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ABSTRACT

The absence of deployed vehicular communication sys-

tems, which prevents the advanced driving assistance systems

(ADASs) and autopilots of semi/fully autonomous cars to

validate their virtual perception regarding the physical en-

vironment surrounding the car with a third party, has been

exploited in various attacks suggested by researchers. Since

the application of these attacks comes with a cost (exposure

of the attacker’s identity), the delicate exposure vs. application

balance has held, and attacks of this kind have not yet

been encountered in the wild. In this paper, we investigate a

new perceptual challenge that causes the ADASs and autopi-

lots of semi/fully autonomous to consider depthless objects

(phantoms) as real. We show how attackers can exploit this

perceptual challenge to apply phantom attacks and change

the abovementioned balance, without the need to physically

approach the attack scene, by projecting a phantom via a

drone equipped with a portable projector or by presenting a

phantom on a hacked digital billboard that faces the Internet

and is located near roads. We show that the car industry has

not considered this type of attack by demonstrating the attack

on today’s most advanced ADAS and autopilot technologies:

Mobileye 630 PRO and the Tesla Model X, HW 2.5; our

experiments show that when presented with various phantoms,

a car’s ADAS or autopilot considers the phantoms as real

objects, causing these systems to trigger the brakes, steer into

the lane of oncoming traffic, and issue notifications about

fake road signs. In order to mitigate this attack, we present

a model that analyzes a detected object’s context, surface,

and reflected light, which is capable of detecting phantoms

with 0.99 AUC. Finally, we explain why the deployment

of vehicular communication systems might reduce attackers’

opportunities to apply phantom attacks but won’t eliminate

them.

I. INTRODUCTION

After years of research and development, automobile tech-

nology is rapidly approaching the point at which human

drivers can be replaced, as cars are now capable of supporting

semi/fully autonomous driving [1, 2]. While the deployment

of semi/fully autonomous cars has already begun in many

countries around the world, the deployment of vehicular

communication systems [3], a set of protocols intended for

a b

Fig. 1: Perceptual Challenge: Would you consider the projec-

tion of the person (a) and road sign (b) real? Telsa considers

(a) a real person and Mobileye 630 PRO considers (b) a real

road sign.

exchanging information between vehicles and roadside units,

has been delayed [4]. The eventual deployment of such sys-

tems, which include V2V (vehicle-to-vehicle), V2I (vehicle-to-

infrastructure), V2P (vehicle-to-pedestrian), and V2X (vehicle-

to-everything) communication systems, is intended to supply

semi/fully autonomous cars with information and validation

regarding lanes, road signs, and obstacles.

Given the delayed deployment of vehicular communication

systems in most places around the world, autonomous driving

largely relies on sensor fusion to replace human drivers.

Passive and active sensors are used in order to create 360◦

3D virtual perception of the physical environment surrounding

the car. However, the lack of vehicular communication system

deployment has created a validation gap which limits the

ability of semi/fully autonomous cars to validate their virtual

perception of obstacles and lane markings with a third party,

requiring them to rely solely on their sensors and validate one

sensor’s measurements with another. Given that the exploita-

tion of this gap threatens the security of semi/fully autonomous

cars, we ask the following question: Why haven’t attacks

against semi/fully autonomous cars exploiting this validation

gap been encountered in the wild?

Various attacks have already been demonstrated by re-

searchers [5–14], causing cars to misclassify road signs [5–10],

misperceive objects [11, 12], deviate to the lane of oncoming

traffic [13], and navigate in the wrong direction [14]. These

attacks can only be applied by skilled attackers (e.g., an expert

https://youtu.be/1cSw4fXYqWI
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in radio spoofing or adversarial machine learning techniques)

and require complicated/extensive preparation (e.g., a long

preprocessing phase to find an evading instance that would

be misclassified by a model). In addition, these methods

necessitate that attackers approach the attack scene in order

to set up the equipment needed to conduct the attack (e.g.,

laser/ultrasound/radio transmitter [11, 12, 14]) or add physical

artifacts to the attack scene (e.g., stickers, patches, graffiti [5–

10, 13]), risky acts that can expose the identity of the attacker.

As long as the current exposure vs. application balance holds,

in which attackers must "pay" for applying their attacks in

the currency of identity exposure, the chance of encountering

these attacks [5–14] in the wild remains low.

In this paper, we investigate a perceptual challenge, which

causes the advanced driving assistance systems (ADASs) and

autopilots of semi/fully autonomous cars to consider the depth-

less objects (phantoms) as real (demonstrated in Fig. 1). We

show how attackers can exploit this perceptual challenge and

the validation gap (i.e., the inability of semi/fully autonomous

cars to verify their virtual perception with a third party)

to apply phantom attacks against ADASs and autopilots of

semi/fully autonomous cars without the need to physically

approach the attack scene, by projecting a phantom via a drone

equipped with a portable projector or by presenting a phantom

on a hacked digital billboard that faces the Internet and is

located near roads.

We start by discussing why phantoms are considered a per-

ceptual challenge for machines (section III). We continue by

analyzing phantom attack characteristics using Mobileye 630

PRO (section IV), which is currently the most popular external

ADAS, and investigate how phantom attacks can be disguised

such that human drivers in semi-autonomous cars ignore/fail to

perceive them (in just 125 ms). We continue by demonstrating

how attackers can apply phantom attacks against the Tesla

Model X (HW 2.5), causing the car’s autopilot to automatically

and suddenly put on the brakes, by projecting a phantom of

a person, and deviate toward the lane of oncoming traffic, by

projecting a phantom of a lane (section V). In order to detect

phantoms, we evaluate a convolutional neural network model

that was trained purely on the output of a video camera. The

model, which analyzes the context, surface, and reflected light

of a detected object, identifies such attacks with high accuracy,

achieving an AUC of 0.99 (section VI). We also present the

response of both Mobileye and Tesla to our findings (section

VII). At the end of the paper (section VIII), we discuss why the

deployment of vehicular communication systems might limit

the opportunities attackers have to apply phantom attacks but

won’t eliminate them.

The first contribution of this paper is related to the attack:

We present a new type of attack which can be applied remotely

by unskilled attackers and endanger pedestrians, drivers, and

passengers, and changes the existing exposure vs. application

balance. We demonstrate the application of this attack in two

ways: via a drone equipped with a projector and as objects

embedded in existing advertisements presented on digital

billboards; further, we show that this perceptual challenge

is currently not considered by the automobile industry. The

second contribution is related to the proposed countermeasure:

We present an approach for detecting phantoms with a model

that considers context, surface, and reflected light. By using

this approach, we can detect with 0.99 AUC.

II. BACKGROUND, SCOPE & RELATED WORK

In this section, we provide the necessary background about

advanced driving assistance systems (ADASs) and autopilots,

discuss autonomous car sensors and vehicular communication

protocols, and review related work. The Society of Auto-

motive Engineers defines six levels of driving automation,

ranging from fully manual to fully automated systems [15].

Automation levels 0-2 rely on a human driver for monitoring

the driving environment. Most traditional cars contain no

automation and thus are considered Level 0; countries around

the world promote/mandate the integration of an external

ADAS (e.g., Mobileye 630) in such cars [16, 17] to enable

them to receive notifications and alerts during driving about

lane deviation, road signs, etc. Many new cars have Level 1

automation and contain an internal ADAS that supports some

autonomous functionality triggered/handled by the car (e.g.,

collision avoidance system). Semi-autonomous driving starts

at Level 2 automation. Level 2 car models are currently being

sold by various companies [18] and support semi-autonomous

driving that automatically steers by using an autopilot but

requires a human driver for monitoring and intervention. In

this study, we focus on Mobileye 630 PRO, which is the most

popular commercial external ADAS, and on the Tesla Model

X’s (HW 2.5) autopilot, which is the most advanced autopilot

currently deployed in Level 2 automation cars.

Cars rely on sensor fusion to support semi/fully autonomous

driving and create virtual perception of the physical envi-

ronment surrounding the car. They contain a GPS sensor

and road mapping that contains information about driving

regulations (e.g., minimal/maximal speed limit). Most semi/-

full autonomous cars rely on two types of depth sensors

(two of the following types: ultrasound, radar, and LiDAR)

combined with a set of video cameras to achieve 360◦ 3D

perception (a review about the use of each sensor can be

found in [12]). Sensor fusion is used to improve single sensor-

based virtual perception which is considered limited (e.g., lane

detection can only be detected by the video camera and cannot

be detected by other sensors), ambiguous (due to the low

resolution of the information obtained), and not effective in

adverse weather/light conditions. In this study, we focus on the

video cameras that are integrated into autopilots and ADASs.

Vehicular communication protocols (e.g., V2I, V2P, V2V,

V2X) are considered the X factor of a driverless future

[19] (a review of vehicular communication protocols can be

found in [3]). Their deployment is expected to improve cars’

virtual perception regarding their surroundings by providing

information about nearby (within a range of 300 meters)

pedestrians, cars, road signs, lanes, etc. sent via short-range

communication. They are expected to increase the level of

semi/fully autonomous car safety, however these protocols are

currently not in use for various reasons [3, 4], and it is not

clear when these protocols will be more widely used around

the world. In this study, we focus on the validation gap that
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exists as a result of the delay in the deployment of vehicular

communication systems.

Many methods that exploit the validation gap have been

demonstrated in the last four years [5–13]. Physical attacks

against computer vision algorithms for traffic sign recognition

were suggested by various researchers [5–9]. Sitawarin et al.

[6] showed that they could embed two traffic signs in one

with a dedicated array of lenses that causes a different traffic

sign to appear depending on the angle of view. Eykholt et

al. [5], Zhao et al. [9], Chen et al. [8], and Song et al. [7]

showed that adding a physical artifact (e.g., stickers, graffiti)

that looks innocent to the human eye misleads traffic sign

recognition algorithms. These methods [5–9] rely on white-

box approaches to create an evading instance capable of being

misclassified by computer vision algorithms, so the attacker

must know the model of the targeted car.

Several attacks against commercial ADASs and autopilots

have also been demonstrated in recent years [10–14]. An

adversarial machine learning attack against a real ADAS was

implemented by Morgulis et al. [10] against a car’s traffic

sign recognition system. Spoofing and jamming attacks against

the radar and ultrasound of the Tesla Model S which caused

the car to misperceive the distance to nearby obstacles were

demonstrated by Yan et al. [12]. Keen Labs [13] recently

demonstrated an attack that causes the autopilot of the Tesla

Model S to deviate to the lane of oncoming traffic by placing

stickers on the road. Petit et al. [11] showed that a laser

directed at MobilEye C2-270 can destroy its optical sensor

permanently. Other attacks against LiDAR sensors were also

demonstrated by Petit et al. [11] and Cao et al. [20], however

the success rate of these attacks in real setups against commer-

cial cars is unknown. Another interesting attack against Tesla’s

navigation system was recently demonstrated by Regulus [14]

and showed that GPS spoofing can cause Tesla’s autopilot to

navigate in the wrong direction.

A few cyber-attacks against connected cars with 0-5 au-

tomation levels have been demonstrated [21–25]. However,

we consider this type of attacks beyond of the scope of this

paper, because they don’t result from the validation gap. These

attacks do not target sensors and are simply the result of poor

implementation in terms of security.

III. PHANTOM ATTACKS & THREAT MODEL

In this section, we define phantoms, discuss the perceptual

challenge they create for machines, present remote threat

models, and discuss the significance of phantom attacks. We

define a phantom as a depthless object intended at causing

ADASs and autopilot systems to perceive the object and

consider it real. A phantom object can be projected by a

projector or presented on a screen (e.g., billboard). The object

can be an obstacle (e.g., person, car, truck, motorcycle), lane,

or road sign. The goal of the attack is to trigger an undesired

reaction from a target autopilot/ADAS. In the case of an

ADAS, the reaction would be a driver notification about an

event (e.g., lane changes) or even an alarm (e.g., collision

avoidance). For autopilot systems, the phantom could trigger

a dangerous reaction like sudden braking.

Fig. 2: An example showing how object classifiers are only

concerned with matching geometry. In this case, Google

Cloud’s Vision API is used: https://cloud.google.com/vision/.

Fig. 3: An example demonstrating that object detectors aren’t

concerned about context. Here, the Faster R-CNN Inception

ResNet model from [26] is used.

A. The Vulnerability

We consider phantom attacks as perceptual challenge for

intelligence of machines. We do not consider phantom attacks

bugs, since they don’t exploit poor code implementation. There

are two fundamental reasons why phantoms are considered

a perceptual challenge for ADASs and autopilots. The first

reason is because phantoms exploit the validation gap, i.e.,

the inability of semi/fully autonomous cars to verify their

virtual perception with a third party. Instead, the semi/fully

autonomous car must rely on its own sensor measurements.

Therefore, when the camera detects an imminent collision or

some other information critical for road safety, the system

would rather trust that information alone, even if other sensors

"disagree" in order to avoid accidents ("a better safe than

sorry" approach).

The second reason is because the computer vision algo-

rithms are trained to identify familiar geometry, without con-

sideration for the object’s context or how realistic they look.

Most object detection algorithms are essentially feature match-

ers, meaning that they classify objects with high confidence if

parts of the object (e.g., geometry, edges, textures) are similar

to the training examples (see Fig. 2 for an example). Moreover,

these algorithms don’t care whether the scene makes sense or

not; an object’s location and local context within the frame are

not taken into account. Fig. 1b presents an example where an

https://cloud.google.com/vision/
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TABLE I: Phantom Projection Mapped to a Desired Result

Desired Result
Triggered

Reaction

Type of

Phantom

Place of

Projection

Traffic
collision

Deviation to
pavement/lane
of oncoming
traffic

Lane Road

Trigger
sudden
brakes

Stop sign Building,
billboardNo entry sign

Obstacles (cars,
people, etc.)

Road

Reckless/illegal
driving behavior

Triggering
fast driving

Speed limit
Building,
billboard

Traffic
jam

Decreasing
speed
limitation

Speed limit

Stopping cars No entry sign
Directing traffic
to chosen roads

Closing
alternative roads

No entry sign

ADAS positively identifies a road sign in an irregular location

(on a tree), and Fig. 3 demonstrates this concept using a

state-of-the-art road sign detector. Also, because an object’s

texture is not taken into account, object detectors still classify a

phantom road sign as a real sign with high confidence although

the phantom road sign is partially transparent and captures

the surface behind it (see Fig. 1). Finally, these algorithms

are trained with a ground truth that all objects are real and

are not trained with the concept of fakes. Therefore, although

projected images are perceived by a human as obvious fakes

(florescent, transparent, defective, or skewed), object detection

algorithms will report the object simply because the geometry

matches their training examples (see Fig. 1b).

B. The Threat Model

We consider an attacker as any malicious entity with a

medium sized budget (a few hundred dollars is enough to

buy a drone and a portable projector) and the intention of

creating chaos by performing a phantom attack that will

result in unintended car behavior. The attacker’s motivation

for applying a phantom attack can be terrorism (e.g., a desire

to kill a targeted passenger in a semi/full autonomous car or

harm a nearby pedestrian by causing an accident), criminal

intent (e.g., an interest in creating a traffic jam on a specific

road by decreasing the allowed speed limit), or fraud (e.g.,

a person aims to sue Tesla and asks someone to attack

his/her car). Table I maps a desired result (causing a traffic

collision, triggering illegal driving behavior, routing cars to

specific roads, and causing a traffic jam), a triggered reaction

(triggering the car’s brakes, deviating the car to the lane of

oncoming traffic, reckless driving), and the phantom required

(lane, road sign, obstacle). In this study, we demonstrate

how attackers can cause a traffic collision and illegal driving

behavior by applying phantom attacks against Mobileye 630

PRO and Tesla’s Model X.

While many methods that exploit the validation gap have

been demonstrated in the last four years [5–14], we con-

sider their application as less desirable, because they can

only be applied by skilled attackers with expertise in sensor

spoofing techniques (e.g., adversarial machine leaning [5–10]

or radio/ultrasound/LiDAR spoofing/jamming [11, 12, 14]).

Fig. 4: The Threat Model: An attacker (1) either remotely

hacks a digital billboard (2) or flies a drone equipped with a

portable projector (3) to create a phantom image. The image is

perceived as a real object by a car using an ADAS/autopilot,

and the car reacts unexpectedly.

Some of the attacks [5–9] rely on white-box approaches that

require full knowledge of the deployed models and a complex

preprocessing stage (e.g., finding an evading instance that

would be misclassified by a model). Moreover, the forensic

evidence left by the attackers at the attack scene (e.g., stickers)

can be easily removed by pedestrians and drivers or used by

investigators to trace the incident to the attackers. Additionally,

these attacks necessitate that the attackers approach the attack

scene in order to manipulate an object using a physical

artifact (e.g., stickers, graffiti) [5–10, 13] or to set up the

required equipment [11, 12, 14], acts that can expose attackers’

identities. The exposure vs. application balance which requires

that attackers "pay" (with identity exposure) for the ability to

perform these attacks is probably the main reason why these

attacks have not been seen in the wild.

The phantom attack threat model is much lighter than

previously proposed attacks [5–14]. Phantom attacks do not

require a skilled attacker or white-box approach, and the

equipment needed to apply them is cheap (a few hundred

dollars). Any person with malicious intent can be an attacker.

Since phantoms are the result of a digital process they can

be applied and immediately disabled, so they do not leave

any evidence at the attack scene. Finally, phantom attacks

can be applied by projecting objects using a drone equipped

with a portable projector or presenting objects on hacked

digital billboards for advertisements that face the Internet

[27, 28] and are located near roads, thereby eliminating the

need to physically approach the attack scene, changing the

exposure vs. application balance. The abovementioned reasons

make phantom attacks very dangerous. The threat model is

demonstrated in Fig. 4. In this study, we demonstrate the

application of phantom attacks via a drone equipped with

a projector and objects embedded in existing advertisements

presented on digital billboards.

IV. PHANTOM ATTACKS ON ADAS (MOBILEYE)

Commercial ADASs have been shown to decrease the

volume of accidents in various studies [29] by notifying drivers

about road signs, imminent collisions, lane deviations, etc.

As a result, countries around the world promote/mandate the
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Fig. 5: (a) Mobileye 630 PRO consists of a video camera

(boxed in green), which is installed on the windshield, and a

display (boxed in purple). (b) Experimental setup: the phantom

(boxed in red) projected from a portable projector placed on a

tripod (boxed in blue), and the attacked vehicle equipped with

Mobileye 630 (boxed in yellow).

use of ADASs in cars that were not manufactured with such

systems [16, 17]. Phantom attacks against an ADAS can

trigger reckless driving or traffic jams (by notifying drivers

about abnormal speed limits), incorrect steering (by notifying

drivers about lane deviations), and even sudden braking (by

sounding an alarm about an imminent collision). Mobileye

630 PRO is considered the most advanced external ADAS

for automation level 0-1 cars, so we decided to use Mobileye

630 PRO in this study. In the rest of this section we refer to

Mobileye 630 PRO as Mobileye.
First, we show how attackers can identify and analyze the

various factors that influence the success rate of phantom

attacks against a real ADAS/autopilot, and we use Mobileye

to demonstrate this process. Then, we show how attackers

can disguise phantom attacks so they won’t be recognized

by a human driver using black-box techniques. Finally, we

demonstrate how attackers can leverage their findings and

apply phantom attacks in just 125 ms via: 1) a projector

mounted to a drone, and 2) an advertisement presented on

a hacked digital billboard.
Given the lack of V2I, V2V, and V2P protocol implementa-

tion, Mobileye relies solely on computer vision algorithms and

consists of two main components (see Fig. 5a): a video camera

and a display which provides visual and audible alerts about

the surroundings, as needed. Mobileye is also connected to

the car’s CAN bus and obtains other information (e.g., speed,

the use of turn signals). Mobileye supports the following

features: lane deviation warning, pedestrian collision warning,

car collision warning, and road sign recognition. The accuracy

of Mobileye’s road sign recognition feature is stable, even in

extreme ambient light or weather conditions, and is considered

very reliable. Thus, we decided to focus our efforts on trying

to fool this feature, with the aim of challenging Mobileye’s

most robust functionality (the functionality of some of their

other features, like pedestrian collision warning, does not work

in the dark/night [30]).

A. Analysis

In this subsection, we show how attackers can identify the

various factors that influence the success rate of phantom

Fig. 6: Examples of road signs with different opacity levels.

attacks against a real ADAS/autopilot. We show how attackers

can determine: 1) the diameter of the phantom road sign re-

quired to cover a given attack range, 2) the projection intensity

required to cover a given attack range given the ambient light.

Throughout the subsection we refer to a projected road sign as

a phantom. Fig. 5b presents an illustration of the experimental

setup used in the experiments described in this subsection. We

used the Nebula Capsule projector, a portable projector with

an intensity of 100 lumens and 854 x 480 resolution, which we

bought on Amazon for $300 [31]. The portable projector was

placed on a tripod located about 2.5 meters from a white screen

(2.2 x 1.25 meters), and the phantom was projected onto the

center of the screen. Mobileye is programmed to work only

when the car is driving, so to test whether the phantom was

captured by Mobileye, we drove the car (a Renault Captur

2017 equipped with Mobileye) in a straight line at a speed of

approximately 25-50 km/h and observed its display.

Experimental Setup: We started by demonstrating how at-

tackers can calculate the diameter of the projected phantom

road sign required to attack a driving car located a desired

distance from the phantom. We tested six different sized

phantoms of a road sign (20 km/h speed limit) with diameters

smaller than our white screen (0.16, 0.25, 0.42, 0.68, 1.1, and

1.25 meters). We report the minimal and maximal distances for

which the phantom road sign was detected as real by Mobileye.

Results: Fig. 7 presents the results from this set of experi-

ments. The black points on the graph indicate the minimal and

maximal distances for each phantom size. The gray area on

the graph shows the detection range for the entire sample set.

The red points indicate the midpoint between the maximal

and minimal distance. First, we report that road signs with

a diameter of less than 0.16 meters were not detected by

Mobileye at all. Beyond the minimal and maximal distances,

Mobileye ignores the phantoms and does not consider them

at all. This is probably due to an internal mechanism that

calculates the distance from a detected road sign based on

the size of the road sign in pixels. Mobileye only presents a

road sign to the driver if the sign is located within the specific

distance range (1-5 meters) of the car [32]. If Mobileye detects

a road sign which is very small, it interprets this as being far

from the car; if the road sign is viewed by Mobileye as very

large, Mobileye considers it too late to notify the driver about

the sign. Mobileye only notifies the driver about a sign when

the size of the detected road sign is within the desired size

range (in terms of pixels). This is the reason why the red

points on the graph maintain a linear behavior between the

distance and the diameter. Our white screen is limited by its

size (a height of 1.25 meters), so the maximal distance we were

able to validate is 14.8 meters when using a phantom road sign

with a diameter of 1.2 meters. However, distances beyond 14.8
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Fig. 7: Required diameter of phantom as a

function of distance.

Fig. 8: Required intensity of projection (delta

from ambient light) as a function of distance.

a                              b                                c

d                              e                                f

Fig. 9: Real road signs (a-c) and

fake road signs with different out-

line color (d), different color of

the sign’s inner content and outline

(e), different background color (f).

meters can be assessed by calculating the equation of the red

linear curve by applying linear regression to the results. The

function calculated is presented in Equation 1:

Diameter (Range) = 0.206×Range− 0.891 (1)

Equation 1 results in the following: correlation coefficient

(r) = 0.995, residual sum of squares (rss) = 0.008, and

coefficient of determination (R2) = 0.991. This equation can be

used by attackers to calculate the phantom diameter required

as a function of the distance between the phantom and the car

they want to attack for a range ≥ 14.8 meters.
Experimental Setup: We continue by demonstrating how

attackers can calculate the intensity of projection required

to attack a driving car located at a desired distance from

the phantom. Since light deteriorates with distance, a weak

projection may not be captured by Mobileye’s video camera

beyond a given distance. In order to investigate this effect,

we tested ten phantoms (a 20 km/h speed limit sign) with

different opacity levels (10%, 20%,.., 100%). These phantoms

created various projection intensities, as can be seen in Figure

6. For every projected phantom, we measured the intensity of

projection (in LUX) on the white screen with a professional

optical sensor, and the maximal distance from which Mobileye

could detect this phantom. We also measured the ambient light

(in LUX) on the white screen when no projection was applied.

We calculated the difference between a measurement as it was

captured on the white screen (in LUX) and the ambient light

(in LUX) as it was captured on the white screen. We consider

this difference the intensity the attacker must use to project a

phantom on the surface with a given ambient light.
Results: Fig. 8 presents the results of this set of experiments.

This graph indicates that 1) it is easier to apply phantom

attacks at night (in the dark) with weak projectors, and

2) stronger projectors are needed to apply phantom attacks

during the day. The graph shows a polynomial behavior in

the distances evaluated. The required projection intensity for

ranges that are beyond 14.8 meters can be calculated using

Lagrange interpolation. The result is presented in Equation 2:

∆ Lux (Range=r) = 0.01× r5 − 0.90× r4+

21.78× r3 − 258.86× r2 + 1525.72× r − 3566.76
(2)

This equation can be used by attackers to calculate the

projection intensity required as a function of the distance from

the car they want to attack for distances ≥ 14.8 meters.

B. Disguising the Phantoms to Avoid Detection by Drivers

In this subsection, we demonstrate how attackers can dis-

guise the phantoms so that they 1) aren’t detected by a driver

while he/she is driving the car, and 2) are misclassified by

Mobileye.
Experimental Setup: First, we assess whether Mobileye is

sensitive to the color of the sign. The motivation behind this set

of experiments is that ambient light conditions can change the

perception of the colors and hues of the captured road signs;

we assumed that Mobileye contains an internal mechanism that

compensates for this fact. We chose three road signs (presented

in Fig. 9a-c) and verified that Mobileye detects their phantoms

(projected in their real colors) as real road signs. Next, we

projected a phantom of the same traffic sign outlined in a

different color (presented in Fig. 9d), a phantom of a road sign

with a different color of both its inner content and outline (Fig.

9e), and a phantom sign with a different background color

(Fig. 9f).
Results: We found that Mobileye is not sensitive to color,

since all of the phantoms presented in Fig. 9d-f were classified

by Mobileye as real road signs. Based on this, we concluded

that Mobileye either obtains the pictures in grayscale (digital-

ly/physically) or its road sign recognition system ignores the

detected road sign’s color.
Experimental Setup: In this experiment, we aimed to de-

termine the minimal projection time required to ensure that

Mobileye detects the phantom. The projector we used works

at the rate of 25 FPS. We created 25 videos that present

a black background for 10 seconds. In each of the videos,

we embedded a road sign (30 km/h speed limit) in a few

consecutive frames (1,2,3...,25). Then, we projected the videos

with the embedded road signs.
Results: We discovered that Mobileye is capable of detect-

ing phantoms that are projected for 125 ms. We were unable

to fool Mobileye with shorter projection times, likely due to

an internal mechanism that validates a detected traffic sign

against a consecutive number of frames that exceeds 125 ms

or due to the low FPS rate of its video camera.
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Fig. 10: A phantom (boxed in red) is projected on a building

for 125 seconds from a drone; the phantom is captured by

the passing Renault Captur, and Mobileye 630 PRO (boxed in

yellow) identifies the phantom as real.

Embedded

Road Sign

a

b

c

Fig. 11: Embedded road sign in a Coca-Cola advertisement

(a): full, (b) outline, and (c) embedding.

C. Evaluation (Split Second Attacks)

We now show how attackers can leverage this knowledge

to apply a phantom attack in a split second attack (125 ms)

disguised as 1) a drone delivery, and 2) an advertisement

presented on a digital billboard; in this case, the attacker’s ob-

jective is to cause a driver that follows Mobileye notifications

and adjusts his/her driving accordingly to drive recklessly.

Applying a Phantom Attack Using a Drone: This experi-

ment was conducted on the premises of our university after

we received the proper approvals from the security department.

We mounted a portable projector on a drone (DJI Matrice 600)

carrying a delivery box, so it would look like a drone delivery.

In this experiment, our car (a Renault Captur equipped with

Mobileye) was driven in an urban environment as the attacker

operated the drone; the attacker positioned the drone in front

of a building so the phantom speed limit sign (90 km/h) could

be projected onto the wall so as to be in Mobileye’s field

of view. The attacker then waited for the car to arrive and

projected the incorrect 90 km/h speed limit sign for 125 ms.

A snapshot from the attack can be seen in Fig. 10, and the

recorded video of the attack was uploaded.1 Mobileye detected

the phantom and notified the driver that the speed limit on this

road is 90 km/h, although driving faster than 30 km/h on this

road is not permitted. Attackers can also mount lightweight

projectors onto much smaller drones; we were able to apply

the same attack using an AAXA P2-A LED projector (weighs

just 8.8 ounces) mounted on a DJI Mavic.

Applying a Phantom Attack via a Digital Billboard:

Attackers can present phantoms via a desired digital billboard

1 https://youtu.be/sMsaPMaHWfA

Fig. 12: Tesla’s autopilot identifies the phantom as a person

and does not start to drive. The red box contains a picture of

the car’s dashboard.

Fig. 13: The Tesla identifies the phantom as a car. The red

box contains a picture of the car’s dashboard.

that is located near roads by hacking a billboard that faces

the Internet (as was shown in [27, 28]) or by renting the

services of a hacked billboard on the darknet. Attackers can

disguise the phantom in an existing advertisement to make

the attack more difficult to detect by drivers, pedestrians, and

passengers. There are two methods of embedding phantoms

within the content of an existing advertisement, as presented

in Fig. 11: 1) a split second attack with full embedding in

which a phantom is added to a video of an advertisement

as is for 125 ms, and 2) a split second attack with outline

embedding in which a phantom’s outline is added to a video

of an advertisement for 125 ms. Embedding a phantom within

a video of an advertisement is a technique that attackers can

easily apply using simple video editors, in order to disguise

the attack as a regular advertisement presented on a digital

billboard. We demonstrate these techniques using a random

Coca-Cola ad. We added the content of a road sign (a speed

limit of 90 km/h) to three consecutive frames in a Coke ad

using the two methods mentioned above (snapshots from the

compromised frames of the ads are presented in Fig. 11), and

the ad was uploaded. 2 With the experimental setup seen in

Fig. 5b, we projected the two advertisements on the white

screen to simulate a scenario of a phantom attack applied

via a hacked digital billboard. The road sign was detected

by Mobileye in both cases, and the driver was notified that

the speed limit was 90 km/h although driving faster than 50

km/h is not permitted on the road.

2 https://youtu.be/sMsaPMaHWfA?t=31

https://youtu.be/sMsaPMaHWfA
https://youtu.be/sMsaPMaHWfA?t=31
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Fig. 14: Fooling the obstacle detection system: (a) A Tesla operating in cruise control (at location 1) approaches a phantom (at

location 2). As a result, the car’s collision avoidance system automatically triggers the brakes which reduces the car’s speed

from 18 MPH to 14 MPH while traveling to location 3. Snapshots of the car’s dashboard (at locations 2 and 3) are presented

in the red boxes. (b) The projected phantom as it was captured from a camera placed inside the car.

V. PHANTOM ATTACKS ON SEMI-AUTONOMOUS CARS

(TESLA)

Autopilots have been deployed in semi-autonomous cars

since the last quarter of 2015, and many car manufacturers

have recently started to include them in level 2 automation

cars [18]. Phantom attacks against semi-autonomous cars can

trigger an unintended reaction from the autopilot that will

result in a collision. Tesla’s autopilot is considered statistically

safer than a human driver [33], so we decided to test its

robustness to phantom attacks in this study. All of the experi-

ments described in this section were conducted with the Tesla

Model X HW 2.5 which was manufactured in November 2017.

The most recent firmware (2019.31.1) was installed at the

time the experiments were conducted (September 2019). This

model supports cruise control and autopilot functionalities. It

also provides an anti-collision system to prevent the car from

accidents with pedestrians, cars, etc.

First, we show that no validation is performed when an

obstacle has been visually detected, likely due to a safety

policy. Then, we show how attackers can exploit this fact

and cause Tesla’s autopilot to automatically and suddenly put

on the brakes (by projecting a phantom of a person) and

deviate from its path and cross the lane of oncoming traffic

(by projecting a phantom of a lane). The set of experiments

presented in this section was not performed in the same coun-

try that the experiments against Mobileye were performed.

Flight regulations in the country that the experiments against

Tesla were conducted prohibit the use of drones near roads

and highways, so all of the attacks discussed in this section

were applied via a portable projector (LG - CineBeam PH550

720p DLP projector) mounted on a tripod, although they could

be implemented from a drone as was done in the experiments

described in the previous section.

A. Fooling the Obstacle Detection System

In the absence of V2V and V2P protocols, Tesla’s obstacle

detection system obtains information about its surroundings

from eight surround video cameras, twelve ultrasonic sensors,

and front-facing radar [34]. Any obstacle (e.g., person, car,

motorcycle, truck) detected by this system is presented to the

driver on the dashboard. In this subsection, we evaluate the

robustness of this system to phantom attacks.
Experimental Setup: We started by testing the system’s

robustness to a phantom of a picture of a person. Since the

projector was placed on the sidewalk on the side of the road,

we applied a morphing process to the picture, so it would

look straight at the Tesla’s front video camera (this process

is described in the Appendix) and projected the morphed

phantom on the road about one meter in front of the car. We

then engaged the Tesla’s autopilot.
Results: As can be seen from the results presented in Fig.

12, the Tesla’s autopilot did not start to drive, since the

phantom was detected as a real person (a picture of the car’s

dashboard appears in the red box, with the "person" detected

boxed in yellow). We were only a bit surprised by this result,

because the radar cross section of humans is dramatically

lower than that of a car due to differences in their size,

material, and orientation. This fact makes Tesla’s front-facing

radar measurements ambiguous and unreliable for the task

of sensing people. In addition, ultrasound measurements are

known to be effective for just short ranges (~ 5-8 meters) [12],

so the obstacle detection system cannot rely on ultrasound

measurements to sense people. These two facts can explain

why the Tesla did not validate the existence of the phantom

person detected by the front-facing camera with the front-

facing radar and the set of ultrasound sensors, and thus

considers it a real obstacle.
Experimental Setup: Next, we aimed at testing the obstacle

detection system’s response to a projected phantom of a car.

We took a picture of a car and morphed it so it would look

straight at the car’s front video camera and projected the

phantom car on the road about one meter in front of the Tesla.
Results: We were surprised to see that the depthless phan-

tom car projected on the road was detected as a real car, as can

be seen in Fig. 13. This is a very interesting result, because

the phantom car was projected about one meter in front of the

Tesla to the area in the driving environment which is covered
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Fig. 15: Fooling the lane detection system: (a) A Tesla with its autopilot engaged (at location 1) approaches a phantom lane

projected on the road (at location 2). As a result, Tesla’s lane detection system causes the car to turn to the left, following

the phantom white lane and crossing the real solid yellow lane, so that the car is driving across the lane of oncoming traffic

to location 3 (the result is marked with a red arrow). Pictures of the car’s dashboard at locations 1 and 2 are presented in the

red boxes. (b) The projected phantom lanes as captured from a camera placed inside the car.

by the car’s front-facing radar and ultrasound. Considering

the fact that a car’s radar cross section is very reliable, since

cars are made of metal, the existence of visually identified

cars can be validated with the front-facing radar. Based on

this experiment, we concluded that Tesla’s obstacle detection

system does not cross-validate the existence of a visually

detected obstacle with another sensor. When we contacted

Tesla’s engineers they did not share the reasons for our

findings with us, but we assume that a "better safe than sorry"

policy is implemented, i.e., if an obstacle is detected by one

of Tesla’s sensors with high confidence, Teslas are designed

to consider it as real and stop rather than risking an accident.

Experimental Setup: With the observation noted above in

mind, we show how attackers can exploit the "better safe than

sorry" policy and cause Tesla’s collision avoidance system to

trigger sudden braking, by applying a phantom attack of a

person. We drove the car to a deserted location to conduct

this experiment. Fig. 14a presents the attack stages. At the

beginning of the experiment we drove the car at a speed of 18

MPH (which is the slowest speed at which the cruise control

can be engaged) and engaged the cruise control at location 1

in Fig. 14a. The cruise control system drove the car at a fixed

speed of 18 MPH from location 1 to location 2. At location

2 a phantom of a person was projected in the middle of the

road (as can be seen in Fig. 14b).

Results: A few meters before location 2 where the phantom

was projected, the Tesla’s obstacle detection system identified

a person, as can be seen in Fig. 14a which presents a picture

of the dashboard, as it appeared when the car reached location

2. Again, there was no validation with another sensor to detect

fake objects, and the collision avoidance system caused the car

to brake suddenly (at location 2), decreasing the car’s speed

from 18 MPH to 14 MPH by the time the car reached location

3. The experiment was recorded and uploaded.3 While we

performed this experiment carefully, implementing the attack

3 https://youtu.be/sMsaPMaHWfA?t=43

when the car was driving at the lowest speed possible with

cruise control (18 MPH), attackers can target this attack at

semi/fully autonomous cars driving on highways at speeds of

45-70 MPH, endangering the passengers in the attacked car

as well as those in other nearby cars.

B. Fooling the Lane Detection System

Tesla’s lane detection system is used by its autopilot to steer

the car safely. It is also used to notify the driver about lane

deviations in cases in which the car is manually driven. This

system shows the driver the detected lane on the dashboard. In

the absence of deployed V2I protocols, Tesla’s lane detection

system is based purely on a video camera. In this subsection,

we test the robustness of Tesla’s lane detection system to a

phantom attack.

Experimental Setup: We demonstrate how attackers can

cause Tesla’s autopilot to deviate from its path and cross the

lane of oncoming traffic by projecting phantom lanes. We

created a phantom consisting of two lane markings which

gradually turn to the left, using a picture that consists of two

white lanes on a black background. We drove the car on a

road with a single lane in each direction. The two lanes were

separated by a solid yellow line, as can be seen in Fig. 15a.

We engaged the autopilot functionality (at location 1), and the

car was steered by the autopilot on the road towards location

2, traveling toward the phantom that was projected at location

2 (the driving route is indicated by the blue arrow in Fig. 15a).

The two red boxes are pictures of the car’s dashboard taken at

each of the locations. A video demonstrating this experiment

was recorded and uploaded.4 A picture of the road taken from

the driver’s seat showing the white phantom lanes that cross

the real solid yellow is presented in Fig. 4b.

Results: As can be seen from the red box at location 2 in Fig.

15a, Tesla’s lane detection system detected the phantom lanes

turning toward the left as the real lanes. The autopilot turned

4 https://youtu.be/sMsaPMaHWfA?t=77

https://youtu.be/sMsaPMaHWfA?t=43
https://youtu.be/sMsaPMaHWfA?t=77
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the car toward the left, following the phantom white lanes and

crossing the real yellow solid lane (the path is marked with

the red arrow in the figure) and driving across the lane of

oncoming traffic until we put on the brakes and stopped the

car at location 3 in Fig. 15a. Tesla’s lane detection system was

unable to differentiate between the real yellow lane and the

white phantom lanes although they were different colors.

In the Appendix we demonstrate another application of

phantom attacks against Tesla’s stop sign recognition system.

We show how a Tesla considered a phantom stop sign that was

projected on a road that does not contain a stop sign. Since

Tesla’s stop sign recognition system is experimental and is not

considered a deployed functionality, we chose to exclude this

demonstration from the paper.

VI. DETECTING PHANTOMS

Phantom attacks work well because autonomous systems

consider the camera sensor alone in order to avoid making a

potentially fatal mistake (e.g., failing to detect a pedestrian in

the street). Since it makes sense to rely on just the camera

sensor in these situations, we propose that an add-on software

module be used to validate objects identified using the camera

sensor.

As discussed in section III-A, ADASs and autonomous sys-

tems often ignore a detected object’s context and authenticity

(i.e., how realistic it looks). This is because the computer

vision model is only concerned with matching geometry and

has no concept of what fake objects (phantoms) look like.

Therefore, the module should validate the legitimacy of the

object given its context and authenticity. In general there are

five aspects which can be analyzed to detect a phantom image:

Size. If the size of the detected object is larger or smaller than

it should be, the detected object should be disregarded,

e.g., a road sign which is not regulation size. The size and

distance of an object can be determined via the camera

sensors alone through stereoscopic imaging [35].

Angle. If the angle of the object does not match its placement

in the frame, it is indicative of a phantom. The skew

of a 2D object facing a camera changes depending on

which side of the frame it is situated. A phantom may

be projected at an angle onto a surface, or the surface

may not be directly facing the camera. As a result, the

captured object may be skewed in an anomalous way.

Context. If the placement of the object is impossible or

simply abnormal, it is indicative of a phantom, e.g., a road

sign that does not have a post or a pedestrian ‘floating’

over the ground.

Surface. If the surface of the object is distorted or lumpy, or

has features which do not match the typical features of

the detected object, then it is likely a phantom, e.g., when

a phantom is projected onto a brick wall or an uneven

surface.

Lighting. If the object is too bright given its location (e.g.,

in the shade) or time of day, then it can be assumed to

be a phantom. This can be determined passively through

image analysis or actively by shining a light source onto

the object (e.g., flash photography).

In the following subsections, we present one possible im-

plementation this countermeasure module which considers the

last three aspects. We focus on detecting projected phantom

road signs, because we can evaluate our approach in conjunc-

tion with eight state-of-the-art road sign detectors. We also

note that road sign location databases do not mitigate road

sign phantom attacks. This is because temporary road signs

are very common. For example, caution, speed, and stop signs

in construction zones, and stop signs on school buses. Finally,

although we focus on road signs, the same approach can be

applied to other types of phantom objects (pedestrians, cars,

etc.).

A. The Detection Module

Overall, our module works as follows. First, the module

receives a cropped image of a road sign from the on-board

object detector. The module uses a model to predict whether

or not the object’s setting makes sense and whether or not the

object is realistic and reports the decision back to the system.

The module can be used on every detected object or only

on those which the controller deems urgent (e.g., to avoid an

imminent collision with a person).
To predict whether or not an object is a phantom or real,

we could build a simple convolutional neural network (CNN)

classifier which receives a cropped image of a road sign and

then predicts whether it is real or fake, however this approach

would make the neural network reliant on specific features

and thus would not generalize to phantoms projected on

different surfaces or made using different types of projectors.

For example, the light intensity of a road sign is an obvious

way to visually distinguish between a real and projected

sign. As a result, a neural network trained on the entire sign

would primarily focus on this aspect alone and make errors

with phantoms projected on different surfaces or made using

different projectors (not used in the training set).
To avoid this bias, we utilize the committee of experts

approach used in machine learning [36] in which there is an

ensemble of models, each of which has a different perspective

or capability of interpreting the training data. Our committee

consists of three deep CNN models, each focusing on a

different aspect (see Fig. 16 for the model parameters). The

models receive a cropped image of a road sign. The models

then judge if the sign is authentic and contextually makes

sense:

Context Model. This CNN receives the context: the area

surrounding the road sign with the road sign itself erased.

Given a context, the model is trained to predict whether

a sign is appropriate or not. The goal of this model is to

determine whether the placement of a sign makes sense

in a given location.

Surface Model. This CNN receives the sign’s surface: the

cropped sign alone in full color. Given a surface, the

model is trained to predict whether or not the sign’s

surface is realistic. For example, a sign with tree leaves

or brick patterns inside is not realistic, but a smooth one

is.

Light Model. This CNN receives the light intensity of the

sign. The light level of a pixel is the maximum value
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Fig. 16: The proposed phantom image detection module. When a frame is captured, (1) the on-board object detector locates

a road sign, (2) the road sign is cropped and passed to the Context, Surface, and Light models, and (3) the Combiner model

interprets the models’ embeddings and makes a final decision on the road sign (real or fake).
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Fig. 17: A diagram showing how the training and testing

data was prepared from our data sources, and the number of

instances.

of the pixel’s RGB values (the ‘V’ in the HSV image

format). The goal of this model is to detect whether a

sign’s lighting is irregular. This can be used to differ-

entiate real signs from phantom signs, because the paint

on signs reflects light differently than the way light is

emitted from projected signs.

To make a prediction on whether or not a sign is real or

fake, we combine the knowledge of the three models into a

final prediction. As an image is passed through each of the

models, we capture the activation of the fifth layer’s neurons.

This vector provides a latent representation (embedding) of

the model’s reasoning as to why it thinks the given instance

should be predicted as a certain class. We then concatenate the

embeddings to form a summary of the given image. Finally, a

fourth neural network is trained to classify the image as real

or fake using the concatenated embeddings. The entire neural

network has 860, 216 trainable parameters.

B. Experimental Setup

To evaluate the proposed detector, we combined three

datasets containing driver seat perspective images (see Fig.

17 for a summary). The first is the GTSRB German traffic

sign dataset [37] denoted as (Rg). The second is a dataset we

recorded from a dash cam while driving at night for a three

hour period in a city, which is denoted as (Rd). The third is

another dash cam dataset we recorded while driving an area

where phantom road signs were projected, denoted as (Fd).

In the Fd dataset, we projected 40 different types of signs

in a loop onto nine different surfaces while driving by. We

then used eight state-of-the-art road sign detectors (described

in [26]) to detect and crop all of the road signs in Rg , Rd,

and Fd. The cropped road signs were then passed as input to

the models.

To train the context model, we needed examples which do

not contain signs (denoted as Rn) to teach the model the

improper placement of signs. For this dataset we cropped

random areas from Rg and Rd such that the center of the

cropped images does not contain a sign.

The Context, Surface, and Light models were trained sep-

arately, and then the Combiner model was trained on their

embeddings. Regarding the data, %80 was used to train the

models, and the remaining %20 was used to evaluate them. To

reduce bias, the evaluation samples taken from Fd contained

phantom projections on surfaces which were not in the training

set. Training was performed on an NVIDIA Titan X (Pascal)

GPU for 100 epochs.

C. Experimental Results

1) Model Performance: In Fig. 19 we present the receiver

operating characteristic (ROC) plot and the area under the

ROC for of the Context, Surface, Light, and Combiner models.

The ROC shows the true positive rate (TPR) and false positive

rate (FPR) for every possible prediction threshold, and the

AUC provides an overall performance measure of a classifier

(AUC=1 : perfect predictions, AUC=0.5 : random guessing).

There is a trade-off when setting a threshold. This is because

a lower threshold will decrease the FPR but often decrease the

TPR as well. In our case, it is critical that our module predicts

real signs as real every time. This is because the vast majority

of signs passed to our module will be real. Therefore, even a

very small FPR would make the solution impractical. For this

reason, in Table II we provide the TPR and FPR of the models
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Fig. 18: Examples of disagreements between the models for real and fake road signs which led to correct predictions.

Fig. 19: The receiver operating characteristic curve and AUC

measure for each model. A larger AUC is better.

when the threshold is set to 0.5 (the default for softmax) and

for the threshold value at which the FPR is zero.

2) The Committee at Work: In Table II, we note that the

Combiner model performs better than any of the individual

models alone. In Table II we also show that there is no com-

bination of models that performs as well as the combination

consisting of all three models. This means that each aspect

(context, surface, and light) contributes a unique and important

perspective on the difference between a real and phantom road

sign.

This is important since in order for the committee of experts

approach to be effective there must be some disagreements

between the models. In Fig. 18, we provide some visual

examples of the disagreements which resulted in a correct

prediction by the Combined model. In some cases, a model

simply misclassifies although the evidence is clear. For ex-

ample, sometimes the Context model does not realize that

the sign is on the back of a truck (bottom right corner of

Fig. 18). In other cases, a model misclassifies simply because

its perspective does not contain the required evidence. For

example, sometimes the Context model finds it abnormal for

a sign to be floating on a horizontal structure (top left corner

TABLE II: The TPR and FPR of the Countermeasure Models

at Different Thresholds. C: Context, S: Surface, L: Light

  C S L C+S C+L S+L C+S+L 

Threshold 

@ 0.5 

TPR 0.778 0.960 0.972 0.969 0.971 0.973 0.976 

FPR 0.151 0.072 0.039 0.071 0.035 0.021 0.022 

Threshold 

@ [FPR=0] 

TPR 0.006 0.724 0.870 0.726 0.884 0.896 0.902 

FPR 0 0 0 0 0 0 0 

TPR: % of phantoms detected, FPR: % of road signs misclassified as phantoms 
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TABLE III: The Disagreement Between the Models

’

 Disagreement on… C vs S C vs L S vs L C vs S vs L 

Threshold 

@ 0.5 

Phantoms 0.3% 0.4% 0.5% 0.6% 

Real Signs 29.7% 32.0% 6.2% 33.9% 

Threshold 

@ [FPR=0] 

Phantoms 21.0% 95.8% 74.8% 95.8% 

Real Signs 0% 0% 0% 0% 

 

TABLE IV: The Detection Rates Using s.o.t.a Road Sign

Detectors  Detection Rate 

  given real signs 

(baseline) 

given fake signs 

(attack) 

 Countermeasure? 

   No Yes 

R
o

a
d

 S
ig

n
 D

et
ec

to
r faster_rcnn_inception_resnet_v2 70.4% 92.57% 0.36% 

faster_rcnn_resnet_101 70.7% 87.62% 0.67% 
faster_rcnn_resnet50 70.2% 97.53% 0.56% 

faster_rcnn_inception_v2 70.4% 99.02% 1.19% 
rfcn_resnet101 71.2% 93.00% 0.49% 

ssd_inception_v2 62.8% 59.06% 0.96% 
ssd_mobilenet_v1 58.5% 40.70% 1.41% 

yolo_v2 69.4% 79.22% 5.70% 

 

of Fig. 18). Regardless, in all cases the other models (experts)

provided a strong vote of confidence contrary to the erroneous

opinion, and this ultimately led to the correct prediction.

However, the committee of experts approach is not perfect.

Fig. 20 provides an example of a case in which the Combiner

model failed. Here the sign is real, but only the Context model

identified it as such. However, due to motion blur, the other

models strongly disagreed.

3) Module Performance: Our module filters out untrusted

(phantom) road signs detected by the on-board object detector.

Since there are many different implementations of road sign

detectors, one detector may be fooled by a specific phantom

while another would not. Therefore, to determine how effective

our module is within a system, we evaluated phantom attacks

on eight state-of-the-art road sign detectors [26]. We measured
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Fig. 20: An example of a false positive, where the Combiner

model failed due to a disagreement.

the attack success rate on a detector as the percent of phantom

signs identified in Fd. In Table IV we present the attack

success rates on each detector before and after applying our

countermeasure.5 We also provide each of the detector’s accu-

racy with real road signs (Rg) as a baseline. The results show

that the detectors are highly susceptible to phantom attacks

and that our countermeasure provides effective mitigation.

In summary, with all models combined as a committee

and the FPR tuned to zero, the TPR is 0.9. This means that

our countermeasure is reliable enough for daily usage (is not

expected make false alarms) and will detect a phantom 90%
of the time. However, our training set only contained several

hours of video footage. For this solution to be deployed, it

is recommended that the models be trained on much larger

datasets with phantoms projected from other devices as well.

We also suggest that additional models which consider size

and angle be considered.

VII. RESPONSIBLE DISCLOSURE

This research shows that the absence of deployed vehic-

ular communication systems limits the ability of semi/fully

autonomous cars to validate virtual perception and that the car

industry doesn’t take phantom attacks into consideration. We

have nothing against Tesla or Mobileye, and the reason that

their products were used in our experiments is because their

products are the best and most popular products available on

the market.

We shared our findings with Mobileye’s bug bounty via

email and received the following response: "There was no

exploit, no vulnerability, no flaw, and nothing of interest: the

road sign recognition system saw an image of a street sign,

and this is good enough, so Mobileye 630 PRO should accept

it and move on." We agree with Mobileye regarding their

claim that there wasn’t an exploit or vulnerability. We do

not consider phantom attacks bugs, since they don’t exploit

poor code implementation. Instead, phantom attacks pose a

perceptual challenge to ADASs and autopilots which are

unable to validate their findings with a third party due to the

lack of deployed vehicular communication systems. However,

we disagree with Mobileye’s claims that there is "nothing of

interest and no flaw," because Mobileye 630 PRO considered

a phantom as a legitimate street sign. Considering the fact

that Mobileye’s technology is currently integrated in semi-

autonomous cars (e.g., the Tesla with HW 1) which will even-

tually be programmed to stop when a stop sign is recognized,

the inability of Mobileye’s technology to distinguish between a

5Here the Combiner model’s threshold is set to the value where the FPR=0.

phantom and a real stop sign may be exploited by attackers to

target semi-autonomous cars driving on highways at speeds of

45-70 MPH in order to trigger sudden braking using a phantom

stop sign.

We also shared our findings with Tesla’s bug bounty via

email. Tesla decided to dismiss all of our findings due to

the fact that the experiments that are presented in the Ap-

pendix, were performed after enabling the experimental stop

sign recognition system, claiming: "We cannot provide any

comment on the sort of behavior you would experience after

doing manual modifications to the internal configuration - or

any other characteristic, or physical part for that matter -

of your vehicle". Tesla engineers removed the experimental

code from the firmware about two weeks after we contacted

them about this matter. While we did indeed enable the stop

sign recognition feature in the experiments presented in the

Appendix, we did not influence the behavior that led the car

to steer into the lane of oncoming traffic or suddenly put on

the brakes after detecting a phantom.

VIII. DISCUSSION

One might argue that the deployment of vehicular commu-

nication systems will prevent attackers from applying phantom

attacks in the wild, however this is unlikely to be the case. We

don’t believe that full deployment of vehicular communication

systems that support V2V, V2I, V2P, and V2X protocols will

cause the manufacturers of semi/full autonomous cars to aban-

doned the "better safe than sorry" policy, because they cannot

rely on the assumption that if no validation was obtained for

a detected visual object, then the object must be a phantom.

There are other reasons why there might not be validation. V2P

communication relies on the fact that pedestrians are carrying

devices (e.g., smartphones) and requires that they carry such

devices with them. If a pedestrian’s device is turned off (e.g.,

drained battery) or the pedestrian isn’t carrying a device (e.g.,

forgot it at home), validation based on V2P communication

isn’t possible. Since car manufacturers cannot rely on the

assumption that they will be able to validate the presence of

pedestrians with V2P protocols, they must implement a "better

safe than sorry approach" policy. This is also the reason why

car manufacturers cannot completely rely on V2V validation

in the case of a visually detected car - not all cars contain

a fully functioning V2V device. The complete deployment of

V2I systems around the world might limit the attackers’ ability

to project a phantom lane or road sign, but the full deployment

of such systems might not be practical, since doing so is very

expensive, and currently most places around the world don’t

utilize V2I systems at all.

An interesting observation made during this study is that the

perceptual challenge that phantoms create is, in some cases,

an intelligence discriminator between people and machines.

Distinguishing between a projected object and a real object is

something that in some cases can be solved by examining the

context. This fact can be used to perform a Turing test [38] for

machine vs. human perception with an interesting application

in areas such as CAPTCHA, i.e., detecting Internet sessions

launched by bots.
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IX. APPENDIX

A. Morphing a Picture for a Projection

Figure 21 presents three locations. Location 1 is the location

of the front facing camera of the targeted car. Location 2

shows where the attack will be implemented from (this can

be a sidewalk, a drone, etc.). Location 3 indicates where the

attacker wishes to project the phantom. When projecting a

picture from location 2 toward location 3 (at a non-90 degree

horizontal/vertical angle), the picture loses its form and looks

distorted when it is captured by the front facing camera of

the targeted car (positioned at location 1). In order to project

a picture that will look straight at the car’s forward facing

camera, we performed the following steps:

• Downloading a Picture - We downloaded a picture of an

object that the car’s obstacle detection system can iden-

tify. Currently, Tesla signals the driver about pedestrians,

cars, trucks, motorcyclists, etc. The original picture used

is presented in Figure 22a.

Fig. 21: Morphing Process Attacked Scene: Location 1 is

where the front facing camera of the targeted car is located.

Location 2 is where the attacker will perform the attack.

Location 3 shows where the attacker wants to project the

phantom.

• Brightening the Picture - We brightened the picture in

order to emphasize its projection on the road. This is

an optional step. The brightened picture is presented in

Figure 22b.

• Projecting the Picture from the Front Facing Camera -

We placed the portable projector at location 1, near the

car’s front facing camera, and projected it on the road.

• Taking a picture of the Projected Object from Location 2

- We took a picture of the projected object from location

2, which is the place that we would like the attacker

to apply the attack. Figure 22c shows how Figure 22b

was captured on the road from a smartphone’s camera

located at location 2.

• Morphing the Original Object Using GIMP - We mor-

phed Figure 22b using GIMP according to Figure 22c and

created a new picture. The result is presented in Figure

22d.

• Projecting the Morphed Picture from Location 2 - Fi-

nally, we projected the picture presented in Figure 22d

from location 2 to location 3. The result as it was captured

from a camera that was placed in the driver’s seat is

presented in Figure 22e.

B. Fooling Tesla’s Road Sign Recognition System

In this subsection, we evaluate the robustness of Tesla’s stop

sign recognition system to phantom attacks. In the absence of

V2I protocols, Tesla HW 2.5 uses a geolocation mechanism

to obtain the information needed as the car is driving; this

mechanism uses an internal database (without the use of the

video camera) which is queried with location and orientation

data in order to obtain the necessary information regarding

traffic laws on a given road. In order to obtain the location

and orientation data required to query the database, the car

calculates its location via a GPS sensor over time and infers the

driving orientation on a road. This new functionality is used
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Fig. 22: Morphing Process Outputs: (a) the original picture of

the obstacle, (b) the brightened picture, (c) the object projected

from the car’s front facing camera as it was captured from a

camera placed where we want to apply the attack, (d) the

morphed picture, and (e) the object as it was captured from

the driver’s seat.

by Tesla to obtain speed limits on roads. This mechanism,

which is only available in Tesla’s new models (HW 2, 2.5

and 3), replaced Tesla’s old autopilot (HW 1) which relied on

Mobileye technology and was based on visual detection [39].

The new mechanism was designed to decrease false detection

rates as a result of unintended edge cases (e.g., speed limits

were detected from the back of trucks, parallel streets, parking

lot entrances [40]) and attacks [5–10].

Tesla recently deployed firmware which supports stop sign

and traffic light recognition. This functionality was recently

integrated into Tesla’s HW 2.0,2.5 and 3.0, and it is considered

experimental and is disabled by default. It can be enabled by

changing a system variable in Tesla’s computer, and we did

just that. A stop sign/traffic light recognition system requires

a high level of physical recognition accuracy which cannot be

obtained via standard GPS devices due to their known average

error under open skies (up to 7.8 m, with 95% probability

[41]). Given this limitation, Tesla cannot rely purely on the

geolocation mechanism as in the case of speed limit sign

recognition. Another reason is because in cases in which there

is no line on the road indicating where to stop, the location

of the stop sign/traffic light itself is considered the point at

which to stop. In order to compensate for this fact, Tesla uses

an additional means and considers a stop sign/traffic light (and

presents a signal to the driver to this effect) only if the stop

sign/traffic light has also been recognized by the car’s object

detection mechanism via the front video camera. If one of the

following conditions does not hold, the car will not consider

a stop sign/traffic light: 1) the stop sign/traffic light was not

detected by the front video camera, 2) the car is not located

within a geolocated area with an intersection that known to

contain a stop sign/traffic light, or 3) the orientation of the car

is not facing the stop sign/traffic light.

With that in mind, we show how an attacker can fool Tesla’s

stop sign recognition system, so that it considers a phantom

stop sign projected on a road that does not contain a stop

sign when the car is in fact located 50 meters from a nearby

intersection that contains a traffic light. Fig. 23a shows a road

(marked with a yellow arrow) that ends at a intersection that

contains a traffic light with stop line. When the car approached

the intersection, the traffic light recognition system informed

us about the traffic light visually detected. We then looked for

a nearby road with the same orientation that didn’t contain

a stop sign. We decided to conduct our experiments on the

road marked with a blue arrow in Fig. 23a; we first validated

that a stop sign is not detected by the Tesla on this road by

driving down the road. The Tesla did not recognize a stop

sign, and as a result, no indication appeared on the dashboard.

The selection of this road allowed us to orient the car such

that it was traveling in the direction of a nearby intersection

that contains traffic light but on a different road.

Experimental Setup: We started by trying to determine the

radius of the geolocation mechanism by finding maximal

distance from the intersection that Tesla’s stop sign recognition

system considers a phantom as a real stop sign. We drove the

car on the road marked with the blue arrow and projected a

phantom of a stop sign on a white board at various distances

(50, 60, and 70 meters) from the original stop sign.

Results: The Tesla identified the projected stop signs as real

on places located at a distance of 50 meters or less from the

intersection. Phantoms projected at distances of 60 and 70

meters from the intersection were not considered by Tesla’s

stop sign recognition system as real. Interestingly, although

the global average user range error of GPS measurements is

≤ 7.8 meters, with 95% probability [41], the radius of the

geolocation mechanism is greater than that by six times.

Experimental Setup: Next, we decided to test whether

Tesla’s stop sign recognition system considers colorless pro-

jection of phantom stop signs as real. The motivation behind

this set of experiments is the same as in the Mobileye

experiments described earlier: ambient light conditions can

change the way colors and hues are perceived by the system

of a captured stop sign, so we assumed that Tesla cars contain

an internal mechanism that compensates for this fact. In order

to conduct this experiment, we projected two phantoms of

colorless stop signs (presented in Figs. 23c and d) on a wall

located 50 meters from the real stop sign (marked with a

phantom in Fig. 23a). We drove the car on the road marked

with the blue arrow in Fig. 23a.

Results: As in the Mobileye case, we found that Tesla’s

stop sign recognition system does not take the color of the

stop sign into account. It detected all of the projected stop

signs as real stop signs, regardless of the presence of color
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and issued notifications about them.

Experimental Setup: Next, we aimed to test which features

are more important to Tesla’s stop sign recognition system.

Our analysis of the two phantoms in Figs. 23c and d, shows

that they consist of two components: the hexagon shape and

the word "STOP." Using the same experimental setup as the

previous experiment, we projected two more phantoms, one

consisting of only the word "STOP" (see Fig. 23e) and another

consisting of an empty hexagon on the wall.

Results: While we expected that Tesla’s stop sign recogni-

tion system would consider the hexagon shape and ignore the

word "STOP," the results of this experiment were surprising.

The word "STOP" was recognized as a stop sign, while the

empty hexagon was ignored. This experiment confirms that

the most dominant feature recognized by Tesla’s stop sign

recognition system is the word "STOP."

Experimental Setup: Next, we decided to evaluate whether

a stop sign projection can be disguised so it won’t be seen

by a human driver (in the case of a semi-autonomous car).

We created phantom videos that present regular stop signs for

250ms, 125ms, 82ms, and 41ms. With the same experimental

setup described above, we projected each video while we were

driving the car on the road marked with the blue arrow.

Results: We found that the minimal time period required for

Tesla’s stop sign recognition system to identify a phantom is

125 ms. We were unable to fool Tesla’s stop detection system

with projection periods shorter than 125 ms.

As mentioned earlier, the Tesla stop sign recognition system

is currently experimental and we are confident that when it

is officially deployed it won’t misclassify phantom the word

"STOP" as real stop sign. However, attackers might still be

able to fool a robust stop sign recognition system by applying

a phantom projection attack using the original stop sign (a red

hexagon with the word "STOP") because: 1) The Tesla must

be able to detect stop signs visually in cases in which a stop

line does not exist or in cases of temporal stop signs (e.g.,

stop sign extended from a school bus driver’s window), so

Tesla cars will need to rely on a video camera for detecting a

stop sign, leaving the option for attackers to project phantom

stop signs. In addition, while Tesla’s engineers did not reveal

the reason why they decided to use a radius of 50 meters for

their geolocation mechanism, we believe that the reason for

this decision is the following: While the GPS measurement’s

average error is is ≤ 7.8 meters with 95% probability [41],

there are various cases (e.g., tunnels) in which the error of the

obtained GPS measurements can be greater than the average

error (≥ 7.8). Limiting the geolocation area to 7.8 meters will

probably result in many false negatives, i.e., a detected stop

sign/traffic light will not be considered by the system as a

real due to incorrect GPS measurements. Again, the absence

of V2I protocols can be exploited by attackers to cause greater

harm. While Tesla’s current stop sign recognition mechanism

does not cause the car to stop, full autonomous cars must have

the functionality that stops the car at a detected stop sign.

Given that the geolocation radius will probably be beyond

7.8 meters, attackers can target autonomous cars driving at

speeds of 45-70 MPH on a highway by projecting phantom

stop signs in specific locations (e.g., near intersections that

Fig. 23: Fooling the stop sign recognition system: Each of the

four phantoms (b-e), projected for just 125 ms, were recog-

nized by Tesla’s stop sign recognition system. The phantoms

were projected on a white wall located 50 meters from a

nearby intersection that contained a real stop sign.

contain stop signs and located at a distance which is less than

the geolocation’s radius), causing autonomous cars to stop in

the middle of a highway.
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