitumumab is a fully human IgG1-κ mAb which selectively
binds the epidermal growth factor receptor (EGFR). It binds
to domain III of the extracellular region of EGFR and blocks
ligand binding. Necitumumab prevents the proliferation of
several cancer cell lines by affecting downstream signaling of
the EGFR receptor involved in cell growth and angiogenesis
(270, 491) which are crucial for promoting growth and spread
of cancerous cells. Specifically, it inhibits downstream signaling
pathways, such as mitogen-activated protein kinase (MAPK)
and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3k)/Akt
activation which in turn inhibit cancer cell proliferation,
differentiation, adhesion, migration and survival (492–494).
EGFR overexpression has been found in about 40–80% of lung
cancer patients as well as in many other cancers including
squamous NSCLC (495, 496).

Necitumumab was firstly approved by US FDA for the
treatment of metastatic squamous NSCLC combined with
gemcitabine and cisplatin in 2015 (497). Clinical trials for
necitumumab were initiated in 2004 (498), and currently, it is
being tested in 6 clinical trials (NCT02496663, NCT00982111,
NCT02789345, NCT00981058, NCT03944772, NCT03387111)
mostly on NSCLC.

ADALIMUMAB (HUMIRA®)

Adalimumab is the first phage display human IgG1-κ derived
mAb developed by humanization with a “guided selection
method” involving a mouse mAb (180). In 2002, adalimumab
was the first human antibody derived from phage display
that was granted approval for therapy by US FDA (Table 2)
(172). Adalimumab is the biggest selling drug worldwide with
$19.1 billion in 2019 and $82.5 billion cumulatively between
2014 and 2018 (7, 8). It shows very high specificity and sub-
nanomolar affinity as it binds with tumor necrosis factor (TNF)
and inhibits TNF receptors (TNF-R1 and -R2) binding and
activation (499). This inhibition pathway leads to a wide range
of anti-inflammatory responses as TNF is a key regulator for the
initiation of proinflammatory cytokine cascade which ultimately
leads to cell activation, inflammation, fever, and apoptosis (500).

Adalimumab was firstly indicated as a therapeutic option
for some moderate and severe types of rheumatoid arthritis
(RA) as monotherapy or in conjunction with MTX or
other anti-rheumatic medications. Nowadays, adalimumab is
one of the most prescribed medicines in immune-mediated
disorders including RA (approved in 2002), psoriatic arthritis
(PsA) (approved in 2005), ankylosing spondylitis (approved
in 2006), Crohn’s disease (approved in 2010), psoriasis and
juvenile idiopathic arthritis (approved in 2008), ulcerative colitis
(approved in 2012), hidradenitis suppurativa (HS) (approved
in 2015), uveitis (approved in 2016), and fingernail psoriasis
(approved in 2018). Currently, there are 118 clinical trials listed

Frontiers in Immunology | www.frontiersin.org 18 August 2020 | Volume 11 | Article 1986

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Alfaleh et al. Phage Display Derived Monoclonal Antibodies

in ClinicalTrials.gov for adalimumab, and these studies ranging
between phase I to phase IV.

RAXIBACUMAB (ABTHRAX®)

Raxibacumab is a human IgG1-λ humanmAb that was produced
from a naive human scFv phage display library licensed
from Cambridge Antibody Technology (CAT) by Human
Genome Sciences (HGS), which has been later acquired by
GlaxoSmithKline (GSK) (331, 501). In 2012, raxibacumab was
first granted FDA approval under the trade name of Abthrax R©

to be indicated as a prophylaxis for the treatment of inhalational
anthrax in combination with some antibiotics. Anthrax infection
is caused by bacteria called Bacillus anthracis (B. anthracis)
through skin abrasions, inhalation or ingestion, where its spores
are usually phagocytosed by macrophages (502). Moreover,
B. anthracis is categorized as a potential biological weapon
according to the US Centers for Disease Control and Prevention
(CDC) (503).

B. anthracis secretes the lethal toxin (LT) and the edema toxin
(ET). The LT is formed when the lethal factor (LF) interacts with
the protective antigen (PA), which a cell-binding protein, while
the ET is formed by an interaction between the PA and the edema
factor (EF) (504). Raxibacumab targets the PA in B. Anthracis
with high affinity to the LT (505) and acts through neutralizing
PA with a nanomolar concentrations (IC50 is ∼0.21 nm and Kd
is∼2.78 nM). The mechanism of action of raxibacumab depends
on the downregulation of the cellular uptake of toxins to prevent
the development of lethal complexes (332).

Currently, in the US, raxibacumab is not only indicated for
the prophylaxis of inhaled anthrax but also when alternative
therapeutic options do not exist or are not suitable, such
as treatment for an antibiotic-resistant strain of B. anthracis.
Raxibacumab monotherapy of antibiotic-resistant B. anthracis
infection suggests a benefit for up to 6 days post-exposure
(NCT00639678) (506).

BELIMUMAB (BENLYSTA®)

Belimumab is a human IgG1-λmAb that was discovered through
a collaboration between HGS and CAT. Belimumab recognizes
and binds to the soluble B lymphocyte stimulator (BLyS),
preventing its interaction with its receptors (507). BLyS is a
critical factor in the selection, maturation, and survival of B
cells (508). BLyS is produced by a wide variety of cell types,
including myeloid lineage cells, activated T cells, malignant B
cells, and stromal cells (509–513). BLyS has three receptors that
are expressed predominantly on B lineage cells, and some are
found on subsets of activated T cells and dendritic cells (514, 515).

Patients with systemic lupus erythematosus (SLE) have
elevated levels of BLyS, which correlate with high levels of
autoantibodies and disease activity (516). Belimumab was FDA
approved in 2011 and considered as the first biological drug,
immunosuppressant, approved for the treatment of SLE. Long-
term belimumab treatment causes a significant reduction of most

plasma cells that are responsible for autoantibodies production
(517, 518).

Belimumab is currently being tested in seven active clinical
trials. These include a phase IV clinical trial to identify the side
effects of belimumab when given with other SLE medications in
adults with active SLE (NCT01705977). Also, in a Phase II study
to evaluate the efficacy and safety of belimumab as a maintenance
therapy in adults with refractory idiopathic inflammatory
myositis (IIM) (NCT02347891). It is also being investigated in
Phase II studies to evaluate its efficacy in combination with
rituximab in adults with systemic SLE (NCT02426125) and in
subjects with primary Sjogren’s syndrome (NCT02631538).

RAMUCIRUMAB (CYRAMZA®)

Ramucirumab is a fully human IgG1-κ mAb that inhibits
vascular endothelial growth factor receptor-2 (VEGFR-2), thus
inhibiting downstream signaling and preventing angiogenesis
within tumors (519). In the adults, VEGFR-2 is predominantly
expressed on vascular endothelial cells of blood vessels (520).
Increased levels of VEGFR-2 have been detected in mammary,
colorectal cancer, NSCLC, UC, and several other cancers (521).

The FDA approved ramucirumab in 2014 for use in the
second-line setting as a single-agent treatment for advanced
or metastatic gastric cancer or gastroesophageal junction
adenocarcinoma (522). Also, in 2014, ramucirumab was
approved in combination with docetaxel, for treatment of
metastatic NSCLC (523). In 2015, it was approved for
use with FOLFIRI as a second-line treatment of metastatic
colorectal cancer (524). In 2019, ramucirumab became the
first FDA-approved biomarker-driven therapy in patients with
hepatocellular carcinoma for people who have high levels of
alpha-fetoprotein (525).

Currently, ramucirumab is being investigated in 19 different
clinical trials for several other indications including a phase
II randomized trial in combination with mFOLFIRINOX in
patients with advanced pancreatic cancer (NCT02581215), phase
III study in combination with chemotherapy treatment
in previously untreated patients with HER2-negative,
unresectable, locally-recurrent, or metastatic breast cancer
(NCT00703326), and phase III trial in combination with
docetaxel in patients with locally advanced or unresectable or
metastatic UC (NCT02426125).

GUSELKUMAB (TREMFYATM)

Guselkumab is a human IgG1-λ mAb that neutralizes
interleukin-23 (IL-23) functions (526). IL-23 is a pleiotropic,
heterodimeric cytokine, consisting of a p19 and a p40 subunits,
which are primarily secreted by antigen presenting cells, such
as macrophages and dendritic cells (527). IL-23 belongs to
the IL-6/IL-12 family of cytokines that have a crucial role in
numerous immune responses (528). IL-23 specifically induces
Th-17 proliferation and the subsequent release of IL-17 cytokine,
which triggers inflammatory and autoimmune disorders, such
as psoriasis (529). Guselkumab binds to IL-23p19 subunit
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with high affinity and specificity, inhibiting interaction with its
receptor on the cell surface of certain immune cell subsets, most
importantly on Th17 cells (529, 530). Such activity is responsible
for preventing the activation of the IL-23 receptor and the
subsequent production of several proinflammatory cytokines.

Guselkumab has demonstrated safety and efficacy in several
clinical trials including a phase II proof-of-concept trial, which
demonstrated efficacy in all endpoints linked to health-related
quality of life as well as joint signs and symptoms, and skin
disease (399, 400, 531). Patients from this study have also
experienced a dramatic decrease in IL-17A, IL-17F, and C-
reactive protein in their serum to normal levels compared with
healthy controls, highlighting the significance of suppressing the
IL-23/Th17 pathway for the treatment of skin and joint disorders
(531). This encouraging trial has led to two pivotal phase III
clinical trials, DISCOVER-1 (NCT03162796) and DISCOVER-2
(NCT03162796), where patients had experienced an improved
joint, skin, physical function and health-related quality of life
(532, 533). In 2017, this mAb has received approval from the
US FDA to treat adults with moderate to severe plaque psoriasis
who are candidates for systemic therapy or phototherapy (398)
and is currently being evaluated in six active clinical trials
at different phases. These include the evaluation of efficacy,
safety and tolerability in patients with moderate to severe HS
(NCT03628924) as well as patients with chronic plaque-type
psoriasis refractory to ustekinumab treatment (NCT03553823).

LANADELUMAB (TAKHZYRO®)

Lanadelumab is a fully human IgG1-κ mAb that inhibits
the proteolytic activity of plasma kallikrein (PK) enzyme. PK
enzyme induces the proteolysis of the coagulation factor XII
and prekallikrein (pKal), and a non-enzymatic high-molecular-
weight kininogen (HMWK) to generate bradykinin in response
to tissue injury and pathophysiological stimuli (534–536). The
increased level of bradykinin leads to angioedema episodes, an
allergic skin swelling condition, through its excessive vasodilation
effect (537, 538). This syndrome is a clinical feature of patients
with hereditary angioedema (HAE), in which, a mutation in the
SERPING1 gene leads to a reduced expression of C1 protein that
lessens its function as a bradykinin regulator (539). Furthermore,
certain mutations in the F12 gene result in the production of
factor XII with increased activity leading to excessive production
of bradykinin (540).

In phase I clinical trial, lanadelumab demonstrated a favorable
safety profile with a potential inhibitory effect on HMWK
and a long-term prevention of HAE attacks, enabling further
evaluation in a larger trial (541, 542). Accordingly, a phase III
randomized clinical trial (NCT02586805) evaluated the efficacy
and safety of lanadelumab to prevent HAE attacks in patients
with symptomatic HAE due to C1 inhibitor deficiency (C1-
INH-HAE) disorder (403). In this trial, 150 or 300mg were
evaluated in subcutaneous injections setting, given every 2–4
weeks over a 6-months period. The findings from this study have
demonstrated the efficacy of lanadelumab in preventing HAE
attacks, leading to its approval by the US FDA in 2018 for the

treatment of patients with type I or II HAE. In 2018, lanadelumab
has received the US FDA approval for the prevention of the
angioedema attacks in patients with hereditary angioedema.
Currently, it is being evaluated in two active phase III clinical
trials to prevent hereditary angioedema attacks in pediatric
patients as well as in adolescent and adult patients suffering
from acquired angioedema (AAE) due to C1-INH deficiency
(NCT04070326 and NCT04206605).

IXEKIZUMAB (TALTZ®)

Ixekizumab is a humanized IgG4-κ mAb that targets IL-17A
cytokine, which is a member of IL-17 cytokines family mainly
produced by CD4-Th17 cells. Several other immune cells residing
in the gut, lung and skin, including a subset of natural killer
(NK) cells, Paneth cells and neutrophils also produce IL-17A
in response to IL-23 cytokine stimulation (248, 543). The main
function of Th17 cells is to clear pathogens not properly handled
by the Th1 or Th2 immune response (544, 545). The infiltration
of Th17 cells under the skin and excessive production of IL17A
lead to the pathophysiology of psoriasis and PsA (546). The
latter is an inflammatory disease with articular, peri-articular
and extra-articular features that leads to skin and joint damage,
and loss of functions (547). Several attributes lead to this
condition including immunologic, genetic and environmental
factors where a combination of two or more of these factors
trigger the inflammatory immune response (548–551). There
has been growing evidence suggesting the involvement of IL-17
signaling in PsA pathogenesis (552), which involves a persistent
activation of Th-17 cells in response to synovial or skin antigens
leading to tissue destruction and joint remodeling (552).

Several randomized clinical trials have assessed the efficacy of
ixekizumab in patients with PsA achieving a primary endpoint of
American College of Rheumatology 20% improvement (ACR20)
(NCT01624233, NCT02349295, NCT01695239, NCT02584855).
Moreover, ixekizumab has been proven to be superior to
conventional rheumatic drugs as well as TNF-α inhibitors in
two phase III clinical trials, indicating its safety and efficacy in
delaying disease progression and supporting its use as a front-line
therapy for PsA (249, 553, 554).

Lxekizumab was initially approved in 2016 by the US FDA for
moderate to severe plaque psoriasis treatment in adult patients
who are eligible for systematic therapy or phototherapy. The
FDA approval was further expanded in 2017 for the treatment
of adults suffering from active PsA. Furthermore, the US
FDA approved Ixekizumab in 2019 for the treatment of active
ankylosing spondylitis in adults. In early 2020, Ixekizumab has
also granted the US FDA approval for the treatment of pediatric
patients (ages 6 to 18) with moderate to severe plaque psoriasis
who are also eligible for systemic therapy or phototherapy.
Currently, ixekizumab is being evaluated in four active clinical
trials. These include a phase IV clinical trial assessing the
efficacy of ixekizumab in Japanese patients with generalized
pustular psoriasis and erythrodermic psoriasis (NCT03942042).
In addition, this mAb is also being tested in Chinese patients who
have moderate to severe plaque psoriasis (NCT03364309).
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RANIBIZUMAB (LUCENTIS®)

Ranibizumab is a Fab antibody fragment derived from a
recombinant humanized IgG1-κ mAb (murine Mab A.4.6.1)
(555). Ranibizumab was created from the same parent mouse
antibody as bevacizumab to target VEGF-A, both bind
effectively and neutralize VEGF-A isoforms (555). VEGF-A and
its receptors VEGFR-1 and VEGFR-2 promote angiogenesis
throughout the body and represent the primary mediators of
degenerative ocular conditions, such as diabetic retinopathy,
retinal vein occlusions, age-related macular degeneration (AMD)
including wet-AMD, the leading cause of blindness in the
elderly population (556, 557). Ranibizumab has smaller size than
bevacizumab and readily penetrates all layers of the retina after
intravitreal injection (558). Importantly, ranibizumab is thought
to be safer on normal healthy cells that express VEGF-A as it
has shorter serum half-life and faster system clearance (559). The
US FDA approved ranibizumab for the treatment of wet AMD
in June 2006, macular edema following retinal vein occlusion
in 2010, diabetic macular edema in 2012, diabetic retinopathy
in people with diabetic macular edema in 2015, and myopic
choroidal neovascularization in 2017.

Currently, there are 18 active clinical trials to evaluate
ranibizumab as single or in combination with other treatments.
One phase IV clinical study is comparing the safety and efficacy
between ranibizumab as monotherapy and in combination
with R:GEN (selective retina therapy) in clinically significant
diabetic macular edema (NCT03759860). Also, another phase
IV clinical study is comparing intravitreal ranibizumab and
triamcinolone acetonide combination therapy vs. ranibizumab
monotherapy in patients with polypoidal choroidal vasculopathy
(NCT02806752). Long-term efficacy and safety of intravitreal
ranibizumab compared with laser ablation therapy in patients
who were treated for retinopathy of prematurity (ROP)
(NCT02640664) is in phase III stage.

CAPLACIZUMAB (CABLIVITM)

Caplacizumab is a humanized bivalent single-variable
domain immunoglobulin (VHH) that consists of two
identical, genetically linked, humanized building blocks
(298). Caplacizumab was generated for the treatment of
platelet adhesion diseases, such as acquired thrombotic
thrombocytopenic purpura (aTTP) (298). Caplacizumab binds
specifically to human von Willebrand factor (vWF) A1 domain,
preventing its binding to the platelet glycoprotein 1b receptor
(298). Acquired TTP is a rare blood disorder characterized by
thrombosis in small blood vessels and low platelet count. It
is caused by a severe deficiency in the vWF-cleaving protease
(ADAMTS13) primarily due to acquired autoantibodies (560).
Lacking ADAMTS13 enhances the accumulation of large
multimers of vWF, vWF–platelet aggregation, and microvascular
thrombosis of TTP, leading to low platelet count, ischemia, and
organ dysfunction (560, 561).

Clinical studies showed that treatment with caplacizumab
transiently reduced vWF levels and normalized platelet count
compared with placebo (562). Target-bound caplacizumab is

thought to be metabolized within the liver, while unbound
caplacizumab is cleared renally (299). Caplacizumab received its
first approval in September 2018 in the EU for the treatment of
adults experiencing aTTP in conjunction with plasma exchange
and immunosuppression (corticosteroids and increasingly also
rituximab) (11). Caplacizumab is the first nanobody-based
medication to receive approval in the US in 2019, for patients
aged ≥18 years experiencing aTTP (11). Currently, one active
phase III clinical trial (NCT02878603) is evaluating the long-
term safety and efficacy of repeated use of caplacizumab in
aTTP patients.

EMAPALUMAB (GAMIFANT®)

Emapalumab is a human IgG1-λ mAb that neutralizes interferon
gamma (IFNγ) activities and inhibits its binding to the interferon
receptors (IFNγR1 and IFNγR2). It binds with high affinity
to free and receptor-bound IFNγ, preventing the downstream
signaling of JAK/STAT pathway and the subsequent cytokine
storm release (563, 564). This blockade results in the attenuation
of the adaptive and innate immune responses, which increase the
susceptibility to infections (564). It has been primarily developed
to treat patients with haemophagocytic lymphohistiocytosis
(HLH) disorder refractory to conventional therapy (565, 566).
HLH is a rare pathologic immune activation syndrome with
excessive inflammation that occurs as a familial or sporadic
disorder due to a variety of immune triggers (567).

A phase I dose-escalation clinical trial investigating the safety
in healthy subjects, revealed a favorable safety profile warranting
further clinical development (NCT01459562). Emapalumab
was then evaluated in an open-label phase II/III trial in 34
pediatric patients with a confirmed HLH disorder. Emapalumab
was administered with dexamethasone intravenously every 3–
4 days for a minimum of 4 weeks and up to 8 weeks
with a primary endpoint of overall response rate (ORR)
(NCT01818492). Patients have experienced a response rates
above 70 with a safe and tolerable profile and mild-moderate
infusion-related reactions in 27% of the patients confirming
its favorable outcomes (568). This trial has led to the US
FDA approval of emapalumab in 2018 as an IFN blocking
molecule for pediatric and adult patients with HLH refractory to
conventional therapy (dexamethasone, etoposide, and intrathecal
methotrexate) (565, 566). Currently, the efficacy of emapalumab
is being evaluated in four active phase II/III clinical trials
in patients with primary and secondary HLH (NCT03312751,
NCT03985423, NCT01818492, NCT03311854). In addition, the
safety and efficacy of emapalumab are also being tested in
COVID-19 patients, with a primary endpoint of reducing the
number of patients who need invasive mechanical ventilation or
extracorporeal membrane oxygenation (NCT04324021).

CONCLUSION AND FUTURE PROSPECTS

Antibody phage display is a versatile, reproducible, and
functional technology that can be utilized to isolate antibody
candidates for numerous disease indications. While it is the
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most common and well-established form of display technologies,
the success of isolating useful antibodies is highly dependent
on the quality and the nature of the targeted antigen used
in biopanning and the size and quality of the library. By
performing cell-based biopanning, antibody phage display can
be used to identify new cell biomarkers, isolate antibodies
that can discriminate between different antigen epitopes and
conformations, or identify antibodies against antigens that are
not available in pure form (74).

Phage display technology has been proven to be a
powerful human mAb discovery platform. Not long ago
the commercial use of phage display was restricted to a few
selected biopharmaceutical companies with rights to phage
display intellectual property (569). This explains why most of the
approved mAbs or those in clinical trials sourced from phage
display libraries belong to commercial entities with rights to the
technology. However, most of the key patents covering phage
display technology have expired in Europe and the US (569).
Consequently, patent expiration should encourage academic and
biotech start-ups to develop their own libraries to generate and
develop more antibodies for translation to the clinic.

By reflecting on the collected data, antibody phage display
has contributed to the isolation of antibodies for the treatment

of many disease indications. There are 14 FDA approved phage
display-derived antibodies and antibody fragments, and many
others in clinical trials. Many research institutes, start-ups and
industrial laboratories are continually developing methods for
the design, construction and screening of developable antibody-
phage libraries. Further improvements are expected to be
achieved in the near future as this technology contributes
significantly toward research, diagnosis, and therapy.
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