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Abstract: The characterization of therapeutic phage genomes plays a crucial role in the success rate
of phage therapies. There are three checkpoints that need to be examined for the selection of phage
candidates, namely, the presence of temperate markers, antimicrobial resistance (AMR) genes, and
virulence genes. However, currently, no single-step tools are available for this purpose. Hence, we
have developed a tool capable of checking all three conditions required for the selection of suitable
therapeutic phage candidates. This tool consists of an ensemble of machine-learning-based predictors
for determining the presence of temperate markers (integrase, Cro/CI repressor, immunity repressor,
DNA partitioning protein A, and antirepressor) along with the integration of the ABRicate tool
to determine the presence of antibiotic resistance genes and virulence genes. Using the biological
features of the temperate markers, we were able to predict the presence of the temperate markers
with high MCC scores (>0.70), corresponding to the lifestyle of the phages with an accuracy of 96.5%.
Additionally, the screening of 183 lytic phage genomes revealed that six phages were found to contain
AMR or virulence genes, showing that not all lytic phages are suitable to be used for therapy. The
suite of predictors, PhageLeads, along with the integrated ABRicate tool, can be accessed online for in
silico selection of suitable therapeutic phage candidates from single genome or metagenomic contigs.

Keywords: phage therapy; AMR; lysogeny; machine learning; genomics

1. Introduction

Phage therapy has been gaining ground in the field of medicine as a type of therapeu-
tics for treating bacterial infections [1]. It is especially useful for treating infections from
microbes that have acquired resistance to conventional antibiotics. These resistant microbes
initially acquire resistance to antibiotics through genomic mutations caused by selective
pressure in the environment (such as the presence of antibiotics), which can later be trans-
ferred to other bacteria through horizontal gene transfer [2], which allows these microbes
to be able to counter the molecular action of the antibiotics [3]. Various clinical case reports
have shown successful outcomes where phage therapy was used to treat a broad spectrum
of bacterial infections such as prosthetic infections, musculoskeletal infections, urinary tract
infections (UTI), septicemia, and biofilm infections [4–9]. The success of phage therapy is
heavily dependent on the selection of suitable phage candidates, which ultimately comes
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down to the genome characterization of phages. However, this process is complicated due
to the mosaicity of the phage genomes, leading to a lack of conserved regions and presence
of many (>50%) hypothetical proteins with unknown functions in them [10–12]. These
innate characteristics of phage genomes greatly reduce the effectiveness of conventional
sequence alignment methods.

In order to mitigate any possible risks and adverse effects during phage therapy, a
bioinformatic tool for the selection of suitable therapeutic phage candidates must be able
to check for the following conditions in the phage genome [13]: (i) presence of temperate
markers, (ii) presence of toxin and virulence genes, and (iii) presence of antimicrobial
resistance genes. It is crucial that these markers and genes are absent in any phages
intended for therapeutic use. However, no single-step tools that can be used for the
selection of suitable therapeutic phage candidates are currently available.

For condition (i), the determination of the presence of temperate markers in the phages
ensures the exclusion of non-strictly lytic phages from being used in phage therapy. The
mechanism of action of phage on a bacterial host depends on the life cycle of the phage,
which can be classified into lytic, temperate, chronic, and pseudolysogenic cycles [14,15].
Out of these four lifestyles, lytic phages are considered as the most suitable candidates for
phage therapy due to their rapid bactericidal effect. Besides that, there are greater risks
associated with the usage of temperate phage in therapeutic treatment due to their ability
to integrate “harmful” genes, such as antimicrobial resistance genes and virulence genes
into the bacterial hosts through genome integration [16–19]. Besides that, temperate phages
are able to provide superinfection immunity to the infected bacterial host, which prevents
secondary infections by other phages, resulting in a decline in the replication capacity of the
phage population [20]. This increases the risk of adverse effects compared to their intended
therapeutic effect [1]. Currently, there are two widely used tools available for determining
phage lifestyle, namely PHACTS and BACPHLIP. Both these tools employ similarity
algorithms to annotate the proteomes of the phages and to classify their lifestyles based
on their conserved protein domains using random forest classifier [21,22]. However, these
methods still rely on sequence similarity algorithms such as HMMER3 [23] to determine
the similarities between conserved protein domains of the phage of interest and other
temperate phages in the database. This method is still bound to the limitations of efficiency
of sequence similarity algorithms for phage genome characterization as described earlier.
Instead, protein biological feature spaces such as di- and tri-peptide frequencies, isoelectric
points, flexibility indices, and other generic protein features are found to be more effective
in determining phage proteins’ functional similarities [24–26].

Although strictly lytic phages are preferred for therapeutic use, this does not mean that
all lytic phages are excluded from the risk of adverse effects, as their genomes may still har-
bor antibiotic resistance genes and phage-encoded toxins and virulence genes [10,27], which
requires checking for the conditions (ii) and (iii) described earlier. The primary method
of detecting these genes is performed by comparing the ORF sequences of the candidates
to the available databases. There are many comprehensive databases that are available to
date for detecting these genes, such as the Comprehensive Antibiotic Resistance Database
(CARD), Short, Better Representative Extract Dataset Antibiotic resistance (ShortBred AR),
MEGARes, and National Database of Antibiotic Resistant Organism (NDARO) for the
detection of antimicrobial genes [28–31]. Virulence factors are detected using databases
such as ShortBred VF and Virulence Factor Database (VFDB) [29,32]. These databases can
be accessed for determining the presence of antibiotic resistance genes and virulence genes
individually. However, the ABRicate tool, which utilizes these multiple databases as a
bundle, provides convenience for the researchers to detect these genes simultaneously [33].

Keeping in mind all the aforementioned conditions for selecting suitable therapeutic
phage candidates and the limitations of existing tools, we have developed an online single-
step tool for the determination of safe phage candidates using an ensemble of extreme
gradient boosting technique-based predictors. These predictors utilize protein features to
determine the presences of integrases, Cro/CI repressor proteins, immunity repressors,
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DNA partitioning protein A (ParA), and anti-repressor proteins in the phage candidates,
along with the integration of the ABRicate tool to detect harmful genes, allowing the
researchers to rapidly deselect phages to be used for phage therapy.

2. Materials and Methods
2.1. Dataset Creation

Phage complete genomes dated prior to March 2018 were acquired from the NCBI
RefSeq database in Genbank format. A total of 8368 phage GenBank files were obtained, out
of which a total of 772,938 CDS protein sequences were extracted. From these sequences,
any proteins with less than 30 amino acids were removed, along with hypothetical proteins
and any proteins with unclear annotations, resulting in 188,080 protein sequences from
7686 phage genomes. The retained protein sequences were used for the training of the
model. For the validation dataset, 63 phage genomes dated after March 2018 were obtained
from the NCBI RefSeq database, with 45,231 protein sequences. For each predictor, the
protein sequences were labeled based on their respective annotations. For example, for
creating the integrase dataset, positive labels contained proteins that were annotated as
“integrase”, “site-specific recombinase”, “tyrosine recombinase”, “serine recombinase” and
other related keywords. Any proteins that did not belong to the positive dataset were
labeled as negatives. Furthermore, proteins that were ambiguously annotated such as DNA
binding protein, transcription regulator, repressors, and DNA partitioning proteins (with
no subunits) were removed from the respective datasets. The keywords used for labeling
the data and the resulting number of positive and negative labels are shown in Table 1. In
order to ensure that the dataset is optimized for each of the predictors (not “one dataset fits
all”), the datasets were created and filtered independent from each other. For example, for
preparation of the integrase dataset, ambiguous annotations of the integrase proteins were
removed from the dataset, while for the repressor protein dataset, ambiguous annotations
of the repressor proteins were removed.

Table 1. Keywords used for labeling positive and negative data from annotated protein names and
the resulting number of positive and negative labels in training and validation datasets.

Dataset Keywords Used for
Positive Labels

Number of Positive
Labels

Number of Negative
Labels

Integrase

Integrase, site-specific
recombinase, tyrosine
recombinase, serine
recombinase, int, tyr

recombinase, ser
recombinase

Training: 2224
Validation: 485

Training: 156,132
Validation: 38,885

Cro/CI Cro, CI, C1, CL Training: 657
Validation: 132

Training: 156,170
Validation: 39,238

Immunity repressor
Immunity related

repressor, immunity
repressor, ImmR

Training: 754
Validation: 305

Training: 157,602
Validation: 39,065

ParA

DNA partitioning
protein A,

Chromosome
partitioning protein

A, ParA, partitioning
protein A

Training: 78
Validation: 9

Training: 158,663
Validation: 39,435

Antirepressor

Antirepressor,
anti-repressor,

antirepressor Rha,
Rha

Training: 945
Validation: 185

Training: 157,864
Validation: 39,275
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To prevent any misclassification of proteins to the positive and negative bins due to
misannotation, a filtering step was included prior to training of the predictor model. To
filter any possible mislabeled proteins, all the proteins in the positive and negative bins
were aligned to themselves using DIAMOND [34] and clustered based on different bit
score values (bitscore = 75, 100, 125). The results were then visualized as graphs using the
python networkx module [35], with the positive and negative data as colored nodes and
the respective bit scores as edges. An example network graph generated from the integrase
dataset is shown in Figure 1. The network graph was used to visualize the protein clusters
according to their respective labels, from which the misclassification, any negative label
in positive clusters (<20%), and vice versa were removed from the dataset. If any of the
misclassifications consisted of more than 20% of the total number of proteins in that cluster,
all the proteins from that cluster were removed. This resulted in three filtered datasets,
namely filtered_75, filtered_100, and filtered_125. The protein features of the original and
three filtered datasets were subsequently extracted.
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2.2. Feature Generation

A total of 1576 protein features were extracted from the proteins using custom scripts
as described in [26]. The features included 400 dipeptide frequency, 100 reduced amino acid
dipeptide frequency, 1000 reduced amino acid tripeptide frequency, 34 PROSITE domain
features, and 42 generic protein features from the BioPython SeqUtils ProteinAnalysis
module [36]. Selection of the final features used for each predictor was based on the
importance of the features as calculated from the XGBoost module [37].
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2.3. Training and Testing Using XGBoost

After the extraction of the protein features from the dataset, the dataset was split into
training and testing sets with a ratio of 0.7 to 0.3. The protein features were passed to an
extreme gradient boosting tool (XGBoost) to learn to differentiate between the positive
and negative classes. XGBoost utilizes a gradient boosting framework to generate decision
tree models, in which the new models are added sequentially to the ensemble based on
the error values obtained from the previous models to decrease the total error value to the
minimum. One common issue in machine learning models is the imbalance of classes in
the training set; however, this was resolved by passing the scale positive weight parameter
of the XGBoost module to compensate for the unbalanced classes. The scale positive
weight for each dataset was calculated using the formula: scale positive weight = number
of negative data/number of positive data. The training and testing of the model were
performed in rounds. For each round, top features contributing to the correct prediction
were selected by removing the 50 least contributing features, until the minimal number
of features was reached. The final features were then selected based on the Matthews
correlation coefficient (MCC) scores obtained from testing each of the models with the test
dataset. The final predictors were trained using the optimal features and were validated
using the validation dataset.

2.4. 10-Fold Cross-Validation

In order to determine the learning ability of the model using the extracted features,
10-fold cross-validation was performed using two different methods. For the first method, a
generic 10-fold cross-validation method was performed, using the StratifiedKFold module
from the sklearn python module [38]. Instead of randomly grouping the datasets into
10 bins, in the second method, all the proteins were clustered using the cd-hit tool at low
identity (60%), resulting in multiple clusters. The clusters were then grouped into 10 bins
by making sure the proteins from the same clusters were always grouped into the same
bins. This was performed to determine how well the predictor is able to predict across
different clusters of proteins that were not included in the training.

2.5. Screening for Virulence and Undesirable Genes

To screen the possible candidate phages for the presence of any undesirable genes such as
virulence factors and antibiotic resistance genes, the ABRicate tool was used. ABRicate enabled
the mass screening of predicted ORFs for detection of any undesirable genes by comparing
the query sequences to different available databases, namely, NCBI, CARD, ARG-ANNOT,
Resfinder, MEGARES, EcOH, PlasmidFinder, Ecoli_VF and VFDB [28,30,32,39–43]. This step
was crucial in order to eliminate the possibility of lysogenic conversions and any undesirable
recombination events that may occur between the candidate phages and the bacterial host,
which in turn lead to the deleterious genes being assimilated into the bacterial host.

3. Results and Discussions
3.1. Selection of Best Dataset and Best Features

To create predictors with the best performance for each temperate marker (integrase,
Cro/CI repressor, immunity repressor, parA, and antirepressor), two criteria were taken
into consideration. First, for each temperate marker, we selected the dataset that can best
represent the whole data used for training the model. This was performed by training and
testing each of the models using four different datasets. These datasets consisted of the
original dataset without any filtering and three datasets filtered based on bit scores (details
provided in the methodology), except for ParA, which did not contain any annotation
misclassification. The second consideration was to minimize the number of features used
for each predictor and to select the best features that can be used to differentiate the positive
and negative classes. In order to select the minimum number of features, the training and
testing were performed in rounds. For each round, the number of features was decreased by
a preset amount until the minimum number of features was reached. This method allowed
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us to select the best features while minimizing the probability of overfitting the model
and to reduce the time taken for the predictor to predict. With these two considerations
in mind, some level of compensation between the performance of the predictor and the
number of features was allowed to select the optimal features that were used in the final
predictor. The accuracy, F1 score, and area under the Curve (AUC) scores were calculated
for each of the predictors, but the performance of each model was evaluated based on MCC
scores, as these provide a much more reliable scoring metric for data with imbalanced
classes [44]. The test MCC for each model for each round is shown in Figures 2–6. For
the integrase model, a mean MCC score of 0.92 was obtained using the original dataset,
and 0.94 was obtained using the filtered_75, filtered_100, and filtered_125 datasets. For
the Cro/CI repressor model, a mean MCC of 0.82 was obtained using the original and
filtered_75 dataset, 0.87 using the filtered_100 dataset, and 0.85 using filtered_125 dataset.
For the immunity repressor model, a mean MCC of 0.83, 0.88, 0.92, and 0.95 were obtained
using original, filtered_75, filtered_100, and filtered_125, respectively. For the ParA model,
mean MCC score of 0.88 was obtained using the original dataset. Finally, for antirepressor,
mean MCC of 0.87, 0.91, 0.86, and 0.90 were obtained by using the original, filtered_75,
filtered_100, and filtered_125 datasets, respectively. The performance metrics for each of the
predictors are shown in Supplementary Table S1 (Performance metrics of temperate markers
predictors). The MCCs obtained in each round were not linear to the number of features
used for training, as the performance of the models fluctuated in each round when different
numbers of features were used. It can be counterintuitive to observe the MCC to be lower in
a model with the highest number of features compared to the model with the lower number
of features. However, these fluctuations signify that not all the features play an equally
significant role in the performance of the predictor and that the different combination of
features used during learning explicitly affects the performance of the predictor. The final
dataset and best features were then selected based on the aforementioned considerations.
For the best dataset selection, the filtered_100 dataset was selected for integrase and Cro/CI
repressor, the dataset filtered_125 was selected for immunity repressor and antirepressor,
and the original dataset was selected for ParA. The number of selected features for the
final predictors were 350, 251, 142, 74, and 201 for integrase, Cro/CI repressor, immunity
repressor, ParA, and antirepressor, respectively.

3.2. Optimization and Validation of Final Predictor

The final predictors were trained using the selected datasets and features. To achieve
the highest performances, the prediction thresholds were tuned to the value where the
highest MCC scores were obtained using the training dataset. This was performed by
iterating through the prediction threshold using incremental values and selecting the
threshold with the highest MCC. With that, a prediction threshold of 0.252 for integrase
predictor, 0.363 for Cro/CI repressor predictor, 0.472 for immunity repressor predictor, 0.03
for ParA predictor, and 0.389 for antirepressor predictor were obtained. Each predictor was
then evaluated using the respective validation datasets. The validation MCC scores of each
predictor were 0.92 for integrase (accuracy: 0.99, F1-score: 0.92), 0.71 for Cro/CI repressor
(accuracy: 0.99, F1-score: 0.71), 0.87 for immunity repressor (accuracy: 0.99, F1-score: 0.86),
0.76 for ParA (accuracy: 0.99, F1-score: 0.75), and 0.92 for antirepressor (accuracy: 0.99,
F1-score: 0.92). The optimized threshold values and the corresponding score metrics are
shown in Table 2.
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Table 2. Optimized prediction threshold and validation score metrics of each predictor.

Predictors Threshold Validation
MCC Validation F1 Validation

Accuracy

Integrase 0.252 0.92 0.92 0.99
Cro/CI 0.363 0.71 0.71 0.99

Immunity repressor 0.472 0.87 0.86 0.99
ParA 0.03 0.76 0.75 0.99

Antirepressor 0.389 0.92 0.92 0.99

3.3. 10-Fold Cross-Validation

Cross-validation was performed to estimate the ability of the predictor to perform on
unseen data. In this study, two types of 10-fold cross-validation were performed, namely,
random 10-fold cross-validation and clustered 10-fold cross-validation. Random 10-fold
cross-validation follows the generic 10-fold cross-validation steps where the datasets are
randomly binned into 10 bins, and each bin is tested against the model trained using
the remaining bins. The predictors were able to learn and predict across different bins
successfully as indicated by the high MCC scores, 0.97 for integrase, 0.91 for Cro/CI
repressor, 0.96 for immunity repressor, 0.90 for ParA, and 0.94 for antirepressor, as shown in
Figure 7. The annotations of proteins are generally dependent on the sequence similarities
and are heavily influenced by the variance in the sequences. In the case of phage proteins,
the sequence similarities among a single type of protein can be as low as 40% [45]. To
determine how these similarities affect the ability of the predictors to predict across different
clusters of protein grouped according to their similarities, another round of 10-fold cross-
validation was performed with a slight modification. Instead of randomly binning the
dataset into 10 bins, the proteins were first clustered using cd-hit (similarities = 60%), and
then the dataset were binned into 10 bins, making sure the proteins from the same clusters
were always grouped into the same bin, with no cross-cluster proteins in any of the bins.
The ability of the predictor to predict unseen clusters of proteins was relatively good for the
integrase, with a mean MCC score of 0.81, followed by predictors with lower mean MCC
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scores of 0.64 for antirepressor, 0.58 for immunity repressor, 0.44 for ParA, and 0.16 for
Cro/CI, as shown in Figure 7. The lower MCC scores obtained from the clustered 10-fold
cross validation (ParA and Cro/CI repressor) may indicate lower conservation among the
sequences of the respective protein markers, which ultimately reflects the importance of
including a large dataset for protein predictions. If a particular cluster of protein from the
positive data is not included during the training process, the ability of the predictor to
predict that cluster of protein is greatly limited.
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3.4. Feature Importance

The protein features used in this study were found to be effective in differentiating
various classes of proteins [26]. In total, 626 unique features were used for the final
predictors, out of which 171 features were uniquely used for integrase, 90 features were
uniquely used for Cro/CI repressor, 59 features for immunity repressor, 18 features for
ParA, and 71 features for antirepressor. The detailed unique and shared features used for
each of the predictors and their importance are shown in Supplementary Figure S1 (Feature
importance scores of features used for temperate markers predictors). Reduced tripeptide
frequencies were the most used features in all the predictors consisting of 50.32% of the
total features, followed by dipeptide frequencies at 33.54%, reduced dipeptide frequencies
at 9.58%, and generic protein features at 6.56%. Protein features derived from the sequences,
such as amino acid compositions, aromaticity, flexibility, isoelectric points, and various
other properties, were found to be effective in classification of protein and determination
of their functions, especially in biological niches where the traditional annotation method
using sequence similarities failed [46]. Various tools have been developed and used for
effective classification of proteins using machine learning (ML) models by utilizing protein
features as the initial input [47–49]. However, it is important to tailor the features used
for each ML model according to the intended objective of the protein classifier, which
was reflected from this current study where different protein classes require different
combinations of features for the predictors to achieve optimal performance.

3.5. Prediction of Phage Lifestyle

To simulate the in silico selection of therapeutic phages based on the presence of
temperate markers, we decided to use the phage lifestyle dataset to test the ability of
the predictors to predict the presence of temperate markers, and to some extent, their
lifestyle (temperate and lytic). The lifestyle prediction was performed with a non-syllogistic
assumption that lytic phages will not contain any temperate markers. Although this
is not entirely true, it provides an empirically validated dataset for comparing against
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available similar prediction tools. As the focus of PhageLeads is to assess the suitability
of a virulent phage for clinical use, we have chosen a conservative approach where any
phage that carries any of the chosen marker genes will be classified as temperate and not
suitable. The phage lifestyle dataset was used for validation of BACPHLIP, a random
forest-based phage lifestyle predictor that uses features obtained from the presence of
206 lysogeny markers using HMM protein sequence similarity calculations [22]. This
dataset was originally compiled by Mavrich and Hatfull [50], consisting of 423 phages with
an empirically validated lifestyle of the phages, with 240 temperate phages and 183 lytic
phages. Performance of PhageLeads on the phage lifestyle dataset was good, with an MCC
score of 0.92 (accuracy: 0.96, F1-score: 0.95). A total of 16 genomes were mispredicted, with
seven false positives and nine false negatives. A confusion matrix of the prediction output
is shown in Table 3.

Table 3. Confusion matrix of the prediction of phage lifestyle by using integrase, Cro/CI, immunity
repressor, ParA, and antirepressor predictor.

Lytic Temperate

Lytic 177 7
Temperate 9 231

Using the same test dataset, phage lifestyle predicted by BACPHLIP contained seven
erroneous predictions. The higher accuracy of this predictor may be attributed to the
lesser number of data used in the training and testing process of the tool compared to
PhageLeads [50]. The training data from BACPHLIP only contained information from
634 phage genomes, encompassing five phage families. In contrast, 8368 phage genomes
from 17 families were used to train PhageLeads, which provides a better representation
of the currently existing phage sequence space. Phage lifestyle information obtained
from literature reviews is not completely dependable, as the lifestyle of the phages may
be generalized based on the type of phage or the reference genome used during the
annotation. Other than that, the information on the numbers of experiments reproducibly
performed to determine the phage lifestyle may not be readily available during review,
which decreases the confidence of the actual lifestyle of the phages. When this lifestyle
information is used during training of a model, the resulting predictions may not reflect
the actual lifestyle of the phages. Hence, to prevent using such ambiguous information that
contributes to biased predictions, no lifestyle information was included in the training of
PhageLeads. Instead, the lifestyle of the phages was deduced purely from the existence of
these lysogeny markers. From the phage lifestyle dataset used in this study, we observed
that in some phages, although annotated as lytic phages, their genomes contained some
of the temperate markers. As shown in Table 4, these genomes resulted in false positive
predictions (lytic predicted as temperate) by PhageLeads. Although the presence of these
predicted temperate markers in lytic phages do not always reflect the actual temperate
lifestyle of the phages [51], the presence of these proteins in the phage genomes may still
be a risk for the phages to be used in phage therapy.
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Table 4. Lytic phages that have been predicted as temperate phages (false positive) that contained
actual and putative temperate markers.

Phage Genome Protein Name Protein ID Predicted Marker Remark

Salmonella phage
SPN19 (NC_019417) hypothetical protein YP_006990261.1 Integrase

Blastp result shows high
similarity (99.1%) to viral

integrase family 4
[Salmonella Phage
37;YP_009221453.1]

Salmonella phage FSL
SP-088 (NC_021780) hypothetical protein YP_008239914.1 Integrase

Blastp result shows high
similarity (97.3%) to viral

integrase family 4
[Salmonella Phage
37;YP_009221453.1]

Lactococcus phage 4268
(NC_004746)

DUF739 family protein NP_839893.1 Cro/CI
DUF739/pfam05339

contains putative Cro/CI
repressors

helix-turn-helix
transcriptional

regulator
NP_839899.1 Cro/CI

HTH-transcriptional regu-
lator/repressor/HTH

-containing proteins are
common ambiguous

annotations of Cro/CI

putative antirepressor NP_839894 Antirepressor Lytic phage with lysogeny
marker

Lactobacillus phage
Lc-Nu (NC_007501)

CI-like repressor YP_358780.1 Cro/CI Lytic phage with lysogeny
marker

Cro-like repressor YP_358781.1 Cro/CI Lytic phage with lysogeny
marker

Mycobacterium phage
LRRHood (GQ303262) immunity repressor ACU41572.1 Immunity repressor Lytic phage with lysogeny

marker

Mycobacterium phage
Alice (JF704092) hypothetical protein AEJ94305 Immunity repressor

Blastp result shows high
similarity(98.82%) to
immunity repressor

[Mycobacterium phage
Phox; ATN91327.1]

3.6. Caveat in Phage Protein Predictors

One of the major challenges during the construction of PhageLeads was the presence
of ambiguously annotated proteins in the database. For example, some Cro/CI repres-
sors were simply annotated as “transcriptional regulators” or “repressor”, some integrase
proteins were annotated as “DNA-binding protein” or “recombinase”, while some ParA
proteins/chromosome partitioning protein A were simply annotated as “Chromosome
partitioning protein” or “DNA partitioning protein”. If these ambiguously annotated pro-
teins were used for constructing ML models, the accuracy of the models would be severely
affected. Hence, while constructing PhageLeads, some of these unresolved ambiguous pro-
teins were removed from the training data. However, in doing so, some classes of proteins
of interest might have been removed due to their consistent misannotation throughout
the database, leading to misclassification of phage lifestyles, and subsequently leading to
false predictions. To reduce the biases due to false and ambiguous annotations of proteins,
we suggest exploration of three-dimensional structures of these proteins to resolve any
misannotations, as the functions of proteins are highly correlated to their three-dimensional
structures [52]. This idea will be ventured upon in the near future for further improving
the performance of PhageLeads.

3.7. AMR and Virulence Genes in Lytic Phages

Although purely lytic phages are preferred for phage therapy, the presence of virulence
and antibiotic genes in the phage genome makes them unsuitable to be used for therapeutic
applications. This is to avoid any unintended recombination events that might cause
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these genes to be transduced into the host genomes, increasing the risk of failure or even
adversely affecting the outcome of the phage therapy. Additional screening processes using
the ABRicate tool to detect the presence of undesirable genes have been incorporated in
PhageLeads. To demonstrate the presence of such genes in the genome of lytic phages
and that not all lytic phages are suitable for candidates for phage therapy, genomes of
lytic phages from the phage lifestyle dataset were screened for antimicrobial resistance
and virulence genes using ABRicate. Out of 183 lytic phages, five phages were found to
encode for one or multiple virulence proteins such as increased serum survival proteins
(ISS), Type III secretion system effectors, Cytolethal distending toxins, Shiga toxins, and
NleG effectors. One of the phages was found to encode both antimicrobial resistance genes
(chloramphenicol resistance) and virulence genes (ISS), as shown in Table 5. These lytic
phages are not suitable to be used for phage therapy due to risk of adverse effects.

Table 5. Antimicrobial resistance and virulence genes obtained by screening the genome of lytic
phages using ABRicate.

Phage Genome Gene Product Resistance/Virulence Database Source

Stx2 converting phage
vB_EcoP_24B
(NC_027984)

CatA1
type A-1

chloramphenicol
O-acetyltransferase

Chloramphenicol
resistance

NCBI, CARD,
ARGANNOT, resfinder,

megares

iss2 Increase serum survival
protein Virulence ecoli_vf

Enterobacteria phage
lambda (NC_001416) iss2 Increase serum survival

protein Virulence ecoli_vf

Phage cdtI
(NC_009514)

nleH1 Type III secretion
system effector NleH1 Virulence ecoli_vf

cif
Type III secretion

system effector Cif
cyclomodulin

Virulence ecoli_vf

cdtA Cytolethal distending
toxin subunit A Virulence ecoli_vf

cdtB Cytolethal distending
toxin subunit B Virulence ecoli_vf

cdtC Cytolethal distending
toxin subunit C Virulence ecoli_vf

Enterobacteria phage
YYZ-2008 (NC_011356)

stx1A Shiga toxin 1 subunit A Virulence ecoli_vf

stx1B Shiga-like toxin 1
subunit B Virulence ecoli_vf

nleG6-3 NleG Type 3 Effectors Virulence ecoli_vf
nleG5-1 NleG Type 1 Effectors Virulence ecoli_vf

Escherichia phage
TL-2011c (NC_019442)

stx2A Shiga toxin 2 subunit A Virulence ecoli_vf

stx2B Shiga-like toxin II
subunit B Virulence ecoli_vf

iss2 Increase serum survival
protein Virulence ecoli_vf

Enterobacteria phage
HK629 (NC_019711) iss2 Increase serum survival

protein Virulence ecoli_vf

4. Conclusions

By utilizing the protein features of these temperate markers, PhageLeads was able
to predict the lifestyle of phages with high accuracy (96.2%). PhageLeads consists of
five individual temperate protein predictors for the temperate markers, which predicts
the presence of these markers in phage genomes. Based on the presence of either one
or multiple markers, we were able to effectively classify the lifestyle of phages (lytic or
temperate). Additionally, the lytic phage genomes were screened using ABRicate tool,
in which some lytic phages were found to encode antimicrobial resistance and virulence
proteins, deeming them unsafe for phage therapy. PhageLeads was able to predict the
presence of temperate markers in a single phage in 1.6 s on average and was able to
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detect the resistance and virulence genes in an average of 8.1 s, compared to 2.3 s taken
for BACPHLIP to predict the lifestyle of a single phage. PhageLeads is available as an
online tool at www.phageleads.dk (Last accessed on 15 January 2022) as a part of the
PhageCompass consortium (www.phagecompass.dk, Last accessed on 15 January 2022),
making it easily accessible for researchers and as an effective tool for determining the
suitability of phage for therapeutic use. Additionally, PhageLeads can also be used for
predicting the presence of lysogenic markers for metagenomic contigs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v14020342/s1, Figure S1: Feature importance scores of features used
for temperate markers predictors; Table S1: Performance metrics of temperate markers predictors.
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