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Phage, the most prevalent creature on the planet, serves a variety of critical roles. Phage’s primary role is to facilitate gene-to-gene
communication. The phage proteins can be defined as the virion proteins and the nonvirion ones. Nowadays, experimental
identification is a difficult process that necessitates a significant amount of laboratory time and expense. Considering such
situation, it is critical to design practical calculating techniques and develop well-performance tools. In this work, the Phage_
UniR_LGBM has been proposed to classify the virion proteins. In detailed, such model utilizes the UniRep as the feature and
the LightGBM algorithm as the classification model. And then, the training data train the model, and the testing data test the
model with the cross-validation. The Phage_UniR_LGBM was compared with the several state-of-the-art features and
classification algorithms. The performances of the Phage_UniR_LGBM are 88.51% in Sp,89.89% in Sn, 89.18% in Acc, 0.7873
in MCC, and 0.8925 in F1 score.

1. Introduction

Phage, which can be treated as the most abundant organism,
has many important functions on earth [1, 2]. The major
function of phage is to promote gene-to-gene communica-
tion [3–5]. The second function of phages is to maintain
microbial diversity [6]. If the number of a bacterial species
increases rapidly in a bacterial population, the correspond-
ing bacteriophage will specifically infect this type of bacteria
and kill them, so that the entire bacterial population returns
to a balanced state [7, 8]. In addition, phages also participate
in the Earth’s material cycle [9, 10]. Blue bacteria are a kind
of very important bacteria in the ocean, which can absorb
carbon dioxide and convert it into glucose through photo-
synthesis [11]. About half of the blue bacteria will eventually
be lysed by its corresponding phage and released to the
entire marine environment, providing nutrients for the sur-
rounding biological system [12–14]. Phages are also an
important part of the human microbial community. Each

human gut contains about 1014 bacteria, while the number
of phages is 1015-16, 10 times more than bacteria. The func-
tion of phages is far beyond the above-mentioned issues.
Nowadays, phage-targeted therapy has become a hot topic.
However, phages can survive only by relying on bacterial
hosts, and phages are difficult to culture. Therefore, it is par-
ticularly important to predict the interaction between phages
and bacteria through bioinformatics methods [15–17].

Phage-host interaction is an effective means of studying
adaptive evolution of bacteria and plays an important role
in human health and disease, which may contribute to new
therapeutic agents, such as phage therapy against
multidrug-resistant infections [8, 18]. The continuous evolu-
tion of pathogenic bacteria and the resistance to new antibi-
otics may cause as many as 10 million people to lose their
lives each year [19–22]. Antibiotics are usually small mole-
cules that inhibit bacterial growth in some way. Because of
their abuse and selective pressure on bacterial communities,
bacteria have produced many mechanisms of resistance to
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these molecules over the years, such as their metabolism or
excretion that render antibiotics ineffective, and the discov-
ery of new antibiotics has become increasingly difficult.

Because bacteria are closely related to human health and
the environment, ecologists and microbiologists have been
studying bacterial communities to discover potential laws
that are beneficial to humans and the environment. Accord-
ing to research, human microbial communities have been
influenced by phages, and some phages will change the com-
position of microbial communities, resulting in changes in
these communities. Phages play a key role in maintaining
the microbial community structure of human and environ-
ment and provide potential tools for accurately manipulat-
ing specific microorganisms. Recent studies have further
shown that interactions between phages and microbes can
affect mammalian health and disease.

It is worth noted that a great deal of features included
amino acid composition [23], atomic composition (ATC)
[24], chain-transition distribution (CTD) [25], pseudo
amino acid composition [23], and amino acid pair [26] in
the sequence level. What is more, several feature selection
methods have been taken into account in this field. These
approaches mainly focus on giving an increasingly effective
and detailed modeling feature as the input of the classifica-
tion model. On the other hand, the artificial intelligence
technologies develop with the rocket speed. The machine
learning algorithms, including neural network [27–29], ran-
dom forest, support vector machine [30, 31], k-nearest
neighbor [32], logistic regression [33, 34], and some deep
learning models [35–37], have become one of the hottest
topics among this field. In this work, we propose the
Phage_UniR_LGBM. Such model utilizes the UniRep as
the feature and the LightGBM algorithm as the classification
model. In detailed, the dataset of phage proteins has been
initially divided into 2 parts, including both the training
ones and the testing ones. And then, the training data train
the model, and the testing data test the model with the
cross-validation. In order to demonstrate the performances
of this method, the above-mentioned classification models
and the features have been compared with the Phage_
UniR_LGBM. We demonstrate the outline with these steps
of the Phage_UniR_LGBM in Figure 1.

2. Methods and Materials

2.1. Dataset. In order to classify the phase proteins, the data
employed the Ding’s effort, which mainly focus on phage
virion proteins researches. Such dataset is a reliable dataset,
which selected with many filtering schemes [38]. Meanwhile,
such dataset can hardly be treated the redundant data. The
protein sequences can pairwise with any other one in low
homologous. Last but not the least, several state-of-the-art
methods have tested the performances with such dataset.
Therefore, such dataset can be treated as a typical bench-
mark dataset in this field. Considering such situation, we
employed such dataset as the identified data in this work.
The detailed information of the employed data should be
demonstrated in Table 1.

From Table 1, we can easily find that there are two types
of these proteins, the 99 sequences of phage virion proteins
and the 208 ones of nonphage virion proteins. The whole
number of proteins is 307. According to this situation, we
can define the phage virion proteins as the positive samples.
So the nonphage virion proteins can be treated as the nega-
tive ones. With this information, such work can be
abstracted as the typical two-type classification issue in the
machine learning area. A necessary step should be taken into
account. The 90% of both the positive and negative samples
should be treated as the training and testing data, and the
rest of the 10% of the whole dataset can be treated as the
independent data in this work. It was pointed out that the
training and testing dataset can hardly overlap with the
independent ones. The training and testing dataset utilized
the 2, 3, 4, 5, 6, 8, 10-fold cross-validation to demonstrate
the stability of the Phage_UniR_LGBM.

2.2. LightGBM Algorithm. The gradient boosting decision
tree (GBDT) [39, 40], which has the ability to learn the per-
formances of learners, is continuously improving with sev-
eral computational iterations. During the iteration of such
special algorithm, several parameters of this algorithm
should be listed. The current iteration of model achievement
can be defined as the Fc ðxÞ. In detail, the c means the cur-
rent iteration. With a similar theory, the Fc−n ðxÞ means
the last n iterations’ model achievement, and the Fc+n ðxÞ
means the next n iterations’ model ones. What is more, the
loss function of the current iteration can be defined as the
Loss (y, Fc ðxÞ). Such algorithm can focus on searching and
dropping out the weak learner hc ðxÞ with the minimization
of the loss function in the current round. And then, the loss
function’s negative gradient can be calculated on the current
iteration’s loss function. It was pointed out that the square
difference plays a significant role during this algorithm. So,
such parameter can be measured with the method of the fit-
ting hc ðxÞ in equation (1), and the loss function can be eval-
uated by equation (2).

hc xð Þ = arg min
h∈H

〠L y, Fc−1 xð Þ + h xð Þð Þ, ð1Þ

rti = −
∂L y, Ft−1 xið Þð Þ

∂Ft−1 xið Þ : ð2Þ

Phage_UniR_LGBM

LightRBM UniRep

Testing sets

Training sets

Feature
extraction

Figure 1: The outline of the Phage_UniR_LGBM.

Table 1: The information of phage virion proteins.

Protein type Phage virion proteins Nonphage virion proteins

Scale 99 208
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In the final step, the most potential learner can be
selected with the method, shown in equation (3), in the cur-
rent iteration.

Fc+n xð Þ = h2n xð Þ + Fc−n xð Þ: ð3Þ

When it comes to the Light Gradient Boosting Machine,
such algorithm, can be abbreviated LightGBM [41, 42], is a
special type of the above-mentioned algorithm. In detail,
the GBDT algorithm mainly relies on the gradient one-side
sampling and exclusive feature bundling. Such two charac-
teristics can be treated as the main contributions of effective
and high-performance. However, the shortcomings can

hardly be neglected that the GBDT may speed huge compu-
tation resources during the algorithm operation. So as to
overcome such deficiency, the LightGBM algorithm, which
has the ability to achieve the same accuracy with the 5%
time-consuming, is proposed. The majority of LightGBM
algorithm may follow the next four steps. Initially, the input
data can be transformed with the histogram form. After such
transformation, a histogram can be constructed with the
same size of input integers. The constructed histogram has
the ability to capture the optimal cutting point. With such
approach, several unnecessary calculations can hardly be
operated. So, the computation resources may save to some
degree. The second step focuses on constructing a histo-
gram’s leaf nodes. With the method of a histogram for sub-
traction, the computational time can cut half of the
traditional method. The next step utilizes the leaf-wise
growth method, which is limited to the depth of tree con-
struction. With this approach, the performances may be fur-
ther accelerated than the GBDT ones. The final step of the
LightGBM should not be neglected. The parallel computa-
tion can further enhance the speed without losing accuracy.

2.3. UniRep Feature. The features of protein description can
be utilized by the UniRep [43, 44], which is a novel approach
to demonstrate the protein information at various levels.
With the further researches, it can be found that the
amino-acid embedding approaches are learned by the Uni-
Rep. The UniRep method contains several properties in the
protein level. For instance, the UniRep selected physico-
chemical feature with the method of amino acid residues’
cluster. In detail, the whole 20 types of amino acid residues
own their properties, including hydrophobic aliphatic,
charged basic, charged acidic, polar neutral, unique, and
hydrophobic aromatic. Such feature sets also separated pro-
tein from a huge number of structural classifications of pro-
teins. These types can be classified with the crystallographic
information. In order to evaluate the feature of identified
proteins, we employ the whole protein peptide sequences
from the identified phage virion proteins. So, the protein
sequence can be transformed into a numeric vector. And
then, we apply the LightGBM algorithm to identify the
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Figure 2: Seven classification algorithms comparisons in 2-fold
validation.
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Figure 3: Seven classification algorithms comparisons in 3-fold
validation.
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Figure 4: Seven classification algorithms comparisons in 4-fold
validation.
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Figure 5: Seven classification algorithms comparisons in 5-fold
validation.
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phage virion proteins numeric vectors and the nonphage
ones. The input of the LightGBM is the identified numeric
vector from each sample, and the output of the LightGBM
is the calculated results from these samples.

2.4. Measurements of Performance. In this classification
problem, samples can be defined as two types, including
the phage virion proteins sequences and the nonphage
virion proteins sequences. Defined positive samples mean
the phage virion proteins sequences. On the contrary, the
defined negative samples mean the nonphage virion proteins
sequences. According to the definition of the classified sam-
ples, they can cause the four results in a common situation.
We can easily obtain these formulations, including sensitiv-
ity, specificity, accuracy, F1 scores, and MCC. And the
detailed information is shown in the following equations:

Sn = TP
TP + FN

, ð4Þ

Sp = TN
TN + FP

, ð5Þ

Acc = TP + TN
TP + TN + FP + FN

, ð6Þ

F1 = 2TP
2TP + FN + FP

, ð7Þ

MCC = TP × TN − FP × FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp
,

ð8Þ
where P is the scale of positive samples and N is the scale of
negative ones. T is a set of the true predicted result, and F is
a set of the false predicted result.

When it comes to the F1 score, such performance can be
treated as an index utilized to evaluate the positive and neg-
ative samples’ distribution in the field of the two-type issue.
Such performance should take into account several parame-
ters, including the four basic parameters, which are TP, FP,
TN, and FN. Such performance can be treated as a harmonic
average of model accuracy and recall.

Another important performance is the MCC, which is
abbreviated by Matthews correlation coefficient. Such per-
formance’s value ranges from -1 to 1. It means the relation-
ship between the outputs and computational results.
Considering the true results, false-positive ones, and true-
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Figure 6: Seven classification algorithms comparisons in 6-fold
validation.
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Figure 7: Seven classification algorithms comparisons in 8-fold
validation.
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Figure 8: Seven classification algorithms comparisons in 10-fold
validation.
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Figure 9: The AUCs of seven algorithms in 10-fold validation.

Table 2: The performances of different features in KNN model.

SP SN Acc MCC F1 score

AAC 45.50% 82.27% 63.89% 0.2986 0.6949

ATC 55.76% 75.19% 65.47% 0.3155 0.6853

CTD 63.45% 78.73% 71.09% 0.4268 0.7314

PseAAC 66.65% 89.51% 73.58% 0.4761 0.7529

AAP 62.81% 84.04% 73.42% 0.4794 0.7597

UniRep 64.09% 88.46% 76.26% 0.5440 0.7885
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negative ones, the MCC has the ability to demonstrate the
balance of the above-mentioned three parameters. The area
under receiver operating characteristic, which can be shorted
as the AUC, is a significant evaluation metric. Such perfor-
mance shows the relationship between the label and compu-
tational result in each sample, respectively.

3. Results and Discussions

To understand the classification issue of the phage virion
proteins sequences and the nonphage virion proteins
sequences, we define the label of the phage virion protein
as 1 and the label of nonphage virion protein as 0. In other
words, a phage virion one is treated as a positive sample
and a nonphage virion one is treated as a negative sample.
Therefore, the UniRep features of each protein sequence
sample as the input of the LightGBM model and the output
of each sample should be compared with their own label,
respectively. In order to demonstrate the stability and reli-
ability, we utilize the 2-, 3-, 4-, 5-, 6-, 8-, and 10-fold
cross-validation. After this operation, we utilize the con-
structed model to test the performance in the independence
dataset. So, in the following part, we demonstrate the
detailed processions of the Phage_UniR_LGBM.

3.1. Performances of Different Classification Algorithms. The
above-mentioned seven cross-validation test ways are uti-
lized to validate the stability and reliability of the Phage_
UniR_LGBM. And then, five state-of-the-art classification
algorithms, including k-nearest neighbors, logistic regres-
sion, Gauss naive Bayes, support vector machine, and ran-
dom forest, are utilized to classify the phage virion proteins
and the nonphage virion proteins with the UniRep features.
In order to show the stability and generality of the model, we
employed the 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 8-fold and
10-fold cross validation methods.Table S1-S6 show the
detailed information of Sn, Sp, Acc, MCC, and F1 scores of
the LightGBM model and other state-of-the-art machine
learning algorithms using various cross-validation
methods. During the 5 cross-validation, we can easily find
that the logistic regression algorithm can get the well
performances in the Sn and the employed LightGBM
model can get the well performances in the Sp. Meanwhile,
the logistic regression can hardly work well in Sp.
Therefore, it may cause such models own the low-
performances in other three measurements, including
accuracy, MCC, and F1 score. During the 2, 3, 4, 5, 6, and
8 cross-validation, the k-nearest neighbors model replaces
the logistic regression model in Sp. It is noted that the
LightGBM model’s Sn is better than other compared
algorithms. So, the LGBM can get the available results in
the key classification performances, including Acc, MCC,
and F1 score. From Figures 2–8 and Table S1-S7, we can
get the conclusion that the LightGBM model can get the
available effectiveness and stability during the cross-
validation. On the other hand, the support vector machine
and random forest model demonstrate their advantages
during six parameters cross-validations.

Table 3: The performances of different features in LR model.

SP SN Acc MCC F1 score

AAC 60.23% 78.99% 69.61% 0.3993 0.7221

ATC 51.16% 76.16% 63.66% 0.2822 0.6770

CTD 66.83% 88.39% 77.61% 0.5655 0.7979

PseAAC 89.11% 82.11% 85.61% 0.7140 0.8610

AAP 56.93% 95.91% 76.42% 0.5738 0.8027

UniRep 82.51% 94.03% 88.23% 0.7721 0.8893

Table 4: The performances of different features in GNB model.

SP SN Acc MCC F1 score

AAC 31.26% 69.80% 50.53% 0.0115 0.5852

ATC 48.22% 39.64% 43.93% -0.1219 0.4142

CTD 41.33% 78.41% 59.87% 0.2126 0.6615

PseAAC 69.95% 80.89% 75.42% 0.5115 0.7400

AAP 47.16% 80.14% 63.65% 0.2892 0.6879

UniRep 52.99% 86.17% 69.56% 0.4225 0.7390

Table 5: The performances of different features in SVM model.

SP SN Acc MCC F1 score

AAC 26.26% 54.04% 40.15% -0.2051 0.4745

ATC 23.80% 40.53% 32.16% -0.3618 0.3740

CTD 32.82% 79.37% 56.10% 0.1378 0.6439

PseAAC 80.42% 84.82% 82.62% 0.6530 0.8223

AAP 49.24% 63.33% 56.28% 0.1269 0.5916

UniRep 82.06% 84.44% 83.22% 0.6690 0.8327

Table 6: The performances of different features in RF model.

SP SN Acc MCC F1 score

AAC 76.32% 59.27% 67.80% 0.3612 0.6479

ATC 91.48% 67.11% 79.30% 0.6042 0.7643

CTD 84.71% 71.47% 78.09% 0.5668 0.7654

PseAAC 78.84% 88.49% 83.67% 0.6765 0.8284

AAP 66.59% 72.34% 69.47% 0.3900 0.7032

UniRep 83.87% 87.16% 85.48% 0.7121 0.8572

Table 7: The performances of different features in LGBM model.

SP SN Acc MCC F1 score

AAC 16.75% 48.54% 32.64% -0.3661 0.4188

ATC 50.25% 93.49% 71.87% 0.4850 0.7687

CTD 48.48% 43.15% 45.81% -0.0838 0.4433

PseAAC 84.62% 85.65% 85.14% 0.7027 0.8506

AAP 60.82% 71.91% 66.37% 0.3294 0.6813

UniRep 88.51% 89.89% 89.18% 0.7873 0.8925
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In order to demonstrate the performances of this imbal-
ance classification issue, the AUC has been employed to
evaluate each classification algorithm in this work. With
the 2-, 3-, 4-, 5-, 6-, 8-, and 10-fold cross-validations, we find
that the employed 7 cross-validations follow a similar trend
in this work. So, we evaluate the AUCs of each classification
algorithm, including KNN, LR, GNB, SVM, RF, and LGBM.
From these results, it could be seen that LGBM has the best
AUC values among seven single classifiers. Figure 9 shows
the AUC values of each algorithm in 10-fold cross-
validation and the detailed values in Table S8.

3.2. Performances of Different Features. In this work, the
UniRep features compare with several state-of-the-art fea-
tures, which include amino acid composition (AAC), atomic
composition (ATC), chain-transition distribution (CTD),
pseudo amino acid composition (PseAAC), and amino acid
pair (AAP), in the protein sequence level. To compare the
performances of each feature, we utilize the above-
mentioned five machine learning algorithms and the
LightGBM model to test these features, respectively. With
the cross-validation test, we select the 10-fold one to demon-
strate their performances. And the performances of different
features in these classification algorithms are shown in
Tables 2– 7.

When it comes to evaluating the performances of each
feature, the five employed performances should be com-
pared, respectively. Nevertheless, the performances, such as
the Acc, MCC, and F1 score, could be computed by the
two basic performances, including the Sp and Sn. In order
to more easily compare the performances of each feature,
we initially compared the Sp and Sn for each one. From
the performances of each feature in kNN model, we can eas-
ily find that the PseAAC can achieve the 66.65% in Sp and
such performances are higher than the other five features.
Meanwhile, such feature also gets the 89.51% in Sn, and such
performance is better than other ones. It was noted that the
features, including AAC, AAP, and the UniRep feature, can
get the Sn more than 80% and the CTD, AAP, and UniRep
can get the Sp more than 60% with the method of kNN clas-
sification model. Considering such phenomenon in KNN
model, we propose a threshold, which is named well perfor-
mance. The well performance means the evaluated perfor-
mance can be higher than 70%. If the evaluated
performance is 70.5%, it can be defined as the well perfor-
mance. If the evaluated one is 69.99%, it can hardly be
defined as the well performance. Therefore, the topic well
performances are PseAAC, UniRep, and CTD in Sp, and
the topic three well performances are AAP, UniRep, and
CTD in sn with the LR classification algorithm. In the
GNB model, the top three well performances are PseAAC,
UniRep, and ATC in Sp and UniRep, PseAAC, and AAP
in sn. In the SVM model, the well-performances are UniRep
and PseAAC in Sp and PseAAC, UniRep, CTD, and AAP in
Sn. In the RF model, the well performances are ATC, CTD,
UniRep, and PseAAC in Sp and PseAAC, UniRep, AAP, and
CTD in Sn. In the employed model, the well performances
are UniRep and PseAAC in Sp and ATC, UniRep, PseAAC,
and AAP in Sn.

After the above features comparison, we can find that the
UniR_LGBM method can get the available performances
than other ones. It can hardly be neglected that the PseAAC
work well in several classification models.

4. Conclusions

In this work, a novel model, which is named Phage_UniR_
LGBM, was proposed to deal with the phage virion proteins
classification issue. This classification can be treated as a typ-
ical imbalance binary classification issue in the field of
machine learning. In order to utilize the effective feature of
the protein sequence, we employed the UniRep feature to
quantitate the identified phage virion protein sequences.
And then, the LightGBM algorithm was employed to evalu-
ate the protein numeric vectors with the UniRep processing.
In order to demonstrate the Phage_UniR_LGBM’s stability
and robustness, the 2, 3, 4, 5, 6, 8, and 10 cross-validation
methods have been utilized in this work. Moreover, several
typical machine learning algorithms include k-nearest
neighbors, logistic regression, Gauss naive Bayes, support
vector machine, and random forest. And then, the UniRep
features were compared with several state-of-the-art fea-
tures, which include amino acid composition (AAC), atomic
composition (ATC), chain-transition distribution (CTD),
pseudo amino acid composition (PseAAC), and amino acid
pair (AAP), in the protein sequence level. From these com-
parisons, we find that the Phage_UniR_LGBM can be
treated as an effective model to classify the phage virion
protein.

From the Phage_UniR_LGBM, we find some interesting
points in this classification issue. The scale of identified sam-
ples can hardly meet the need of deep learning algorithms.
So, how to utilize the deep learning tools to deal with this
issue? Meanwhile, the scale of negative samples and the scale
of positive ones do not follow the 1 : 1 ratio. So, which strat-
egy can be employed to deal with the typical imbalance
binary classification issue in the machine learning area?
The current efforts of protein sequences feature focus on
the whole sequence of protein. Meanwhile, the reduction of
useless feature information should be taken into account in
this work. Considering such situations, we will focus on
effectively solving these problems in the future efforts.
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