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a b s t r a c t

Most of the dissimilarity between Staphylococcus aureus strains is due to the presence of mobile genetic

elements such as bacteriophages or pathogenicity islands. These elements provide the bacteria with addi-

tional genes that enable them to establish a new lifestyle that is often accompanied by a shift to increased

pathogenicity or a jump to a new host. S. aureus phages may carry genes coding for diverse virulence fac-

tors such as Panton-Valentine leukocidin, staphylokinase, enterotoxins, chemotaxis-inhibitory proteins,

or exfoliative toxins. Phages also mediate the transfer of pathogenicity islands in a highly coordinated

manner and are the primary vehicle for the horizontal transfer of chromosomal and extra-chromosomal

genes. Here, we summarise recent advances regarding phage classification, genome organisation and

function of S. aureus phages with a particular emphasis on their role in the evolution of the bacterial host.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The majority of both colonising and infectious Staphylococcus

aureus isolates can be placed into a limited number of mostly pan-

demic clonal complexes (Lindsay, 2010; Lindsay and Holden, 2004;

Melles et al., 2004). In general, S. aureus is regarded as a highly clo-

nal species with a conserved core genome (Feil et al., 2003) that

has evolved mainly through mutation, as illustrated by single-

nucleotide polymorphisms detected by multilocus sequence typing

(MLST) of selected housekeeping genes or through whole-genome

sequencing. Thus, the diversity of the S. aureus species is mainly

determined by the presence of mobile genetic elements, many of

which are prophages or phage-related genomic islands. Both the

horizontal transfer of most of the mobile elements and strain evo-

lution are tightly linked to phages. First, phages can be mobilised

and transferred to recipient strains. It is known that many acces-

sory genes carried by phage genomes encode for staphylococcal

virulence factors, which are important for the success of certain

S. aureus strains. Second, phages support the induction, packaging

and transfer of genomic islands. This interesting topic was recently

reviewed (Christie and Dokland, 2012; Novick et al., 2010) and will

not be the focus of the present review. Third, phage transduction is

an efficient means to transfer not only extra-chromosomal mobile

elements, such as plasmids, but also chromosomal markers (albeit

with lower efficiency). In general, for S. aureus, it is believed that

phages are the primary tool for diversification because the species

is thought not to be naturally competent. However, this long-

standing notion was recently challenged by the finding that at least

under certain circumstances, an alternative sigma factor H can be

expressed in subpopulations of bacteria in which a competence

apparatus becomes activated to mediate the uptake of naked

DNA (Morikawa et al., 2012). Interestingly, sigma factor H has also

been shown to interact with the conserved promoter region of

phage integrase (int) genes, which seems to result in the stabilisa-

tion of the lysogenic state (Tao et al., 2010). Thus, sigma factor H

may serve as a regulatory tool involved in modulating horizontal

evolution (at least under some thus-far-poorly-defined condi-

tions), a topic that clearly needs further evaluation.

Here, we will first give a brief overview of previously used

methods to classify S. aureus phages as well as basic insights into

the genome structure of selected phages. Then, we will mainly fo-

cus on the impact of phages on the evolution of the bacterial host.

2. Serogroups and morphology of phages infecting S. aureus

All known S. aureus phages belong to the order Caudovirales

(tailed phages), which are composed of an icosahedral capsid filled

with double-stranded DNA and a thin filamentous tail. Based on

the tail morphology, they can be further classified into three major

families: Podoviridae, which have a very short tail; Siphoviridae,

which have a long non-contractile tail; and Myoviridae, which

have a long, contractile, double-sheathed tail, as shown in Fig. 1.

In early studies, S. aureus phages were compared, grouped and

classified according to their reaction to polyclonal antiserum,

which can neutralise phage infection. Based on the phage neutral-

isation tests, 39 phages were classified into six serogroups

(Rountree, 1949). With more sera and more staphylococcal phage

isolates, a total of 11 serogroups (A–H and J–L) were defined

(Rippon, 1952, 1956). Group E, J, and K phages were found to be
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specific for coagulase-negative staphylococci and avirulent to S.

aureus. Most of the temperate phages infecting S. aureus could be

assigned to serogroups A, B and F.

With the development of electron microscopy, morphology-

based classification of S. aureus phages became feasible. Acker-

mann and Brandis et al. proposed a similar classification system

including three major morphological groups, A–C or 1–3, which

correspond to the phage families Myoviridae, Siphoviridae and

Podoviridae, respectively (Ackermann, 1975; Brandis and Lenz,

1984). According to the proposal by Brandis and Lenz, all phages

in morphological group 2 (Siphoviridae) have non-contractile tails.

Based on a tail length longer or shorter than 200 nm and the shape

of the head, staphylococcus phages in this group can be further as-

signed to subgroups 2.1, 2.2.1, and 2.2.2, which roughly correspond

to serogroups B, A and F, respectively. While phages from sero-

groups B and F have isometric capsids, phages from serogroup A

have distinct prolate heads (Fig. 1). Most serogroup B phages have

tails shorter than 200 nm, while phages in serogroups A and F have

tails longer than 200 nm. Phages in serogroups D and G seem un-

able to lysogenise host cells and can be assigned to Myoviridae

or Podoviridae, respectively.

3. Genome organisation of S. aureus phages

The identification and differentiation of S. aureus phages has

been continuously improved through the development of molecu-

lar biology techniques. Since the release of the full sequence of phi-

PVL (Kaneko et al., 1998) there have been many genomes of

staphylococcal phages and prophages fully sequenced. In a repre-

sentative study (Kwan et al., 2005) based on the complete genomes

of 27 phages, S. aureus phages are organised into three size classes:

staphylococcal siphoviruses, with a genome size of 39–43 kb; pod-

oviruses, with a smaller genome size of 16–18 KD; and myoviruses,

with a genome size of 120–140 kb (for recent reviews, see

(Deghorain and Van Melderen, 2012; Lobocka et al., 2012)).

The genome maps of four representative siphoviruses that be-

long to different serogroups (A, B and F) are shown in Fig. 2. The

siphovirus genomes are usually organised into six functional mod-

ules: lysogeny, DNA replication, packaging, head, tail, and lysis.

Nucleotide sequence analysis revealed that phage genomes of dif-

ferent serogroups share the most homology at the replication mod-

ule. Two serogroup B phages, /11 and /80a, are among the best

studied S. aureus phages – partially because both phages have very

high transducing efficiency and were thus often used experimen-

tally to transfer gene mutations between S. aureus strains.

Although there are 50–70 ORFs encoded by each siphovirus

genome, for the majority of the ORFs, we have only putative

functional annotation. In the following part, only experimentally

characterised staphylococcal phage genes will be reviewed. For

an updated, expert annotated genome maps of representative

phage gnomes please refer to Fig. 2.

3.1. Lysogeny module

As shown in Fig. 2, the integrase and regulator proteins, CI and

Cro, respectively, are encoded in the lysogeny modules. The switch

between lysogenic and lytic growth is most likely controlled by a

molecular circuitry similar to that of the k phage: The phage will

remain in the lysogenic state if CI predominates but will be trans-

formed into the lytic cycle if Cro predominates. In vitro analysis

demonstrated that the /11 CI-operator complex resembles those

of lambdoid phages at the structural level. The mode of action of

the /11 CI, however, may be distinct from that of the repressor

proteins of k and related phages (Ganguly et al., 2009).

3.2. Module for DNA replication

Downstream of the lysogeny module, a dozen of the ORFs in the

/11 and /80a genomes may be involved in the redirection of host

DNA metabolism for phage DNA replication, as various DNA-bind-

ing motifs and putative nucleases could be identified in this region

using in silico approaches. However, experimental proof is still lack-

ing for most of the ORFs, with a few exceptions. In a recent study,

three genes in this region were found to be involved in the mobili-

sation of S. aureus pathogenicity islands (SaPIs). SaPIs are a family

of 14–27 kb genetic elements that usually stably reside in the S. aur-

eus genome, similarly to prophages, and contain phage-like repres-

sor, integrase and terminase genes but do not contain genes

encoding for phage structural proteins. SaPIs also carry a variety

of accessory genes including superantigen toxins, antibiotic resis-

tance factors and other virulence factors. The excision and replica-

tion of SaPIs needs a helper phage. Both /11 and /80a are used as

model helper phages to study SaPI mobilisation. Following the

induction of a resident helper phage or superinfection by a helper

phage, the SaPI genome is excised, replicated and packed into the

structural proteins of the helper phage to form infectious SaPI par-

ticles whose capsid is usually 1/3 of the size of its helper phage

(Christie and Dokland, 2012; Novick et al., 2010). The depression

of different SaPIs requires different proteins from the helper phage.

For example, SaPI1, SaPIbov1 and SaPIbov2 are depressed by Sri

(ORF22), Dut (ORF32) and ORF15 of /80, respectively (Tormo-Mas

et al., 2010). Interestingly Sri was previously identified in /77 as a

DnaI-binding protein that inhibits host DNA replication (Liu et al.,

2004), while dut codes for a dUTPase (Tormo-Mas et al., 2010).

Phage proteins that redirect bacterial metabolic pathways to

the phage reproduction cycle have also been identified from the

staphylococcal myovirus phages G1 and Twort. ORF67 from phage

G1 interacts with the S. aureus RNA polymerase r subunit and

blocks cell growth by inhibiting transcription (Dehbi et al., 2009;

Osmundson et al., 2012), whereas ORF240 from phage G1 binds

tightly to the DNA sliding clamp and prevents both its loading onto

DNA and its interaction with DNA polymerase C, leading to DNA

replication arrest and cell death (Belley et al., 2006).

3.3. DNA Packaging and morphogenesis modules

In /11 and /80a, the packaging and head modules are localised

between the DNA replication and tail module. Recently, the func-

tions of several genes in this region were studied in detail. The

RinA protein exerts a regulatory function – it binds to the operator

situated upstream of the terS gene and activates the transcription

of the late operon covering the morphogenesis and lysis modules

(Ferrer et al., 2011). The transcription activator activity of both

RinA and RinB were previously demonstrated to modulate the

Fig. 1. Schematic representation of major groups of S. aureus phage. Modified

according to (Brandis and Lenz, 1984).
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expression of /11 int (Ye and Lee, 1993). In another study, it was

found that co-expression of /80a capsid protein and scaffolding

proteins in S. aureus but not in Escherichia coli leads to the forma-

tion of procapsid-related structures. Moreover, /80a capsid and

scaffolding proteins undergo normal N-terminal processing, sug-

gesting that a host protease was involved in the assembly of the

capsid (Spilman et al., 2012).

The virion proteins of the helper phages /11 and /80a are

highly homologous (Tallent et al., 2007; Tormo et al., 2008). The

major head protein and major tail protein are the most abundant

proteins in the mature virions. Surprisingly, protein GP8 (ORF8

localised in the lysogeny module of /80a) was found to be associ-

ated with CsCl-purified 80a procapsid fractions (Poliakov et al.,

2008), suggesting a dual role of GP8 in regulation and virion struc-

ture, in a manner similar to protein Psu of phage P4 (Dokland et al.,

1993; Pani et al., 2006).

A siphovirus tail is usually composed of major and minor tail

proteins, tape measurement proteins, baseplate proteins, cell wall

hydrolyses, and tail fibre proteins. Interestingly, the tail protein

(ORF636) from /SLT interacts with cell membrane-anchored

lipoteichoic acid (Kaneko et al., 2009), and HydH5 protein from

phage phiPLA88 was shown to bind to and lyse S. aureus cells

(Rodriguez et al., 2011). Homologues of these two proteins were

identified in the tail module of /80a, with ORF62 being 60% iden-

tical to ORF636 and ORF67 being 80% identical to HydH5.

3.4. Lysis module

The two-component lysis system consisting of a holin and an

endolysin was characterised in podovirus /68 (Takac et al., 2005)

and myovirus phage Twort (Loessner et al., 1998). While the gene

lys16 of /68 encodes the cell wall-degrading enzyme, the gene

hol15 was found embedded in the �1 reading frame at the 30 end

of lys16 and encodes for a class I holin (Takac et al., 2005). The sub-

strate specificities of several endolysins were studied in detail

(Navarre et al., 1999). Notably, the /11 endolysin encoded by

ORF53 has D-alanyl-glycyl endopeptidase activity in addition to

N-acetylmuramyl-L-alanyl amidase activity.

4. Phage classification based on integrase homology

Traditionally, S. aureus phages were characterised according to

their lytic activity, morphology and serological properties. The evo-

lution of phage lineages seems to be driven by the lateral gene

transfer of interchangeable genetic elements (modules), which

consist of functionally related genes. The Siphoviridae genomes

are usually organised into six functional modules: lysogeny, DNA

replication, packaging, head, tail, and lysis (Fig. 2) (Brussow and

Desiere, 2001; Iandolo et al., 2002; Kahankova et al., 2010). A func-

tional module found in one phage can be replaced in another phage

by a sequence-unrelated module that fulfils the same or related

functions; often, genes within such modules travel together

(Hatfull and Hendrix, 2011). Thus, multiple alignments of S. aureus

phage genomes reveal a chimeric and mosaic structure resulting

from horizontal transfer and recombination (Canchaya et al.,

2003; Goerke et al., 2009; Kwan et al., 2005; McCarthy et al.,

2012b).

Due to this modular structure, phage nomenclature and species

definition is challenging, and comparative genomics-based ap-

proaches are useful (Nelson, 2004). Multiplex PCR strategies have

Fig. 2. The genome map of representative S. auerus phages. /11 (Genbank entry NC_004615.1), /80a (NC_009526.1), /SLT (NC_002661), /13 (NC_004617) were drawn to

scale. The putative functions of the ORF were given above the ORF. Int (integrase), Xis (excisioniase), CI (CI like protein), Cro (Cro like protein), SSB (single strand DNA binding

protein), HNH (HNH nuclease), TerL (terminase, large unit), TerS (terminase small unit), MIH (minor head protein), MAH (Major head protein), Scaff (scaffold protein), HTCP

(head tail connector protein), TMP (tape measure protein), STP (siphon tail protein), Lip (Lipase), MiTP (minor tail protein), MaTP (major tail protein), Tfiber (tail fibre protein),

PEP (phage endopeptidase), Arep (antirepressor).
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been developed to classify the S. aureus Siphoviridae according to

their modules (lysogeny, regulation, replication, structural and ly-

tic modules) (Goerke et al., 2009; Kahankova et al., 2010) (Fig. 3). It

seems reasonable to classify the S. aureus prophages primarily on

the basis of int gene homology (Goerke et al., 2009; Kahankova

et al., 2010; McCarthy et al., 2012b). First, nucleotide sequences

are well conserved within integrase groups, making the gene an

ideal target for PCR amplification. The integrase-defined grouping

has a good discriminatory power, reflecting the diversity of the S.

aureus phage population. Second, the integrase identification al-

lows for prediction of the chromosomal location of the prophage.

Last, the integrase type is closely linked to the virulence gene con-

tent of the prophage and might therefore convey information

about the pathogenic potential of S. aureus (Goerke et al., 2009).

Most of the S. aureus phages can be assigned to one of the eight ma-

jor Sa-int families (Fig 3). Based on amino acid sequence homology

and catalytic residues, most integrases belong to the tyrosine

recombinase type family. Only the integrases of Sa7int phages

Fig. 3. Classification of S. aureus phages based on integrase serogroup and holin group reproduced from (Goerke et al., 2009).
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were found to belong to the serine recombinase type family (Goer-

ke et al., 2009). Recently, one unusual phage with an int gene (not

related to any of the main Sa-int groups of S. aureus but highly sim-

ilar to Se-int from a /SPb-like prophage of Staphylococcus epidermi-

dis) was shown in emerging, highly epidemic MRSA strains

(sequence type ST239) from Asia (Holden et al., 2010; Li et al.,

2012). Additionally, the insertion site of this phage within

SAR2132 (coding for a putative membrane protein) has thus far

not been described for any S. aureus phage.

Despite the usually strong association of the integrase with the

integration site, there are also events where a phage may integrate

in an illegitimate attachment site. This phenomenon was described

to occur for Sa3int phages during chronic lung infections of cystic

fibrosis patients (Goerke et al., 2006b). Under these conditions, the

reconstitution of the phage-interrupted hlb gene may be of advan-

tage. When these mislocated phages were induced and used to re-

infect S. aureus in vitro, the phages reintegrated at their dedicated

attachment site.

In general, prophages are vertically transferred with the bacte-

rial host genome, and the integration site is tightly linked with the

virulence repertoire conferred by the phage. Recombination and

exchange of certain modules seem to occur more often within

phages of the same Sa-int family than between different bacterio-

phage int-families (McCarthy et al., 2012b).

5. Phage-bacterial recognition

Phage adsorption to the S. aureus cell is the first critical step in

phage replication. In spite of the importance of this event, the

interaction partners are poorly characterised. Gram-positive cell

envelopes feature a unique anionic glycopolymer, the peptidogly-

can-anchored wall teichoic acid (WTA). WTA is one of the most

abundant molecules of the outmost layer and functions as a phage

receptor. The two major types of WTAs are either composed of

repetitive 1,3-glycerol-phosphate (GroP) or 1,5-ribitol-phosphate

(RboP), which are modified with sugar residues and alanyl groups

(Weidenmaier and Peschel, 2008). Recent studies on the Bacillus

siphovirus Spp1 revealed that adsorption of the phage to the host

cell initially depends on reversible binding to GroP-type WTA,

which accelerates the later irreversible binding to the membrane

receptor YueB (Baptista et al., 2008). The tail spike protein GP21

of phage SPP1 binds to YueB and triggers the release of phage

DNA (Vinga et al., 2012).

Most S. aureus strains express polyribitol phosphate WTA

substituted with N-acetylglucosamine (GlcNAc) and D-alanine

(Xia et al., 2010). Using isogenic mutants with altered WTA struc-

tures, we recently demonstrated that WTAs, but not LTAs, are re-

quired for siphovirus and myovirus infection of S. aureus. While

the siphoviruses need the GlcNAc on WTA for adsorption, the

myoviruses seem to adsorb to the backbone of WTA (Xia et al.,

2011). Chen and Novick reported on the transduction of SaPIs from

S. aureus to Listeria monocytogenes (Chen and Novick, 2009). Inter-

estingly, some L. monocytogenes serotypes were known to produce

WTA similar to that of S. aureus (Uchikawa et al., 1986), which may

well serve as the adsorption receptor of the infectious SaPI parti-

cles and enable the intergeneric transfer of toxin genes.

6. Accessory phage genes as major determinants for S. aureus

evolution

Although phages may be regarded as selfish elements, bacteria

have learned to use them for their own purposes, and lysogeny can

be regarded as a motor for short-term evolution. In many

pathogens, phages provide the bacteria with additional genes that

enable them to establish a new lifestyle. In S. aureus, several such

phage-encoded virulence factors have been described, an observa-

tion originally described as phage conversion. Positive lysogenic

conversion of different virulence factors was described for the

genes coding for Panton-Valentine leukocidin (lukSF) (Kaneko

et al., 1998), exfoliative toxin A (eta) (Yamaguchi et al., 2001),

the cell-wall anchored protein SasX (Li et al., 2012) and the im-

mune evasion cluster (IEC) composed of enterotoxin S (sea), staph-

ylokinase (sak), the chemotaxis inhibitory protein (chp) and the

staphylococcal complement inhibitor (scn) (van Wamel et al.,

2006). The disruption of chromosomal factors through phage inte-

gration was termed negative conversion, as exemplified by the

integration of the Sa3int and Sa6int phages into the b-haemolysin

(hlb) or lipase (geh) genes, respectively (Carroll et al., 1993; Lee and

Iandolo, 1986). In most cases, phage conversion could be linked to

specific disease outcomes.

6.1. Distribution and localisation of phage-encoded accessory factors

Interestingly, accessory genes are strongly associated with

phages of certain int groups and are localised at the left or (more

frequently) rightward ends of the phage (Fig 2). For instance, mul-

tiple alignments of several lukSF phages revealed a high mosaic

structure of the phage genomes, but the lukSF genes were always

located in a 6.4 kb region consisting of the host lysis module, lukSF,

attP, and the int gene (mostly Sa2int) (Kahankova et al., 2010;

Kaneko et al., 1998). The eta and ear genes are found at the end

of Sa1int phages, and the immune evasion gene cluster (IEC)-con-

taining genes sea, sak, scn, and chp are found at the end of Sa3int

phages. There is a link between the encoded virulence factors

and not only the int module but also the lytic module (holin and

amidase genes), which is localised at the opposite end of the

phages. One may assume that it is evolutionarily beneficial to

interchange this whole unit, which is in proximity in the circular

form of the phage. The close organisation of the lytic module and

the inserted virulence factors is perhaps favoured to optimise the

phage control of the expression of the pathogenicity genes (Sumby

and Waldor, 2003). For instance, the expression of the virulence

genes becomes co-transcribed with the late phage genes upon

phage induction (Goerke et al., 2006a; Sumby and Waldor, 2003;

Wirtz et al., 2009).

6.2. LukSF-carrying phages

LukSF-carrying phages are strongly associated with skin and

soft tissue infection and necrotising pneumonia, which can affect

young, immunocompetent persons (Shallcross et al., 2013;

Vandenesch et al., 2003; Zanger et al., 2012). The phages may differ

in the composition of their internal modules, and they typically

integrate into one of two lineage-specific insertion sites (Boakes

et al., 2011; Chen et al., 2012; Kaneko et al., 1998; Ma et al.,

2008; Narita et al., 2001; Otter et al., 2010; Wirtz et al., 2009).

The combination of lukSF-phages with methicillin resistance is

characteristic of community-associated MRSA strains that are

spreading in different continents. Strains of the most prominent

USA300 lineage (CC8 isolates) are mainly spreading in North Amer-

ica, whereas in Europe and Asia, CC80 strains and CC30 or CC59

strains are more prevalent, respectively. However, the most com-

mon feature of all these strains is the strong association of lukSF

phages and superficial, recurrent skin infections (Shallcross et al.,

2013). This trait might also be the reason for the success of these

strains, as they are presumably more transmissible compared to

nasal isolates. This hypothesis is supported by recent data indicat-

ing that skin and soft tissue infections serve as a source for blood-

stream infections (Tattevin et al., 2012).

G. Xia, C. Wolz / Infection, Genetics and Evolution xxx (2013) xxx–xxx 5

Please cite this article in press as: Xia, G., Wolz, C. Phages of Staphylococcus aureus and their impact on host evolution. Infect. Genet. Evol. (2013), http://

dx.doi.org/10.1016/j.meegid.2013.04.022

http://dx.doi.org/10.1016/j.meegid.2013.04.022
http://dx.doi.org/10.1016/j.meegid.2013.04.022


6.3. Sa3int phages carrying the IEC (immune evasion cluster)

Sa3int phages are by far the most prevalent S. aureus phages. Up

to 96% of human nasal isolates were found to carry Sa3int phages

integrated into the hlb gene (Goerke et al., 2006b; Verkaik et al.,

2011). The encoded immune modulatory proteins (Sea, Sak, Scin

and Chips) may act together to resist the innate immune response

encountered during nasal colonisation. The virulence factors of the

immune evasion cluster are highly human specific, which is in

good accordance with the observation that these phages are less

prevalent in animal isolates (Verkaik et al., 2011) and are lost when

S. aureus changes from human to animal hosts (McCarthy et al.,

2012a; Price et al., 2012; Resch et al., 2013). Nevertheless, it could

be shown in a mouse abscess model that curing of a Sa3int-phage

(UNM3) in strain Newman resulted in a significant reduction in the

ability of the strain to replicate in the liver (Bae et al., 2006).

Notably, most of the Sa3int phages remain inducible, leading to

the complete restoration of functional Hlb. Hlb-positive strains are

more frequently found among animal isolates (Verkaik et al., 2011)

but are also more frequent in human strain collections composed

of infectious isolates (Goerke et al., 2009). Furthermore, it could

be demonstrated that Sa3int phages are readily induced under

infectious conditions (Boyle-Vavra et al., 2011; Goerke et al.,

2004; Goerke et al., 2006b; Jin et al., 2003; Peacock et al., 2002).

Analysis of follow-up isolates from cystic fibrosis patients revealed

that translocation of the Sa3int phages often leads to a splitting of

the bacterial population (Goerke et al., 2006b) into Hlb-positive

(phage-cured) and phage-positive fractions. Both the phage-en-

coded virulence factors and Hlb are secreted factors; thus, func-

tional complementation can be assumed.

6.4. Sak containing Sa7int phages in ST5 MRSA strains

As an exception to the rule, sak could be detected not only on

Sa3int phages but also occasionally on Sa7int phages. Curiously,

such a sak-encoding Sa7int phage is found in derivatives of the lab-

oratory strain 8325-4 (Goerke et al., 2006b). The widely used

phage-cured strain 8325-4 was somehow lysogenised with such

a phage and has since then been distributed to different laborato-

ries worldwide (designated as strain RN6390 or ISP479C). On the

other hand, a very similar phage may have originated in the Tübin-

gen region of Germany (Schulte et al., 2013). Sak-Sa7int phages are

present in most of the prevalent, hospital-associated MRSA clones

(belonging to the ST5 lineage) isolated in southern Germany. These

strains were highly successful over years and are quickly diversify-

ing as illustrated by differences in PFGE patterns and antibiotic

susceptibility. Notably, this strain can be clearly discriminated

from other CC5 isolates (ST225, a single-locus variant of ST5) circu-

lating in Germany, which are characterised by the high prevalence

of a typical Sa1int phage (Nubel et al., 2010; Schulte et al., 2013).

The reason that the related lineages ST5 and ST225 differ with re-

spect to local spreading has not yet been elucidated. In general, the

reason for the high success of CC5 isolates as hospital-associated

lineages is unclear, especially because data from whole-genome

sequencing did not reveal any obvious mutations within the core

genome that might be associated with this trait (Nubel et al.,

2008). One may speculate that the accessory elements may drive

the spreading of these strains because the most obvious difference

is the phage content.

6.5. ETA-containing phages

The exfoliative toxins (ET) are virulence factors of S. aureus that

causes bullous impetigo and its disseminated form, staphylococcal

scalded-skin syndrome (SSSS). The ETA gene (eta) is carried in the

genomes of Sa1int phages (Goerke et al., 2009; Kahankova et al.,

2010; McCarthy et al., 2012b). However, these phages can be dif-

ferentiated into at least six different types due to variation in dif-

ferent modules (Holochova et al., 2010). These eta-phages were

associated with outbreaks of MRSA and MSSA strains of different

CCs in Japan and the Czech Republic (Ruzickova et al., 2012; Shi

et al., 2011; Yamaguchi et al., 2002) and are also present in a sub-

population of CC121 strains associated with superficial infections

(Kurt et al., 2013). The clinical symptoms described for infections

with strains harbouring ETA-phages varied from blisters anywhere

on the body to multiple lesions complicated by conjunctivitis and

SSSS (Ruzickova et al., 2012).

6.6. SasX in MRSA

The assumption that mobile genetic elements promote the

spreading of bacterial clones was recently emphasised by the

emergence of highly epidemic MRSA strains carrying a phage har-

bouring a new cell wall-anchored virulence factor, SasX (Li et al.,

2012). SasX promotes nasal colonisation, bacterial aggregation

and virulence. Again, sasX, similarly to other phage-carried viru-

lence factors, is located as an accessory gene at the right end of a

phiSPß-like prophage with a genome size of 127 kb, which is sig-

nificantly larger than that of a typical siphovirus of S. aureus and

highly similar to a prophage found in S. epidermidis strain RP62A

(Holden et al., 2010), indicating that the phage and thus a new vir-

ulence trait was acquired from S. epidermidis. This phage is now

spreading between S. aureus strains and is also found in MRSA

strains of the CC5 lineage (Li et al., 2012). It remains to be eluci-

dated if and how this phage and other genetic elements managed

to cross the species barrier.

6.7. Phage-encoded virulence genes in animal isolates

There are now growing genome data available for S. aureus iso-

lates from non-human mammals. These strains are adapted to par-

ticular species through changes in the core genome as well as new

potential phage-encoded virulence genes whose functions are so

far not clear (Guinane et al., 2011). Recently, it was shown that

livestock-associated S. aureus strain isolates originated in humans

(Price et al., 2012; Resch et al., 2013). Interestingly, some of the

avian isolates carried a Sa3int-like phage with two putative

avian-niche specific genes (Price et al., 2012).

7. Dual control of phage-encoded virulence genes: link to host

regulatory systems and phage life cycle

Phage-encoded virulence genes are integrated into the regula-

tory mechanism of the bacterial host and modulated in a manner

surprisingly similar to bacterial chromosome-encoded virulence

factors. The alternative sigma factor B seems to inhibit the expres-

sion of most, if not all, of the currently analysed phage-encoded vir-

ulence factors (Bronner et al., 2000; Kato et al., 2011; Rooijakkers

et al., 2006). Furthermore, the two-component regulatory system,

saeRS, and to a lesser extent the quorum-sensing system, agr

(Dumitrescu et al., 2011; Kato et al., 2011; Rooijakkers et al., 2006;

Wirtz et al., 2009), are required for the activation of most of the

phage-encoded virulence factors such as eta, pvl, scn, and chp. Inter-

estingly, as an exception to this observation, sakwasnot, orwas only

marginally, influenced by sae and/or agr (Rooijakkers et al., 2006;

Wirtzet al., 2009). Both the sae andagr regulatory systemsare essen-

tial for the coordinated expression of many bacterial chromosome-

encoded virulence factors, and mutants deficient in these factors

are clearly less virulent as shown indifferent animalmodels of infec-

tion. Thus, the phage-encoded virulence factors are clearly inte-

grated into different regulatory circuits employed by the bacteria

to survive within the hostile environment during infection.
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The expression of these virulence factors is also tightly linked to

the phage life cycle. Prophages are induced by environmental con-

ditions that lead to DNA damage, including exposure to reactive

oxygen species generated by leukocytes or exposure to exogenous

agents such as antibiotics (Wagner and Waldor, 2002; Goerke

et al., 2006a; Maiques et al., 2006). In addition, a soluble phage-

inducing factor produced by human pharyngeal epithelial cells

has been described (Broudy et al., 2002). It has been demonstrated

that under such phage-inducing conditions, the transcription of the

virulence factors that are localised in close proximity to the lysis

module of the phage genome is increased (Goerke et al., 2006a;

Sumby and Waldor, 2003; Wirtz et al., 2009). This phenomenon

is partially due to a multi-copy effect caused by phage replication.

However, it has also been shown that transcription becomes inti-

mately linked to the phage genes through co-transcription with

the now de-repressed lysis genes (Goerke et al., 2006a; Wirtz

et al., 2009). In this regard, the use of antibiotics that induce the

SOS response, such as quinolones or b-lactam antibiotics, is of spe-

cial concern.

8. Phage dynamics: movement of the phage within and between

staphylococcal species

Whereas most S. aureus isolates harbour multiple phages, less is

known about the prevalence and nature of phages in coagulase-

negative staphylococci. Analyses of the few available phage gen-

ome sequences for coagulase-negative staphylococci revealed a

modular structure similar to that of S. aureus phages and indicated

possible exchange of modules. The transfer of phages between dif-

ferent staphylococci is also supported by cluster analyses of phages

from different staphylococcal species (Deghorain et al., 2012). Of

note, CRISPR (clustered, regularly interspaced, short palindromic

repeat) loci are present in some S. epidermidis strains but are lack-

ing in S. aureus. These loci are involved in the recognition and

cleavage of foreign DNA. Therefore, it was postulated that the gene

flow is uni-directional (Otto, 2013), as indicated by several in-

stances in which genetic material was presumably transferred

from S. epidermidis to the more pathogenic S. aureus species. For

example, the SCCmec genomic islands that carry the mecA gene

conferring resistance to methicillin at least occasionally originate

from S. epidermidis (Wielders et al., 2001). Genetic exchange might

be possible between different staphylococcal species because they

live in similar environments, such as on the skin or in the nose.

Additionally, phages might persist in a specific environment

although the bacterial host is already eliminated through the ac-

tion of the immune system or antibiotics. Such phages or transduc-

ing particles may then infect co-inhabitants, providing them with

new properties.

Nevertheless, gene transfer between S. aureus strains is cer-

tainly much higher than between different staphylococcal species

mainly because of phage receptor specificity and the restriction

barrier. However, horizontal gene transfer is limited within the

species through restriction-modification (R-M) systems. The prin-

ciple function of these R-M systems is to protect the cell by degrad-

ing foreign DNA. If the phage is derived from a host with the same

R-M system, the phage DNA has become methylated at the cognate

restriction site and thus is protected. Strains of the major CCs were

shown to differ in their R-M specificity genes (Waldron and Lind-

say, 2006). Thus, mobile genetic elements present in one strain will

move to a strain of the same lineage at a higher frequency than to

strains of other lineages. Consequently, S. aureus lineages carry a

unique combination of core variable genes suggesting only vertical

transmission of these genes (Waldron and Lindsay, 2006). Addi-

tional R-M systems described for S. aureus were shown to be

phage-encoded, which may also contribute to phage exclusion

(Dempsey et al., 2005). It has also been shown that prophage

prevalence is associated with the clonal background of S. aureus,

indicating that the spread of the phages in the bacterial population

is at least partially restricted (Goerke et al., 2009; McCarthy et al.,

2012b). In certain CCs, some phage groups were completely absent,

whereas others were significantly less or significantly more fre-

quent. The most prominent disequilibrium was the finding that

CC15 strains do not carry Sa3int phages, although this is the most

common phage group found in S. aureus, with a prevalence of up to

90% (Goerke et al., 2006b; Matthews and Novick, 2005; van Wamel

et al., 2006). In addition, many isolates from the CC15 complex car-

ried none of the seven prophage groups, suggesting that this line-

age is particularly restrictive to the uptake of foreign DNA.

9. Conclusion and open questions

Most S. aureus strains carry several phages, some of which en-

code virulence genes. The phages are integrated at distinct chromo-

somal locations that are determined by the cognate int gene carried

by the phage. The mobilisation of these phages is crucial for the

short-term evolution of the bacterial species and for the emergence

of new virulent S. aureus lineages. This is best exemplified by the

multiple emergences and spreading of several distinct S. aureus

strains carrying different pvl-containing phages. The circumstances

leading to phage mobilisation and transfer in the in vivo situation

(e.g., during certain infection or during colonisation) are only par-

tially understood. There is some evidence that infectious conditions

favour phage mobilisation (Goerke et al., 2004) and possibly trans-

duction, and thereby contribute to accelerated evolution of the bac-

terial species. Restriction barriers and phage exclusion through

receptor modifications limit the transfer between species and be-

tween strains of different CCs. These effects most likely play major

roles in the species diversification of staphylococci, for which phage

transduction is thought to be the primary mechanism of horizontal

gene transfer. Thus, deeper insights into phage biology will be ben-

eficial for the understanding of bacterial evolution. With new pow-

erful molecular methods and sequencing technologies, old

questions can be re-addressed. For instance, the molecular basis

underlying the tight phage-bacterial interaction can be unravelled.

However, it is already emerging that phages are far more versatile

than previously thought based on the analysis of some model

phages derived from E. coli. New mechanisms for integration, exci-

sion, and phage replication can be expected. Additionally, the mu-

tual interaction between phage- and bacterial-encoded factors is

only partially understood but is most likely quite common. Impor-

tantly, methods to analyse and quantify the three-partner interac-

tion between phage, bacteria and the mammalian host should be

established. By suchmeans, the emergence of new virulent or resis-

tant strains might be rendered more predictable.
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