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Abstract

Ocean viruses are abundant and infect 20–40% of surface microbes. Infected cells, termed virocells, are thus a predominant

microbial state. Yet, virocells and their ecosystem impacts are understudied, thus precluding their incorporation into

ecosystem models. Here we investigated how unrelated bacterial viruses (phages) reprogram one host into contrasting

virocells with different potential ecosystem footprints. We independently infected the marine Pseudoalteromonas bacterium

with siphovirus PSA-HS2 and podovirus PSA-HP1. Time-resolved multi-omics unveiled drastically different metabolic

reprogramming and resource requirements by each virocell, which were related to phage–host genomic complementarity and

viral fitness. Namely, HS2 was more complementary to the host in nucleotides and amino acids, and fitter during infection

than HP1. Functionally, HS2 virocells hardly differed from uninfected cells, with minimal host metabolism impacts. HS2

virocells repressed energy-consuming metabolisms, including motility and translation. Contrastingly, HP1 virocells

substantially differed from uninfected cells. They repressed host transcription, responded to infection continuously, and

drastically reprogrammed resource acquisition, central carbon and energy metabolisms. Ecologically, this work suggests that

one cell, infected versus uninfected, can have immensely different metabolisms that affect the ecosystem differently. Finally,

we relate phage–host genome complementarity, virocell metabolic reprogramming, and viral fitness in a conceptual model to

guide incorporating viruses into ecosystem models.

Introduction

Microbial metabolisms underlie ocean biochemistry [1],

driving elemental fluxes and nutrient flow on a global

scale. Viruses impact these processes through mortality,

horizontal gene transfer, and the reprogramming of micro-

bial energy-generating and matter-transforming metabo-

lisms [2–4]. Because ~20–40% of surface ocean microbes

are infected at any given time [2], infected cells—termed

virocells [5–7]—are a major ecosystem feature. As virocells

are metabolically and physiologically distinct from unin-

fected cells [8, 9], they occupy distinct ecological niches.

Yet, little is known about how bacterial virocells are

metabolically reprogrammed by their viruses (phages) to
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fuel phage energy and resource demands, or how this

impacts cellular outputs and ecosystem functions. Deter-

mining and predicting the ecological implications of phage

infections is a challenge in microbial ecology, but is the

next step needed to better integrate phages into ecosystem

models [10].

Metagenomics has enabled us to resolve population-level

viral biodiversity globally [11–21], where “population” has

been resolved from extensive genetics-grounded studies in

cyanophages [22, 23], Pseudoalteromonas phages [24],

reference-database phages [25], and from viromics-enabled

studies [21]. Metagenomics answers “who is there?”.

However, we cannot yet link this diversity to the con-

sequences of infection, including addressing “what are they

doing?” and “how are they doing it?”. This knowledge gap

is closing with model-system-based, phage–host experi-

ments where time-resolved genome-wide transcriptomics,

proteomics, and metabolomics are unveiling infection

characteristics in both environmental and medical systems

[26–32]. These findings consistently demonstrate that phage

gene expression has a predictable program whereby

expressed genes fall into similar temporally regulated

categories regardless of the host [26, 27, 30, 31]. However,

host-specific responses to infection vary widely across

phage–host pairs [27, 29–31, 33], and can modulate phage

resistance. Such work shows that host resistance in nature

derives not just from individual mutations or isolated

mechanisms, such as mutations in phage receptors or host

defenses against newly acquired phage DNA (e.g., restric-

tion modification enzymes, CRISPRs, BREX, DISARM)

[34]. Instead, there is an intracellular battle between phage

and host, whereby a phage can be challenged simulta-

neously at multiple steps of the infection cycle, from

adsorption through cell lysis [9, 30, 31, 33]. These new

‘omics approaches help to bridge the recognized gap

between known sequences and unknown virocell biology

[5, 9] by unveiling both the variety of strategies governing

virocell responses and, in turn, what specific measurements

could be done to quantify virocell ecosystem footprints.

Thus, knowledge of the virocell at the molecular scale is

foundational for understanding the biochemical impacts of

viral infection, which together is critical knowledge for

modeling the ecological role of virocells in nature [10].

Here we employ time resolved, genome-wide tran-

scriptomics, and proteomics to better understand virocell

metabolic reprogramming and ecology through Pseu-

doalteromonas phage–host interactions. The marine bac-

terium Pseudoalteromonas and its phages offer a tractable

phage–host model system to study virocell ecology because

genomic and life history traits of several Pseudoalter-

omonas hosts and phages have been described [35–39].

As marine Pseudoalteromonas spp. are among the most

abundant particle-associated taxa in the ocean [40, 41] and

the heterotrophic genus most predictive of carbon export

from the surface to deep ocean [42], their phages likely

impact global carbon cycling in undetermined ways. To

better understand the role Pseudoalteromonas virocells may

play in ecosystem processes, we followed infection of

Pseudoalteromonas sp. str. 13–15 [24] (herein “host”) by a

podophage (PSA-HP1, herein “HP1”) and a siphophage

(PSA-HS2, herein “HS2”) [24] independently via time-

resolved transcriptomics and proteomics. We assessed

phage and host response to one another, and aggregated the

findings into a new conceptual model as a baseline for

quantifying potential ecosystem footprints and incorporat-

ing these processes into virus-explicit ecosystem models.

Materials and methods

Growth and infections

Growth and infection were conducted as described pre-

viously [24, 43–45]. Briefly, Pseudoalteromonas sp 13–15

cells were grown in an orbital shaker shaking at 150 rpm at

21 °C in 1%Z+ CNP medium (26 g/L sea salts, 1 g/L yeast

extract, 5 g/L proteose, 8.3 mM ammonium sulfate, 0.15

mM phosphoric acid, and 11 mM glucose added after

autoclaving). A colony was grown overnight in 10 mL

before 5 × 108 cells were transferred to 200 mL in 1 L flasks

and grown to mid-to-late-exponential phase. Then, 1 × 108

cells were independently infected with PSA-HP1 or PSA-

HS2 at a multiplicity of infection (MOI) of 0.1 for

adsorption kinetics and initial one-step growth curves, or at

MOI~5 for the time-resolved ‘omics experiments. Adsorp-

tion kinetics samples were taken immediately and every

5 min for 25 min. One-step growth curves samples were

incubated for 15 min for phage adsorption, and then diluted

100-fold in 250 ml flasks for initial one-step growth curves,

or tenfold in 1 L bottles for ‘omics sampling, as previously

described [30, 31]. Cells were spread on Zobell plates and

incubated for 2 days at room temperature (RT). Phages were

enumerated via the top-agar plating technique [46]: cells

were removed via 0.2-µm filtration, filtrate was serial dilu-

ted in artificial seawater (26 g/L sea salts) and mixed with

0.4 ml of bacterial overnight culture and 3.5 ml molten soft

agar (0.6% low melting point agarose) before dispersing on

agar plates, which were incubated 1–2 days at RT.

Genome-wide transcriptomics

From diluted infections or controls, 25 ml were collected in

biological triplicates and pelleted for 11 min at 20,000 g,

and supernatant was discarded before flash-freezing in

liquid N2. RNA was extracted using the Zymo Quick RNA

Mini kit (R1054). RNA concentration and integrity were
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assessed using the Agilent 2100 Bioanalyzer RNA 6000

Pico assay with the prokaryote protocol. Ribo-Zero was

used for removing rRNA and libraries were prepared with

TruSeq Stranded Total RNA HT with total RNA starting

material of 100 ng per sample and ten cycles of Polymerase

Chain Reaction (PCR) for library amplification. Libraries

were quantified using KAPA Biosystem’s next-generation

sequencing library quantitative-PCR kit and run on a Roche

LightCycler 480 real-time PCR instrument. The libraries

were then multiplexed with other libraries and together

prepared for sequencing on the Illumina HiSeq sequencing

platform utilizing a TruSeq paired-end cluster kit, v4, and

Illumina’s cBot instrument to generate a clustered flow cell

for sequencing. Glow cell sequencing was performed on the

Illumina HiSeq2500 sequencer using HiSeq TruSeq SBS

sequencing kits, v4, following a 2 × 100 indexed run recipe.

Sequencing depth per sample ranged from 0.1 to 24 mil-

lion reads (mean= 16.9 million reads, median= 16.7 million

reads) (Supplementary Dataset, Table 3). Raw reads were

filtered with the default JGI pipeline using BBtools v36.21 to

remove all reads containing ≥ 2 “N” bases, an average read

quality score of <10, read length <49 bp, containing known

Illumina artifacts, or mapping to PhiX, human, cat, dog and

mouse genomes with ≥93% identity. Reads were trimmed to

remove known Illumina artifacts in 5′ and 3′ ends, and when

the 3′ base quality score was <6 on 3′. Filtered reads were

mapped to Pseudoalteromonas sp. strain 13–15 and phages

PSA-HP1 and PSA-HS2 (downloaded from GenBank on 11

January 2017, 6 December 2014, and 21 November 2014,

respectively) (Supplementary Fig. S1), using BBmap v36.84

(options ambiguous= toss), a threshold of 90% nucleotide

identity, and maximum insertion/deletion size= 4. Feature-

Counts counted the number of fragments (read pairs) that

mapped completely within each gene. FeatureCounts also

computed read strandedness (i.e., whether reads were origi-

nated from the reverse strand instead of from both): reads

mapping to the reverse strand divided by those mapping to

both strands. The threshold was >95%, which ensures robust

comparison across genes and libraries.

Read normalization and differential expression analyses

were performed following previous studies [30, 31]. Briefly,

host and phage reads (Supplementary Dataset, Tables 4–6)

were normalized separately by dividing the number of reads

by the gene length and sequencing depth (i.e., FPKM [47]).

Phage genes were clustered by temporal expression profile

(from z-score transformed log2FPKM values) using Pear-

son’s correlation and resampling using the clusterStab R

package [48] as previously described [49]. Temporal clus-

ters were manually adjusted through plotting. Differential

expression (DE) was calculated between infected and

uninfected samples by time point using edgeR [50]. Genes

with p values < 0.01 and false discovery rate < 0.05 were

considered DE. Fold change (log2FC) was calculated as the

expression difference between infected and control, after

accounting for fraction of infected cells (Supplementary

Dataset, Table 7). Overexpression is when log2FC > 0 and

underexpression when log2FC < 0. Heatmaps were gener-

ated with the R package pheatmap (http://CRAN.R-project.

org/package= pheatmap).

Genome-wide proteomics

From diluted infections or controls, 80 mL were collected in

biological triplicates and pelleted for 8 min at 20,000 g.

The supernatant was discarded prior to flash-freezing with

liquid N2. Proteomes had low quantity and required filter-

enrichment (see Supplementary Methods). A Waters nano-

Acquity M-Class dual pumping UPLC system (Milford, MA)

was configured for on-line trapping of a 5 µL injection at

3 µL/min with reverse-flow elution onto the analytical column

at 300 nL/min. Columns were packed in-house using 360 µm

o.d. fused silica (Polymicro Technologies Inc., Phoenix, AZ)

with 5-mm sol–gel frits for medium retention and contained

Jupiter C18 medium (Phenomenex, Torrence, CA) in 5 µm

particle size for the trapping column (150 µm i.d. × 4 cm long)

and 3 µm particle size for the analytical column (75 µm i.d. ×

70 cm long). Mobile phases consisted of (A) 0.1% formic acid

in water and (B) 0.1% formic acid in acetonitrile with the

following gradient profile (min, %B): 0, 1; 2, 8; 20, 12; 75,

30; 97, 45; 100, 95; 110, 95; 115, 1; 150, 1.

Mass spectrometry (MS) analysis was performed using a

Q-Exactive Plus mass spectrometer (Thermo Scientific, San

Jose, CA) outfitted with a home-made nano-electrospray

ionization interface. Electrospray emitters were prepared

using 150 µm o.d. × 20 um i.d. chemically etched fused

silica. The ion transfer tube temperature and spray voltage

were 300 °C and 2.2 kV, respectively. Data were collected

for 100 min following a 15 min delay from sample injection.

FT-MS spectra were acquired from 300 to 1800 m/z at a

resolution of 35k (AGC target 3 × 106) and while the top 12

FT-HCD-MS/MS spectra were acquired in data dependent

mode with an isolation window of 2.0 m/z and at a reso-

lution of 17.5k (AGC target 1 × 105) using a normalized

collision energy of 30 and a 30 s exclusion time. Raw

protein counts were used to evaluate the quality of the

biological replicates (see Supplementary Methods and

Supplementary Figs. S11–S13). Downstream analyses were

done as previously [31] whereby counts were z-score

transformed for all host samples or each phage, and repre-

sented in heatmaps (see above).

Global transcriptome and proteome

ANOVA analyses of linear models that attempt to predict

the counts with treatment type (uninfected, HP1 infected,

HS2 infected), and a linear and quadratic function of time
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and interaction between infection type and time, were

applied to the raw transcriptomics and proteomics counts.

The fitted curves of transcript and protein counts and 95%

Bonferroni corrected confidence intervals. Pairwise com-

parisons compared uninfected hosts, HP1 infected, and HS2

infected hosts to each other in overall counts and linear

time trend using Tukey’s method controlling for multiple

comparisons.

Phage–host complementarity

Codon counts, codon relative frequencies, and Relative

Synonymous Codon Usage (RSCU) values were calculated

using the “uco” function from the R seqinr package. Cosine

distance measured the distance between the vectors of host

and each phages’ codon frequencies such that Dc(phage,

host)= 0 for two genomes with identical codon frequencies.

To determine the codons (and consequently, amino acids)

with largest effect on cosine distance, each phage-vector’s

codon frequency was iteratively set to the host frequency and

Dc(phage, host) re-measured. The difference between actual

and iteratively-derived cosine distances (abs(Dc(phage, host)’

−Dc(phage, host)) represented each codon’s impact on the

overall phage–host codon mismatch (i.e., “codon impact”).

To determine whether HP1-host codon mismatch was sig-

nificantly different from other phage–host pairs, a pairwise

independent t-test with Holm–Bonferroni adjusted p values

for multiple hypotheses testing was performed with 1185

phage–host pairs that had complete genomes (downloaded

from RefSeq on 10 June 2019). Additional details are pro-

vided in Supplementary information.

Results and discussion

Both phages infect efficiently, but with different
host-takeover strategies

Based on gene sharing networks, phage HP1 is related to

the T7 podophage group (Supplementary Fig. S2). Phage

HS2 is a siphovirus and putative temperate phage, given its

multiple predicted lysogeny genes [24]. The phages share

only 1% of their genomes (Fig. 1a and Supplementary

Fig. S2), and HS2 has threefold higher fitness (when fitness

is infective particles produced per burst) than HP1 on the

host used here (Fig. 1b [24]). The mechanisms of infection

of these phages remain uncharacterized. We assessed

adsorption kinetics and infection dynamics, which revealed

Fig. 1 Podophages PSA-HP1 (HP1) and PSA-HS2 (HS2). a Blastn-

based phage genome comparison. b Phage fitness on Pseudoalter-

omonas str. 13–15, defined as number of infective phages produced

per cell. c Temporal dynamics of phage infection (0= 15 min after

phage addition) to measure latent periods and ‘omics profiles. Tran-

scriptome: average and standard deviation of scaled gene expression

classified as early (blue), middle (red), or late (black). Proteome:

detected proteins and their scaled abundances, colored following the

transcript clusters. Parentheses contain either the fraction of total genes

expressed or of proteins detected. Pfu particle forming units.
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that, for both phages, 80% of virions adsorbed within 5 min,

and their latent periods lasted 60 min (Fig.1c and Supple-

mentary Fig. S3). Transcriptomic sequencing revealed that

transcriptomes of both phages were organized into three

temporal stages (early, middle, and late; Fig. 1c and Sup-

plementary Figs. S4 and S5), with proteins appearing

shortly thereafter (Fig. 1c and Supplementary Figs. S6 and

S7). The similar and relatively rapid adsorption kinetics and

latent periods, as well as the close coupling of the tran-

scriptome and proteome suggest that both phage infections

are efficient on this host, as described in other time-resolved

marine phage–host studies [27, 30, 31].

For both phages, the structural genes were transcribed late

(Supplementary Fig. S5d, g; Supplementary Tables S1 and

S2), as commonly observed [51], but HS2’s relative protein

abundances of the late transcribed and predicted structural

genes were higher than those of HP1 (Supplementary

Fig. S8). Transcription of the early and middle genes, how-

ever, differed between the phages. Specifically, 29 and 36%

of HP1 genes were expressed early and middle, respectively

(Fig. 1c and Supplementary Table S1), whereas 67 and 3% of

HS2 genes were expressed early and middle, respectively

(Fig. 1c and Supplementary Table S2). Further, their host

takeover capacity differed. The predicted peptidoglycan

modification genes encoded by HP1 [24] were expressed

immediately, followed by its host takeover genes (e.g., MazG,

σ-70 transcriptional factor) and DNA metabolism genes (e.g.,

helicases, nucleases, and T7-like DNA polymerases (DNAP))

known to degrade host DNA, recycle nucleotides, and

replicate phage DNA [51] (Supplementary Fig. S5a–c and

Supplementary Table S1). In contrast, HS2 expressed DNA

metabolism genes early (e.g., DNA helicase, DNA recombi-

nation, and repair; Supplementary Fig. S5a and Supplemen-

tary Table S2), but it lacks the large group of host interaction

and takeover genes and the DNAP encoded by HP1 (Fig. 1a

and Supplementary Tables S1 and S2).

Together these phage-focused findings reveal that unre-

lated phages can infect the same host efficiently, but with

different host-takeover strategies and different fitnesses.

Global patterns of host takeover within the
contrasting virocells

With HP1 expressing more host interaction and takeover

genes, we hypothesized that HP1-infected cells (i.e., HP1

virocells) would be more rapidly and significantly impacted

than HS2-infected cells (i.e., HS2 virocells) (Supplementary

Table S3). Overall, global levels of host transcription

through time indicated that treatment type (uninfected,

HP1 infected, HS2 infected) significantly impacted host

transcript abundances (F-stat: 237.94, p value < 0.0001;

Fig. 2a). While host transcript abundances continued

increasing in uninfected cells, they decreased in both

virocells and at a higher rate during HP1 infection (Fig. 2a).

Specifically, the transcript counts in the HP1 virocell and

the HS2 virocell decreased at 5.4× and 1.6× the rate of

uninfected cells, respectively. These findings are consistent

with the hypothesis that HP1, with its expressed host-

takeover genes, would more rapidly and significantly

impact host transcription than HS2.

Unlike transcription, however, overall virocell protein

abundances were not significantly different across treatment

types (F-stat: 1.75, p value: 0.173; Fig. 2b). Notably, bac-

terial transcripts and proteins are largely uncorrelated [52],

protein turnover is slower than that of most transcripts [53],

and proteins detected may derive from recycling old pro-

teins or new production [53]. These findings highlight the

need to complement global proteomics with transcriptomics

to assess the rapidly changing elements of infection, such as

phage response. The temporal analyses indicated that the

host proteins in the HP1 virocell did increase at a higher rate

than in uninfected cells and the HS2 virocell (p value <

0.01; mean difference: 0.056 and 0.052 protein counts per

minute, respectively). This suggests that (i) the phages have

a more notable impact on the levels of host transcripts than

proteins, (ii) and that HP1 has a greater impact on both

transcription and protein dynamics than HS2 (Fig. 2b).

After examining the host impacts, we next evaluated phage

transcription and translation in each virocell (Supplementary

Table S3). Significant differences in transcription levels

were identified between all three variables tested: phage

type (F-stat: 156.6, p value < 0.0001), time (F-stat: 44.82,

p value < 0.0001), and the interaction between phage type and

time (F-stat: 24.78, p value < 0.0001). This suggested that

HP1’s genes were transcribed significantly (p value < 0.0001)

more and faster (mean difference: 19880 transcript counts and

264 transcript counts per minute, respectively) than HS2’s

genes (Fig. 2c). Protein translation also significantly differed

across variables tested (phage type, p value < 0.0001; time,

p value < 0.0001; and the interaction of variables, p value <

0.05). The overall trend in translation followed that of tran-

scription: there were greater abundances of HP1 proteins

(mean difference: 4.69 protein counts, F-stat: 19.98, p value <

0.0001) and these abundances increased faster in the HP1

virocell (F-stat: 4.40, p value: 0.0359) than for HS2 proteins in

the HS2 virocell (Fig. 2d).

Finally, we evaluated the common ways in which both

virocells responded to infection by these unrelated phages.

While half (n= 1887, 50%) of the host genes were differ-

entially expressed (DE) in infected relative to uninfected

cells, only 420 genes (11% of total genes) were commonly

DE in both virocells (Fig. 2e; Dataset Table 7). Among

those, here we focused on genes that were exceptionally

over- and under-expressed. Only three genes were over-

expressed ≥ 2-fold throughout the entire infection in both

virocells: class I ribonucleoside diphosphate reductase

Phage-specific metabolic reprogramming of virocells 885



subunits A (nrdA; temporal fold change ranging from 4 to

205) and B (nrdB; temporal fold change ranging from 2 to

239), and a 2Fe-2S-like ferredoxin (temporal fold change

ranging from 2 to 220) (Fig. 3a). All three genes belong to

the same host operon. The Nrd proteins catalyze the rate-

limiting step of DNA synthesis by reducing ribonucleosides

to ribonucleotides [54]. In E. coli, the adjacent ferredoxin is

required for correct Nrd functioning by maintaining

the cofactor associated with the nrdA and nrdB subunits

[55]. Though Nrd genes are found across a wide range of

coliphage [56] and environmental [57] phage genomes,

neither HP1 nor HS2 encode nrd genes. Presumably these

viruses repurpose host Nrd activity to replicate phage DNA.

Conversely, only five consecutive genes were under-

expressed twofold or less in the infected cells, relative to the

uninfected, throughout the infection in both virocells. These

genes are efflux transporters involved in detoxification (e.g., of

metals, antibiotics) and were underexpressed from twofold to

18-fold (Fig. 3b). Transcript underexpression may lead to

diminished or abolished protein function of these efflux

transporters in both virocells. Such under-expression of

transporters contrasts with C. jejuni virocells where a multi-

drug transporter was over-expressed during myovirus infection

in this pathogen [58]. Future work is needed to experimentally

evaluate the purpose of such phage-specific virocell responses

to infection and their potential ties to pathogenesis.

Together these findings suggest that (i) virocell meta-

bolic takeover impacts host gene transcription more than

translation, (ii) host gene transcription in the HP1 virocell is

shut-down faster and to a greater degree than in the HS2

Fig. 2 Host global transcriptome and proteome takeover by phage.

a Temporal fitted raw transcript counts for uninfected controls, HP1

infected (HP1 virocell), and HS2-infected (HS2 virocell) cells. b

Temporal fitted protein counts for uninfected controls, HP1 virocells,

and HS2 virocells. Temporal fitted raw transcript (c) or protein (d)

HP1 and HS2 counts. For all, p values indicate confidence from the

ANOVA analysis of a linear model predicting the counts with sample

type (uninfected, HP1 infected, or HS2-infected cells), a linear and

quadratic function of time, interaction between infection type and time,

and the between-sample pairwise comparisons. The error bars indicate

95% Bonferroni-corrected simultaneous confidence intervals for the

fitted response. All pairwise comparisons are multiple-comparison

corrected using Tukey’s method. Time (min)= 0 indicates 15 min

after diluting the infection. e Host genes differentially expressed with

and without each phage.
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Fig. 3 Host genes differentially expressed in both virocells. Heat-

map representing select host genes’ fold change (log2FC) expression in

infected vs uninfected, separated into categories: a The operon (“op”)

containing the genes nrdA, nrdB and ferredoxin is the highest

expressed group in both virocells. b The operon containing 5 genes

mainly involved in cellular transport that comprises the group of most

under-expressed genes in both virocells. c An operon with putative

membrane remodeling genes and the chaperones GroEL/ES is the

highest expressed group in the HS2 virocells. d Underexpression of

both flagellar synthesis and assembly and protein translation genes

(including ribosomal RNA, ribosomal proteins and translation factors)

in the HS2 virocells. e Overexpression of tRNA genes in the HP1

virocells, which are under-expressed in the HS2 virocells.
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virocell, and (iii) both virocells are reprogrammed to sup-

port phage DNA replication, as well as to shut down the

function of specific efflux transporters. Such repression of

host transcription may leave the host’s transcriptional

machinery more available to be redirected towards

increasing the phage transcripts in early infection, as was

observed in the HP1 virocell. The greater takeover and

reprogramming observed by the HP1 virocell to transcribe

genes and increase phage proteins faster and to higher levels

than in the HS2 virocell likely incurs a cost. Such a cost

may partly explain its lower fitness relative to HS2, when

measured under identical host and culture (i.e., environ-

mental) conditions (Fig. 1b) [24]. Additional studies will be

required to assess whether such an inverse relationship

between degree of host takeover and phage fitness is uni-

versal across phage–host systems.

The HS2-virocell conserves energy, while the HP1-
virocell alters central carbon and energy
metabolisms

We next evaluated phage-specific impacts on host gene

expression. Of the total host genes DE within the vir-

ocells, 15% (n= 553) of those were unique to HP1 and

24% (n= 914) unique to HS2 (Fig. 2e; Dataset Table 7).

During infection by the more fit HS2, 65% of host DE

genes were expressed during late infection ( ≥ 45 min;

Fig. 3; Dataset Table 7). This pattern contrasts with the

more evenly distributed transcriptional response found in

many other phage–host systems [28, 31, 32, 58–60];

though none of these studies involved siphoviruses.

Whether this late transcriptomic response is a feature of

HS2 or of siphoviruses in general—especially those sus-

pected to integrate—is an open question, but it suggests

that HS2 can largely utilize existing host resources to

replicate itself.

The examination of overexpressed host genes in the HS2

virocell relative to uninfected cells revealed that the host

responses were enhanced by phage infection. Here, genes

with the highest expression throughout the infection (~2-fold

to ~5-fold) included an operon with tauE-superfamily (anion

permease), lgt (peptidoglycan modification), thyA (nucleotide

metabolism), and galU (cell envelope synthesis) (Fig. 3c).

ThyA is involved in the same pathway as the nrd genes, thus

providing additional evidence for host reprogramming to

support phage nucleotide synthesis. The rest of the expression

patterns may reflect cellular surface changes to recycle

membrane components or import extracellular compounds, as

previously observed [61]. Two other over-expressed host

genes were the adjacent chaperones groEL/ES (Fig. 3c),

which in coliphage lambda assist virion head assembly [62].

These expression patterns suggest that remodeling the cell

surface and leveraging the host’s machinery for phage DNA

replication and virion assembly are among the greatest

changes in the HS2 virocell.

Finally, for the HS2 virocell, the two largest categories of

underexpressed genes included motility (27 flagellar synthesis

and assembly genes) and translation (140 genes, including

myriad 30 S and 50 S ribosomal proteins, translation factors,

and tRNA genes), with fold-change values ranging from 1.3

to 49-fold under-expressed in the infected compared to

uninfected cells (Fig. 3d; Dataset Table 7). While motility

increased in a temperate marine phage–host system [39]

it was selected against during phage infection in low tem-

perature marine environments for energy conservation [63].

In addition, translation is the most energy-demanding process

of viral replication [64]. Thus, together the underexpression of

the high energy-demanding processes motility and translation

in the HS2 virocell may represent an energy-conserving

strategy during late infection.

Contrasting the HS2 virocell, no genes had sustained

under-expression throughout the infection cycle in the HP1

virocell (Dataset Table 7). Instead, the HP1 virocell showed

sustained gene over-expression, including a ligand-gated

channel of the tonB superfamily (temporal fold-change of

expression ranging from 2 to 231), and its neighboring fer-

redoxin (temporal fold-change of expression ranging from

3 to 875) (Dataset Table 7). As in other bacteria, these

responses may lead to scavenging iron from the environment

[65], which is pivotal in marine systems given that low

oceanic iron concentrations limits microbial growth [66–68].

Future measurements of virocell-mediated iron scavenging

may provide specific quantification to virocell-mediated eco-

system footprints. In addition, the other most highly over-

expressed genes throughout the infection were 82 translation

genes, including 39 ribosomal proteins and translation factors,

and 43 tRNA genes, with up to 14-fold expression in infected

compared to uninfected cells (Fig. 3d, e, Dataset Table 7).

Phages often encode tRNA genes, which is thought to facil-

itate utilization and redirection of the host’s translational

machinery towards making phage proteins across phages

[69, 70]. However, as both HP1 and HS2 genomes lack tRNA

genes, HP1 likely recruits host tRNAs for translating phage

proteins instead of utilizing the ongoing host translational

machinery, as HS2 presumably does. We hypothesized that

this pattern stemmed from a greater mismatch between the

host’s translational environment and HP1’s reproduction

demands, relative to that of HS2.

To test this hypothesis, we analyzed the %GC, codon,

and amino acid complementarity between phages and host.

The %GC was more different from host (39.8%) for HP1

(44.7%) than HS2 (40.2%). The degree of phage–host

codon dissimilarity was greater for HP1 (codon distance,

Dc(HP1,host)= 0.088) than for HS2 (Dc(HS2,host)=

0.011) (Supplementary Tables S4 and S5). Correspond-

ingly, HP1 had significantly greater divergence from host
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codon biases than HS2 (p value= 0.0002; Fig. 4a). To

contextualize this dissimilarity between HP1 and host

codon biases, we calculated the average codon distance

between all publicly available phage–host pairs. The HP1-

host codon biases were significantly greater than all

phage–host pairs (p value= 0.0330; Fig. 4). While the HP1-

host codon biases were not significantly greater than the

mean of the podoviral subset (p value= 0.1036), they were

greater than the mean of the siphoviral subset (p value=

0.0075), which suggests a family-specific difference in

phage–host codon biases (Fig. 4a; Supplementary Fig. S9).

Such a trend has been observed in kmer frequency analyses

of phages and their hosts [71], but this is the first explora-

tion of the potential implications of phage–host genome

complementarity on viral replication. Namely, relative to

HS2, the greater HP1-host codon dissimilarity results in a

greater mismatch between HP1 and host amino acids

(Fig. 4b). As such, HP1 has a greater translational demand

to synthesize proteins than HS2 on the same host.

Given that translation is the most energetically costly phase

of building viruses [64], we next sought to identify mechan-

isms by which HP1 may manage the heavier energetic burden

of protein translation in this host. Among the highest

expressed genes in the HP1 virocell were those involved in

the assimilatory sulfate reduction pathway (Fig. 5a, Supple-

mentary Fig. S10a). This pathway converts sulfate to hydro-

gen sulfide for incorporation into sulfur-containing

compounds, most frequently the amino acid cysteine [72].

Given that HP1’s proteins are not substantially more enriched

in cysteine than those of HS2 (Fig. 4b), we posit that cysteine

synthesis in the HP1 virocell serves for energy production

through C2 compounds instead of for translation. Specifically,

cysteine can be degraded into acetyl-CoA that is then con-

verted into energy, most commonly through the tricarboxylic

acid (TCA) cycle [73]. Given that the TCA cycle is an

energy-generating metabolism, we next investigated its

expression in HP1 virocells to inquire whether it could be a

primary energy source.

The most highly expressed genes (~3-fold) of the TCA

cycle were those involved in the glyoxylate shunt: aceA and

aceB (Fig. 5b, Supplementary Fig. S10b). The majority of

the TCA cycle genes were either not DE or were differen-

tially underexpressed (Fig. 5b). These findings suggest that

the glyoxylate shunt was being used to increase cellular

ATP and reducing power similarly to other bacteria grown

on C2 compounds [74]. The glyoxylate shunt of the TCA

Fig. 4 Dissimilarity between phage and host codons and amino

acids. a Distribution of all codon importance measures for phage–host

distances. Datasets include: HP1 or HS2 against Pseudoalteromonas

str. 13–15, all sequenced phage–host pairs in RefSeq (n= 1187), and

either the myoviridae (n= 229), podoviridae (n= 166), or siphovir-

idae (n= 671) phage–host pair subset. Greater values represent codons

causing greater distances between phage and host codon frequency

vectors. Box represents the interquartile range (IQR) with the middle

line as the median. Whiskers extend to 1.5*IQR and dots are outlier

values beyond that. Pairwise comparisons between all x-variables are

significant (pairwise Wilcoxon test, p value < 0.05; Tables S4 and S5).

Asterisks denote the HP1 significant comparisons described. b Each

point represents the codon importance in the HP1 host and HS2-host

similarity measures (x-axis, as in a). Synonymous codons are aggre-

gated by the encoded amino acids (y-axis). The point size denotes

phage genome codon frequency.
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cycle is commonly observed under various stressors [75],

but has not been described during phage infection. Addi-

tionally, HP1 encodes a glutaredoxin gene (Supplementary

Table S1), an iron-sulfur cluster assembly protein also

found in other marine viruses [76], which is needed to make

prosthetic groups for proteins in nucleotide synthesis, sulfur

Fig. 5 Phage-specific energy metabolism rewiring in virocells. a

Sulfate intracellular transport and reduction to hydrogen sulfide, for

cysteine production. Enzyme gene expression is shown as log2-fold

change (log2FC; comparing infected vs uninfected). b The TCA cycle

(black) with its glyoxylate bypass (blue), for the presumed

consumption of cysteine. Each enzyme and its expression (log2FC in

infected vs uninfected cells) is shown on the heatmap. For both,

protein dynamics are represented in Fig. S7. For all expression,

absence of virocell differential expression has white/gray background.
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reduction, and the TCA and glyoxylate cycles [77].

This HP1 glutaredoxin gene, but none of the host-encoded

glutaredoxin genes, was highly expressed at the same time

as sulfur reduction and glyoxylate cycle genes and may

have supported the redirection of metabolic flux through the

glyoxylate shunt of the TCA cycle (Supplementary Fig. S5c

and Dataset Table 7).

Together, these and the global host-takeover observa-

tions (Fig. 2) suggest that (i) the HS2 virocell generated an

environment for phage reproduction whereby the phage

used existing host metabolic resources while shutting down

energy-costly processes no longer necessary for the phage

towards the late stages of infection, and that (ii) HP1

virocells were reprogrammed to enhance translation and

shuttle energy metabolisms by synthesizing sulfur-rich

amino acids and degrading them for energy via the

glyoxylate-TCA cycle. Given that HS2 has higher host

complementarity and fitness than HP1, HS2 virocell may

provide the intracellular environment and resources needed

for infection success, whereas HP1 virocell greatly repro-

grams metabolisms to meet the demands of HP1 infection.

A conceptual model for integrating virocells into
viral ecology

Most of viral ecology—the study of interactions between

viruses, organisms, and the environment—has focused on

free viruses (the extracellular infectious stage of a virus),

largely due to methodological limitations. Data describing

free viruses, such as their abundances (including production

rates [78]), virus-microbe ratios [79], diversity, and

population-level biogeography via (meta)genome sequen-

cing [11, 12, 21, 13–20], provides a rich context to infer

potential interactions between viruses, other organisms

[80–83], and the environment [3]. From an ecosystem

perspective, the impact of this potential is realized via the

reprogrammed metabolism of infected cells prior to lysis,

and manifests as virocell-environment interactions. Glob-

ally, virocell metabolism has the potential to contribute just

as much (and possibly more [84]) to ecosystem processes as

the metabolism of uninfected cells in aquatic habitats [85].

Given the different resource requirements, metabolic

transformations, and nutrient transport between a cell and a

cell-turned-virus-factory [86, 87], virocells have a unique

metabolic program that influences nutrient fluxes in

microbial food webs [9] and merits their study to the depths

we now understand their free viral counterparts.

While pioneering studies have characterized altered vir-

ocell metabolisms [9, 33, 88], and how such metabolisms

shape infection strategies and outcomes [9], much progress

is needed to model the ecosystem impacts of phage infec-

tion. Our work seeks to push a foundational synthesis in

viral ecology [10] to more explicitly include virocells

by proposing a conceptual model that relates phage–host

genomic complementarity, virocell metabolism, virocell

energy-resource trade-offs, and virocell-environment

Fig. 6 The dimensions of virocell ecology. Viral life history traits,

e.g., burst size, adsorption and infection efficiency, latent period,

impact viral fitness. The multi-omics analyses here have enabled the

identification of mechanisms underlying these fitness-defining traits.

During infection, the virocell undergoes metabolic rewiring to meet

energy and resource demands. The greater metabolic effort during

infection incurred by the HP1 virocell was evidenced by (i) an

immediate, sustained, and more drastic deviation from uninfected cell,

as seen in host transcription and protein levels; (ii) fast phage tran-

scription and high accumulation of phage proteins; and (iii) rewiring

host central carbon and energy metabolisms to meet the cost of

creating more transcripts and proteins. In contrast, little work was

invested by the HS2 virocell until past the midpoint of infection. This

intracellular impact determines the degree to which the virocell devi-

ates from the uninfected cell through time and, consequently, the

environmental footprint of the virocell. We propose that a major

determinant of the intracellular battle waged during infection is the

phage–host complementarity of biomolecules (nucleotides, amino

acids), which underlies an intracellular energy-resource trade-off.

Namely, the phage with the highest degree of host complementarity

(here, HS2) is able to access and utilize the available resources with

minimal energetic effort, while minimizing the intracellular impact on

the host and maximizing its fitness.
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interactions (Fig. 6). Specifically, our experimental design

enabled us to follow two different infection trajectories that

represent the outcome of trade-offs for infection resources.

By examining two infections on one host under identical

controlled laboratory conditions, both phages initially had

access to the same resources for their replication. However,

the manner and efficiency by which they accessed those

resources—partly determined by phage–host biomolecule

complementarity—varied. Specifically, HP1 was least

complementary to the host in nucleotide, amino acid and

codon composition, and thus had fewer intracellular

resources (nucleotides and amino acids) available for

recycling than did HS2. We propose that this lower com-

plementarity led to higher metabolic demand in the HP1

virocell and, consequently, contributed to HP1’s lower

relative fitness (smaller burst size), given that fitness is

partially determined by a phage’s ability to access and

leverage resources to infect [86, 87]. Because of the higher

metabolic demand, HP1 virocells needed to more drastically

augment translation and acquire resources, including

scavenging iron and transporting sulfate into the cell to

reduce it to cysteine for consumption via the glyoxylate

cycle. Thus, the HP1 infection likely differentially impacted

the extracellular-to-intracellular resource fluxes and the

virocell microenvironment (Fig. 6). Our multi-omics-

inferred observations provide a roadmap for future work

to measure specific nutrient and metabolite dynamics (e.g.,

uptake, release) to better quantify virocell-derived ecosys-

tem footprints. In summary, we propose phage–host gen-

ome complementarity as an important driver of the nature

and magnitude of virocell reprogramming and a property

that links virocell metabolism with infection outcomes

(here, fitness defined by burst size). As such, different

virulent phages are likely to uniquely impact biogeochem-

ical transformations and virocell–cell interactions in their

local microenvironment, which may consequently lead to

phage-specific ecosystem footprints, even on the same host.

These findings also lay the foundation for working towards

identifying virocell “functional guilds” akin to those defined

for macro-organisms [89]. We expect that as data grow,

phage–host combinations that exploit resources in similar

ways will emerge, regardless of taxonomic affiliation of

phage or host. Simplifying community diversity by such

“functional guilds” would allow incorporation of virocells

into ecosystem models, just as other such simplifications

have enabled models of global-scale ocean biogeochemistry

[90] and microbial community assembly [91, 92].

Conclusions

A common vision of lytic phage infection is one of a phage

hijacking its host, commandeering its functions, and turning

it into a phage reproduction machine until lysis [51].

Though phages are commonly now perceived as efficient

masters of their microbial hosts [3], the nuances of host

responses are likely many and varied with respect to

interaction and takeover strategies [51, 62], including direct

AMG-driven metabolic reprogramming [3, 93]. Beyond

needing increased diversity of studied phage–host model

systems, incorporating phages into ecosystem models will

require transitioning from studying the individual phage and

host towards evaluating virocells [5–7], especially when

phage-specific responses impact the ecosystem (e.g., dif-

ferent resource acquisition, nutrient transportation or pro-

duction). Such efforts will require further studying virocells

molecularly and biochemically, defining functional guilds,

and including both the lytic infection continuum [94] and

lysogeny, since it is ubiquitous in nature [60] and can

uniquely reprogram cellular metabolisms [95]. Such

understanding is critical to inform phage-based applications

[96, 97] and attain the predictive knowledge needed for

modeling phage–host-environment interactions [10].

Data availability

The genome of Pseudoalteromonas sp. strain 13–15 is

available at NCBI with accession numbers CP019162.1

(contig 1) and CP019163.1 (contig 2). Phage genomes are

available at the Joint Genome Institute’s portal for Inte-

grated Microbial Geomes/Virus (IMG/VR; https://img.jgi.

doe.gov) under submission IDs 44760 (PSA-HP1) and

44764 (PSA-HS2), and at NCBI with ID 196895 (PSA-

HP1) and 196894 (PSA-HS2). Both phage genomes’

functional annotation was improved here, and the Genbank

files are found in Cyverse, together with all of the scripts

used for all analyses detailed below (http://datacommons.

cyverse.org/browse/iplant/home/shared/iVirus/Pseudoa

lteromonas_Omics). The accessions for the RNA-seq reads

are in the Supplementary Dataset, Table 3. Proteomics data

are available at MassIVE and the ProteomeXchange

repositories with accession numbers MSV000083626 and

PXD013204, respectively.
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