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Abstract

Background: Bacteriophage genomes have mosaic architectures and are replete with small open reading frames

of unknown function, presenting challenges in their annotation, comparative analysis, and representation.

Results: We describe here a bioinformatic tool, Phamerator, that assorts protein-coding genes into phamilies of

related sequences using pairwise comparisons to generate a database of gene relationships. This database is used

to generate genome maps of multiple phages that incorporate nucleotide and amino acid sequence relationships,

as well as genes containing conserved domains. Phamerator also generates phamily circle representations of gene

phamilies, facilitating analysis of the different evolutionary histories of individual genes that migrate through phage

populations by horizontal genetic exchange.

Conclusions: Phamerator represents a useful tool for comparative genomic analysis and comparative

representations of bacteriophage genomes.

Background

Bacteriophages represent a numerically vast, highly

dynamic, evolutionarily ancient, and genetically highly

diverse population [1-3]. Phage genomes are typically

small compared to those of their bacterial hosts (ranging

from a few to several hundred kilobases) and no longer

present significant technical challenges to sequence deter-

mination [1]. As genomic sequencing approaches get sim-

pler and cheaper, the availability of individual phage

isolates for characterization becomes limiting, a need that

can be effectively addressed through integrated research-

education programs involving undergraduate and high

school student investigators [4,5].

In spite of their relatively small size, phages present sig-

nificant challenges to accurate genome annotation

including gene identification. Two principal issues arise.

First, phage genes tend on average to be small (~600 bp),

approximately two-thirds the average size of bacterial

genes [1,6]. Many of the genes required for virion struc-

ture and assembly are relatively large (tape measure

genes can be over 6 kbp long), but those in the non-

structural genomic segments are small, often shorter

than 100 codons. Secondly, phage genomes are replete

with genes of unknown function for which no homolo-

gues have been described [7-10].

Mosaic architectures are hallmarks of phage genomes,

and individual phages can be considered as particular

combinations of interchangeable modules, each of which

can be present in two or more different genomic contexts

[10,11]. In some cases, where the recombination events

giving rise to these mosaic structures occurred relatively

recently in evolutionary time, mosaicism is apparent

through nucleotide sequence comparisons [12-14]. When

the events occurred in more remote evolutionary times

the evidence of common ancestry is usually no longer

apparent at the nucleotide level, but often can be revealed

from comparison of the predicted amino acid sequences

[15-17]. Such comparisons reveal that individual phage

genomes are typically constructed from multiple modules

- often corresponding to single genes - each of which has

a distinctly different phylogeny [10]. As such, accurate

compilations of whole genome phylogenies that reflect the

evolutionary history of the entire genome are not possible,

and reticulate-based representations are needed to capture

this evolutionary complexity [16,18].

The mechanisms giving rise to genome mosaicism are

unclear but must accommodate the striking observation

that module boundaries correspond closely with gene
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boundaries, and in some cases, domain boundaries

[11,19]. One model invokes homologous recombination

events targeted to short conserved boundary sequences

between genes, and there is evidence for this in some

phage genomes [20,21]. However, there are numerous

examples where no conserved boundary sequences are

evident, raising the possibility that mosaicism results

largely from illegitimate recombination events between

randomly chosen partners sharing little or no sequence

identity [10,11]. In this second model, correspondence

between module and gene boundaries results from the

selection for gene function, not from targeting of the

recombination events [22].

Comparison of genomes from phages that infect taxono-

mically diverse hosts typically provides little information

into their evolution because of only very limited similarity

at either the nucleotide or amino acid sequence level

[4,11]. Phages of a common host, however, have the

advantage that they are more likely to have been in recent

genetic communication with each other and to have

exchanged modules in recent evolutionary times [6]. Large

sets of phage genomes are now available for several hosts

including Burkholderia [9], Bacillus [23], Enterobacteria-

ceae [24], Mycobacteria [6], Prochlorococcus and Synecho-

coccus [25], Pseudomonas [7], and Staphylococcus [8],

although even these can span enormous genetic diversity

[1,6].

A large number of phages that infect Mycobacterium

smegmatis mc2155 have been isolated and a comparative

analysis of 80 has been described [4,6,10,14]. Although

these are genetically diverse, the diversity is heteroge-

neous, and phages can be grouped into ‘clusters’ accord-

ing to their overall nucleotide sequence relationships [6].

Of the 80 published completely sequenced mycobacter-

iophage genomes, 75 can be grouped into ten major clus-

ters, seven of which can be further subdivided into

subclusters according to the extent of the nucleotide

similarities [14]. Five of the genomes have no close rela-

tives and are referred to as ‘singletons’ [6]. Because the

currently sequenced mycobacteriophage genomes under-

represent the mycobacteriophage population-at-large,

these cluster designations will undergo modifications as

new genomes are sequenced [14]. There are, however,

numerous examples of genes that are shared between

phages of different clusters and whose common ancestry

is only apparent from amino acid sequence similarity

[4,6,10]. We have proposed previously [4] that mycobac-

teriophage genes related to each other can be grouped

into phamilies (phams) and that mosaic relationships can

be analyzed and represented using pham-annotated gen-

omes maps and phamily circles that show the patterns of

which phages contain members of particular phams.

Although manual or semi-automated approaches are

applicable when only small numbers of genomes are

analyzed [4], this becomes an impossible task as the

number of genomes expands.

We describe here a software program ‘Phamerator’ that

provides bioinformatic tools for both analyzing and repre-

senting phage genome mosaicism. The core functionality

of Phamerator performs pair wise similarity searches

between predicted protein products of a set of phage gen-

omes, and assorts them into phamilies (phams) of related

sequences. Genome maps can be displayed that illustrate

the relationships between phages at both the nucleotide

and amino acid sequence level. Moreover, the evolutionary

histories of specific genes can be displayed by phamily cir-

cles in which all gene members of particular phams are

represented, and for which multiple phams can be com-

pared. We illustrate the utilities of Phamerator using a set

of 111 completely sequenced mycobacteriophage genomes,

but the program is applicable to any set of phage genomes

for which comparative analysis is desired.

Methods

Phamerator database architecture

Phamerator is written entirely in the Python computer

programming language and makes use of a number of

modules, including the Biopython framework for compu-

tational biology [26]. Biopython provides a programmatic

interface for sequence manipulation, the construction and

parsing of files in relevant formats, and access to external

command line applications such as those used for

sequence alignment. For the latter, Phamerator uses Bio-

python to interact with local instances of BLASTP and

CLUSTALW. Due to the significant computational time

required for performing large numbers of sequence align-

ments, Phamerator employs a distributed processing

model that is implemented using Python Remote Objects

(Pyro). Phamerator was developed on Ubuntu Linux but

should be able to run on any modern UNIX-based operat-

ing system.

Phamerator uses the MySQL database software with a

simple, custom database schema that incorporates and

extends the relevant information found in GenBank

records. The phage and gene tables are populated with

data from GenBank files, while the remainder store data

relevant to Phamerator analysis or imported data from

external databases such as the NCBI conserved domain

database (Figure 1). Additional tables are used to store

current and historical pham assignments, and records are

maintained of the splitting or joining of phams that can

occur as new sequences are added to the database. In the

event that a new mycobacteriophage protein is added to

the database that has similarity to members of more than

one existing pham, the phams are merged, their pham

names (numbers) retired, and a new pham created with a

new number. The new pham contains each of the mem-

bers of the joined phams in addition to the new protein.
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Conversely, the addition of new proteins to the database

can also invalidate an existing pham because the BLASTP

E values used for determination of pham membership are

in part dependent on the size of the data set. Thus, after

adding a new genome to the database, if a protein in a

pham is no longer related to any members of the pham it

is removed from the pham, and it is either placed into an

existing pham if that pham includes a related protein, or it

becomes an orpham (a pham containing only a single

member).

Use of distributed computing resources

Adding genomes to a large Phamerator database is time-

consuming, with the length of time required being pro-

portional to the size of the existing database and the

number of genes in the genome to be added. However,

the length of time required to perform this operation can

be reduced by distributing the required calculations to

several computers. The reduction in time required scales

approximately linearly with the number of available com-

puters. Communication between computers is achieved

using the Python Remote Objects (Pyro) library, and can

be distributed to computers on the local network or

across the Internet.

Availability and distribution

Phamerator operates using a client/server model. A rela-

tional database resides on the server computer and is dis-

tributed to client computers when they run the

Phamerator client program. This enables all clients to

have the performance benefits associated with interacting

with data stored on the local computer along with a ben-

efit normally associated with processing data on a ser-

ver–assurance that the data being used is up-to-date.

Because the data files being disseminated are relatively

small (approximately 10-100 megabytes), a modest server

can handle the load of hundreds of users without perfor-

mance deterioration.

Figure 1 Database structure. An entity relationship diagram of the Phamerator database schema. Boxes represent SQL database tables, with

table names in bold and column names in gray. The gene is the central element of the design, with the domain and pham tables storing data

related to individual genes. The pham_history and pham_old tables record information regarding the automatic joining or splitting of phams as

genomes are added or removed from the database.
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Phamerator can be downloaded from: http://phamera-

tor.csm.jmu.edu/files/phamerator-current.tar.gz. Further

information and installation instructions are provided in

Additional Files 1 and 2.

Results

Rationale for Phamerator construction and operations

The pervasive mosaicism of bacteriophage genomes

requires bioinformatic tools that can organize and display

their complex relationships. Two key questions arise in

phage comparative analysis: what are the relationships

between genes that are evolutionarily mobile within a

given set of phage genomes, and how are they related to

genes found in other genomes. Both approaches are com-

plicated by the presence of intragenic mosaicism reflecting

distinct evolutionary histories of gene segments

[4,13,27-29].

Phamerator is a computational tool designed to sort

phage genes into phamilies of related sequences using

pairwise amino acid sequence comparisons of predicted

gene products. Rather than using ortholog identification

programs such as HMMER or Pfam [30] we have

employed BLASTP and CLUSTALW to perform pairwise

comparisons that are then assembled into phamilies of

related proteins. Both of these programs are relatively fast

computationally, a critical factor when large numbers of

computations are required. For example, in the dataset of

111 phage genomes used here, a total of 1.77 × 108 com-

parisons must be computed. We note that the use of effi-

cient pairwise BLASTP comparisons to generate families

of protein sequences has been described previously [31].

To identify homologues of previously identified proteins

Phamerator performs automated searches of GenBank

non-redundant protein sequences, as well as searches for

conserved domains in the NCBI conserved domain data-

base using the RPS-BLAST tool. This information can be

exported in tabular form, or represented in a whole-geno-

mic context. Details of the Phamerator program are

described in the Methods section and an overview of data-

base structure is shown in Figure 1.

Pham-building parameters

The building of phams is strongly influenced by the specific

parameters used for amino acid comparisons. In early stu-

dies initiated prior to Phamerator development we used a

BLASTP cutoff value of 0.001 and a CLUSTALW cutoff of

25% amino acid sequence identity for manual pham build-

ing [4]. However, as the number of mycobacteriophage

genomes increased and computational processing became

essential, it became clear that these largely arbitrarily cho-

sen parameters promoted assembly of many large phams

that require time-consuming manual deconvolution [6].

We therefore explored the impact of varying the threshold

values for BLASTP and CLUSTALW on pham assembly.

We first evaluated the effect of changing the threshold

for CLUSTALW comparisons. We varied the threshold

between 50% amino acid sequence identity and 27.5%,

and for each level determined the number of phams gen-

erated, the size of the largest pham, the number of orp-

hams (single-member phams), the percentage of

orphams, and the mean pham size (Figure 2A, B). These

data are informative and provide guidance as to the opti-

mal parameters to use for routine database construction.

In particular, we note that as the threshold for amino

acid sequence similarity is made less stringent (50% to

27.5% identity) there is a reduction in the total number

of phams (from 3, 363 to 1, 995) reflecting the process of

pham assembly. Interestingly, this relationship is linear

between 50% and 32.5%, with a reduction in the total

pham number of about 40 for every percentage of iden-

tity that is reduced (Figure 2A). As the percent identity

falls below 32.5% the relationship becomes non-linear,

with a progressively greater reduction in the number of

phams as the percent identity threshold falls from 32.5%

to 27.5% (Figure 2A). The number of orphams also

reduces as stringency is relaxed, while mean pham size

increases as stringency is relaxed, and there are notable

changes between values above and below 32.5% identity

(Figures 2A, B).

There is also a dramatic change in the size of the largest

pham as the threshold level varies from 32.5% to 27.5%

(Figure 2A). At 32.5% the largest pham contains 172

members, but increases to 2, 505 at 27.5% (Figure 2A).

The size of the largest pham is more stable between 32.3%

and 50% identity thresholds and varies from 172 to 53.

We interpret these data as indicating that between 50%

and 32.5% identity, pham assembly proceeds in a manner

that simply reflects the variation in the overall relation-

ships between genes. However, at levels below 32.5%,

there is an increasing proportion of phams that are more

complex, such that not all pairwise matches within the

pham are above the threshold level. One example might

be where two genes (e.g. gene A and gene B) have been

fused into a single open reading frame (gene C), such that

although genes A and C, and gene B and C, both surpass

the threshold, the unrelated genes A and B do not (a spe-

cific example is phage PBI1 genes 6 and 7, which are fused

in phage Gumball to form gene 6). For routine database

building purposes where we wish to avoid the assembly of

large phams that then warrant subsequent deconvolution,

we have chosen to use a 32.5% CLUSTALW threshold,

but note that comparison of phams generated with these

parameters and those with lower stringencies should be

useful in analyzing intragenic mosaic relationships.

One advantage of CLUSTALW as an assembly pro-

gram is that the threshold values are independent of gene

length. Nonetheless, we predict there are instances where

large genes may not exceed the CLUSTALW threshold
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but are evidently homologues because of statistically

informative BLASTP scores. We therefore examined the

impact of including a BLASTP search along with the

CLUSTALW comparison (using a 32.5% cut off value)

and varying the BLASTP cut off value (pham member-

ship thus required meeting either the CLUSTALW or the

BLASTP thresholds) (Figure 2C, D). As threshold values

are made less stringent we observe a reduction in the

total number of phams and the number of orphams, and

a corresponding increase in mean pham size and the size

of the largest pham (Figures 2C, D). Between BLASTP

thresholds of 10-50 and 10-20 these is only a modest

change in the total pham number (from 2, 757 to 2, 644;

~4% reduction) and number of orphams (from 1, 322 to

1, 260; ~4% reduction), but the size of the largest pham

changes from 118 to 198 (68% increase). Upon manual

Figure 2 Effects of CLUSTALW and BLASTP thresholds on pham assembly. A. Changes in the total number of phams, number of orphams,

and maximum pham size as a function of CLUSTALW threshold (percent identity). B. Changes in the percent of total phams that are orphams

and mean pham size as a function of CLUSTALW threshold (percent identity). C. Changes in the total number of phams, number of orphams,

and maximum pham size as a function of BLASTP threshold (E-value), superimposed over a CLUSTALW cutoff value of 32.5% identity. D. Change

in the mean pham size as a function of BLASTP threshold (E-value), superimposed over a CLUSTALW cutoff value of 32.5% identity.
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inspection of all phams with 100 or more members at the

BLASTP thresholds between 10-50 and 10-20 we see ‘false’

pham assembly occur as illustrated by joining of a pham-

ily of tape measure proteins with a phamily of lysin pro-

teins, through sharing of small but closely related

domains. Nonetheless, inclusion of the BLASTP compari-

son with a 10-50 threshold joins several lysin phams that

are separate when using just the CLUSTALW compari-

son. We conclude that inclusion of BLASTP contributes

rather little to the pham assembly process, but that a

combination of a CLUSTALW threshold of 32.5% and a

BLASTP cut off of 10-50 offers optimal parameters for

this dataset, building phams of homologous proteins

while minimizing construction of complex phams in

which only segments of the proteins are related to each

other.

When these parameters are applied to this dataset, the

111 mycobacteriophage genomes contain a total of 12, 298

genes that assemble into 2, 757 phamilies with a mean size

of 4.46 genes/pham; 1, 322 phams are orphams (48%) and

the largest pham contains 118 members.

Identification of known homologues and conserved

domains

Once a novel genome has been sequenced and annotated,

questions about the functions of individual genes

encoded within the genome can be addressed. This pro-

cess is facilitated by analyzing the predicted gene pro-

ducts for the presence of conserved domains. Numerous

tools already exist for this purpose, but the NCBI con-

served domain database (CDD) aggregates many of them

into a single, searchable dataset. These domain databases

often use different, complementary techniques such as

hidden Markov models or position-specific scoring

matrices to define domains and for the matching of novel

sequences to existing domain models. To leverage the

power of each of these approaches, we have implemented

a system in Phamerator whereby phage proteins are used

to query CDD, and the results are presented in a search-

able database browser in addition to being displayed on

genome maps. The latter affords both a global view of

the genomes and provides a way to visualize the conser-

vation of specific sequences in the Phamerator dataset

with those in other organisms.

An analysis of the distribution of CDD hits among the

mycobacteriophage protein sequences reveals that a cur-

rent search produces a total of 16, 420 matches among the

18, 901 predicted proteins, for an average of 0.87 matches

per protein. However, as expected, the distribution of

matches is non-random, with only 2, 981 proteins (15.8%)

having at least one CDD entry match, with the average

number of matches for these proteins being 5.51. While

935 proteins each match a single domain, a single protein,

Myrna gp183 (the presumed Lysin A), matches 77 domain

models, most of which are aminotransferases. Generally,

when numerous matches of a single protein to domains in

the CDD are found, it reflects the redundant nature of the

CDD dataset, although in some cases it reflects the pre-

sence of multiple domains within a single protein.

Computation of nucleotide sequence similarities

Phamerator uses the BLAST “Align Two Sequences” pro-

gram (bl2seq) to perform pairwise local alignments of

whole genome sequences. An E value of 1e-4 was chosen

as the BLAST threshold. The alignments are performed

between adjacent genomes on the linear genome maps

and the results are overlaid on the maps using shading

between the genomes to depict the aligned regions. This

shading is color-coded according to the E value with violet

representing an E value of zero and red an E value equal

to the threshold used.

Representation of genome maps

Perhaps the key functionality of Phamerator is the con-

struction of phage genome maps that incorporate the

nucleotide similarity and pham assignment information.

An example of this is shown in Figure 3. When the six

genomes that currently constitute Cluster D are displayed,

each is represented by a horizontal bar with coordinate

markers with putative genes shown as colored boxes either

above or below, corresponding to rightwards or leftwards

transcription respectively (Figure 3). The name of each

gene is shown within the gene box, and the pham number

is shown above with the total number of pham members

shown in parentheses. Each pham has a designated color,

with the exception of orphams that are shown as white

boxes.

Because the genomes shown in Figure 3 are all mem-

bers of the same cluster they share substantial nucleotide

sequence similarity, which is reflected by the extensive

violet shading between adjacent genomes in the stack of

maps. Genomes can be easily re-positioned both verti-

cally and horizontally within the display such that differ-

ent pairwise relationships can be captured. For genomes

within a designated cluster - such as those in Figure 3 -

interruptions in the nucleotide sequence similarity are

readily apparent, seen as either a reduced level of similar-

ity (by shading with colors towards the red end of the

spectrum) or by no shading (reflecting absence of DNA

similarity below a BLASTN cut off value of 10-4 using the

Align Two Sequences algorithm. For example, in Figures

4 and 5 comparison of Gumball and Troll4 reveals a

mosaic substitution of Troll4 gene 52 with Gumball gene

51, with the flanking sequences being very closely related.

PLot shares the same organization as Gumball, whereas

Butterscotch, PBI1 and Adjutor all share the Troll4 orga-

nization. The different segments of DNA also encode

proteins of different sequences, because the predicted
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genes belong to different phams [Pham1115 (Gumball)

and Pham1086 (Troll4)]. Dotplot analysis clearly shows

that Gumball gene 51 and Troll4 gene 52 segments are

unrelated at the nucleotide level (Figure 5A) and

sequence alignment reveals that the discontinuities occur

at the start codons of these genes, and those of the down-

stream genes (Figure 5B). The map function of Phamera-

tor provides a tool for readily identifying and analyzing

these module boundaries.

Phamerator-generated maps optionally can also dis-

play conserved domains identified with the automated

CDD function (Figure 6). Domain hits are shown as yel-

low boxes or lines (if there are multiple separate domain

hits) within each gene box. Hovering the mouse over

any domain pops up a description of that domain hit

(Figure 6).

Phamily circle representations of gene phylogenies

Phamily circles provide a graphic way to illustrate the

relationship between proteins in a phamily, and to dis-

play which genomes within the dataset contain members

of that pham (Figures 7 and 8). The strength of the pair-

wise relationships for a particular phamily can be simply

accessed from the ‘Phams’ function in the left hand

panel (Figure 7). The ‘Phams’ window displays two sepa-

rate panels with the upper one showing a numerical list

of phams, the number of phamily members, and the

clusters and subclusters that are represented. Selecting a

Figure 3 Phamerator-generated genome maps. A. Genome maps of six Cluster D phages (Plot, Gumball, Troll4, Butterscotch, PBI1 and

Adjutor). The genomes are shown in two tiers. Genes are color-coded according to their pham assignment. Gene numbers are shown within

each gene box, and the pham number and number of pham members in parentheses shown above each gene. Pairwise nucleotide sequence

similarities are presented as colored shading between genomes; color spectrum reflects the extent of nucleotide sequence similarities with violet

being the most similar and red being the least similar. No shading shows that there is no similarity with a BLASTN score of 10-4 or better.
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Figure 4 Expanded view of Cluster D genome maps. Five specific features are indicated. Feature #1 shows the designation of the pham

assignment (Pham1082) for Plot gene 47, and that Pham1082 contains six members (shown in parentheses). The six genomes shown all contain

a member of Pham1082, and thus there are no other members of Pham1082 outside of Cluster D. Feature #2 shows the violet shading between

Plot and Gumball genomes, reflecting a high degree of nucleotide sequence similarity. Feature #3 illustrates a departure in the synteny of

phages Gumball and Troll4, with an apparent insertion within Troll4 gene 49, relative to Gumball gene 48, both of which are in Pham1083.

Feature #4 indicates a replacement of Gumball gene 51 for the Troll4 gene 52, reflected in the lack of nucleotide similarity and the designation

of the genes in two different phams (Pham1115 and Pham1086 respectively). Note that PLot shares a member of Pham1115 and Butterscotch,

PBI1 and Adjutor share members of Pham1086. Feature #5 shows a small insertion in Gumball relative to Troll4 (as well as Butterscotch, PBI1 and

Adjutor) that leads to an alternative annotation of this genome segment, with inclusion of a putative new orpham (Gumball gene 56) and

shorter version of Gumball gene 57.
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Figure 5 Lack of nucleotide similarity between Gumball gene 51 and Troll4 gene 21. A. Dotplot comparison of Gumball genes 50-52 and

Troll4 genes 51-53 (see feature #4 in Figure 4). B. Alignment of DNA segments of Troll4 and Gumball shows that the boundary of sequence

identity and non-identity occurs precisely at the beginnings of Troll4 gene 52 and Gumball gene 51 (the ATG start codons are underlined) and

the beginnings of Troll4 gene 53 and Gumball gene 52 (GTG start codons are underlined).

Figure 6 Representations of conserved domains. A segment of the Gumball genome is displayed while using the Show Conserved Domains

functions in Phamerator. Within the gene 6 - 23 region there are four genes (arrowed) for which conserved domains are displayed, shown as

yellow boxes. In genes 6 and 11, only a single domain is identified, whereas in genes 10 and 23, two and three domains are displayed. These

correspond to the same parts of the proteins and therefore reflect redundancy in the CDD database. Holding the mouse over a domain

activates a pop-up displaying the domain information, illustrated for a domain in gene 10.
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pham directs a display in the lower window of each of

the phamily members by gene name and phage. When a

gene name is selected, Phamerator reports the CLUS-

TALW and BLASTP score of each of the other mem-

bers relative to the selected gene (Figure 7).

Phamily circle diagrams can be generated for individual

phams and include the name for each phage in the data-

base positioned around the circumference of a circle,

ordered and colored according to cluster and subcluster

designation (Figure 8). If a given phage has a gene that is

a member of the phamily represented in the diagram, the

protein name is included with the phage name. Arcs are

drawn between pairs of genomes that contain a gene

member of that phamily; relationships derived from

CLUSTALW analyses are represented in blue, and

BLASTP in red. In the Pham3102 example shown in

Figure 8, the phamily of small proteins is present in 33 of

the genomes and distributed among several cluster and

Figure 7 The Phamily display function of Phamerator. A screen-shot of the main Phamerator display shows four sources listed in the left-

hand panel (feature #1). When the Phams function is selected, a list of all of the phamilies, the numbers of members, and the clusters to which

the parent genomes belong are displayed in the top right panel (feature #2). When a particular pham is selected (Pham3102 is shown), the gene

members, the parent phages, and the percent identities and BLASTP E-values are shown in the bottom right panel. When a specific gene is

selected (Barnyard gene 9 is shown; feature #3), the percent identity and BLASTP E-values displayed are in reference to the selected gene. The

values in red and gray-highlighted are below the threshold values for pham assembly.
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subclusters. Some of the relationships are shown as blue-

only arcs, indicating that the relationships exceed the

threshold of 32.5% amino acid sequence identity of the

CLUSTALW comparisons but does not meet the E value

of 10-50 for the BLASTP comparisons (Figure 8). The

gene sequences can be readily exported for each pham

and used to construct neighbor-joining trees for compar-

ison with the phamily circles.

An abundance of Orphams

The great genetic diversity of the mycobacteriophage

population is reflected in the large number of orphams

(1, 322; 48%), the relatively low mean and median pham

sizes (4.46 and 2 genes respectively), and the observation

that 91% of the phams contain ten or fewer members

(Figure 9A). The question arises as to whether the orp-

ham designation is useful, because one gene member

Figure 8 The Phamily circle representation function. When the Pham Circle function is chosen (shown in the very top panel in Figure 7), a

phamily circle is drawn in which all of the component phages in the dataset are represented around the circumference of a circle, ordered

according to their cluster and subcluster designations. An arc is drawn between members of that pham that are related to each other above the

threshold values; blue and red arcs show CLUSTALW and BLASTP matches respectively. Some of the relationships only report BLASTP scores,

such as the blue arcs between PLot and Send513, and others only CLUSTAL score such as the red arcs between Konstantine and Nigel. Most

show red and blue arcs superimposed. Arc widths reflect the strengths of the relationships.
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might be deemed insufficient to form a phamily. We

think this is a useful designation because this is an espe-

cially informative group when attempting to identify

those genes that have been most recently acquired in

evolutionary time [6], but also note that orphams are

especially abundant in singleton genomes for which no

close relatives have yet been isolated (Figure 9B). The

abundance therefore reflects the current poor sampling

of the mycobacteriophage population, and as relatives of

the current singleton genomes are discovered, many of

the orphams are anticipated to be assembled into larger

phams [6]. We anticipate a substantial reduction in the

proportion of orphams as we approach saturation of the

phage population, but it is not yet simple to predict

when that will occur.

Discussion

We have explored the use of Phamerator with several

other sets of phage genomes including SPO1-like phages

of Bacillus subtilis [23] and a group of Streptomyces

phages, but we have recently successfully generated a

database from 319 genomes, substantially larger than the

111-genomes described here. We recognize that as the

number of complete phage genome sequences increases

that the computational time required increases as the

square of the number of genes, and this could impose

considerable limitations. For example, increasing the

number of genomes to 1, 000 - not an unreasonable

expectation given the advances in DNA sequencing tech-

nology - increases the number of pairwise computations

to ~1011, a 1000-fold increase in time over the current

dataset. However, with recent advances in cloud comput-

ing and the availability of massively parallel and multi-

core computing systems we anticipate that these

demands can be readily met. For example, cloud-comput-

ing systems can provide more than a 1000-fold increase

in the number of processors at minimal cost. Phamerator

will remain a useful tool for comparative phage genome

analysis for the next few years. We also note that recent

developments in alternative profile-based similarity

searches such as HMMERHEAD and HHMER3 http://

hmmer.org/ that greatly increase their efficiencies should

provide additional Phamerator components [32,33].

Conclusions

Phamerator provides a simple but useful computational

tool for dissecting the genetic relationships among bacter-

iophage genomes, and displaying them in informative

representations. Phamerator is especially useful for analysis

of particular sets of phages such as the mycobacteriophages

Figure 9 Distributions of pham sizes. A. The proportions of phams containing a single member (i.e. orphams), two members, or more - as

indicated by the white numbers - are represented as a pie chart. B. A segment of the genome of the singleton phage Wildcat shows the

abundance of small genes of which many - shown as white boxes - are orphams.
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described here, but can be readily expanded to include a

broader phage set, in which it is desired to map the hori-

zontal exchange of genes between phage populations (for

example, between Streptomyces phages, Propionibacterium

acnes phages, Rhodococcus phages, and the mycobacterio-

phages). Because of its computational intensity, it is less

well suited to mapping global genome-scale relationships

among large phage genome sets, but other programs have

been described for this purpose [34,35]. The use of a com-

monplace Biopython framework and MySQL database soft-

ware should facilitate interaction of the Phamerator

database components with other web-based utilities to

make this a broadly accessible utility.

Additional material

Additional file 1: Phamerator program. Phamerator program.

Additional file 2: Phamerator Installation Instructions. This file

contains installation instructions for Phamerator.
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